
Mobile Networks and Applications 10, 865–878, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11036-005-4444-6

On Node Lifetime Problem for Energy-Constrained Wireless Sensor
Networks

Y. THOMAS HOU * and YI SHI
The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

HANIF D. SHERALI
The Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA

Published online: 24 October 2005

A fundamental problem in wireless sensor networks is to maximize network lifetime under given energy constraints. In this pa-
per, we study the network lifetime problem by considering not only maximizing the time until the first node fails, but also maxi-
mizing the lifetimes for all the nodes in the network, which we define as the Lexicographic Max-Min (LMM) node lifetime prob-
lem. The main contributions of this paper are two-fold. First, we develop a polynomial-time algorithm to derive the LMM-optimal
node lifetime vector, which effectively circumvents the computational complexity problem associated with an existing state-of-the-
art approach, which is exponential. The main ideas in our approach include: (1) a link-based problem formulation, which signifi-
cantly reduces the problem size in comparison with a flow-based formulation, and (2) an intelligent exploitation of parametric anal-
ysis technique, which in most cases determines the minimum set of nodes that use up their energy at each stage using very sim-
ple computations. Second, we present a simple (also polynomial-time) algorithm to calculate the flow routing schedule such that
the LMM-optimal node lifetime vector can be achieved. Our results in this paper advance the state-of-the-art algorithmic design for
network-wide node lifetime problem and facilitate future studies of the network lifetime problem in energy-constrained wireless sensor
networks.
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1. Introduction

Wireless sensor networks consist of battery-powered nodes
that are endowed with a multitude of sensing modalities in-
cluding multimedia (e.g., video, audio) and scalar data (e.g.,
temperature, pressure, light, magnetometer, infrared). The de-
mand for these networks is spurred by numerous applications
that require in-situ, unattended, high-precision, and real-time
observations over a vast area. Although there have been sig-
nificant improvements in processor design and computing,
advances in battery technology still lag behind, making en-
ergy resource the fundamental challenge in wireless sensor
networking. As a consequence of the energy constraint, a
new performance metric, namely, the network lifetime, has
become a vitally important benchmark for wireless sensor
networks. There have been active research efforts recently at
the networking layer on devising flow routing algorithms to
maximize network lifetime [4–6,8–10,16,29]. However, the
network lifetime objective in most of these efforts has been
centered around maximizing the time until the first node fails.
Although the time until the first node fails is an important mea-
sure from the complete network coverage point of view, this
performance metric alone cannot measure the lifetime per-
formance behavior for all nodes in the network. For wireless
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sensor networks that are primarily designed for environmen-
tal monitoring or surveillance, the loss of a single node will
only affect the coverage of one particular area and will not
affect the monitoring or surveillance capabilities of the re-
maining nodes in the network. This is because the remaining
nodes in the network can adjust their transmission power (via
power control) and reconfigure themselves into a new net-
work routing (relay) topology so that information collected at
the remaining nodes can still be delivered successfully to the
base-station. Consequently, it is important to investigate how
to maximize the lifetime for, not only the first node, but also
all the other nodes in the network. We call this the Lexico-
graphic Max-Min (LMM) node lifetime problem, which will
be formally defined in Section 2.3.

Recently, Brown et al. [7] studied this problem under the
so-called “maximum node lifetime curve” problem, which is
equivalent to the LMM node lifetime problem. Informally,
the maximum node life curve attempts to maximize the time
until a set of nodes drain up their energy (which we call the
drop point) while minimizing the number of nodes that drain
up their energy at each drop point. The main contribution by
Brown et al. [7] is the development of a procedure to solve the
maximum node lifetime curve problem. A key step in their
procedure is to use multiple independent linear programming
(LP) calculations to determine the minimum set of nodes at
each drop point, which we call “Serial LP with Slack Variable



866 HOU, SHI AND SHERALI

analysis” (SLP-SV). Although this approach can solve the
LMM node lifetime problem, its computational complexity is
shown to be exponential, which could be a potential problem
for large-scale networks.

Inspired by Brown et al.’s work on the LMM node
lifetime problem, in this paper, we develop a polynomial
time algorithm to derive the LMM-optimal node lifetime
vector. In addition, we demonstrate that, for any given
network configuration and initial condition, our approach is
always significantly computationally more efficient than the
Slack Variable (SV) based approach in [7]. Consequently,
this leads to an even stronger performance guarantee than
the commonly-used average case complexity criteria. The
computational effectiveness of our approach accrues from
two important techniques. First, we employ a link-based
problem formulation, which significantly reduces the prob-
lem size in comparison with a flow-based formulation used
in [7]. Second, which is also the most significant contribution
in this paper, we exploit the so-called parametric analysis
technique at each drop point to determine the minimum
set of nodes that use up their energy. When the problem is
non-degenerate, we show that this technique is a powerful
tool in determining the minimum node set for each drop point.
It is also extremely simple and has a linear time complexity
per node in contrast with the SV-based approach proposed
in [7], which requires solving multiple additional LPs at
each drop point. Even for the rare case, when the problem
is degenerate, using the parametric analysis technique still is
more efficient than the SV-based approach as it decreases the
number of additional LPs that need to be solved at each drop
point.

In addition to providing an efficient polynomial time al-
gorithm for the LMM-optimal node lifetime vector com-
putation, we also develop a simple polynomial time algo-
rithm that provides a corresponding flow routing sched-
ule among the remaining alive nodes at each stage such
that the LMM-optimal node lifetime vector can indeed be
achieved. A nice property about this algorithm is that it
can be executed in parallel (instead of in serial) for all the
stages.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the system model and problem statement
for this research, including the reference network architec-
ture, nodal power dissipation behavior, and the LMM node
lifetime problem description. We also describe a naive ap-
proach to address this problem and discuss why it usually
gives an incorrect solution. Section 3 presents the link-based
LMM problem formulation and our efficient Serial LP algo-
rithm based on Parametric Analysis, which we call SLP-PA. In
Section 4, we present a simple algorithm to calculate the flow
routing schedule at each stage such that the LMM-optimal
node lifetime vector can indeed be achieved. Section 5 ana-
lyzes the complexity of our algorithm and compares it with
that in [7]. Numerical results using the SLP-PA approach
and the corresponding flow routing schedule are given in Sec-
tion 6. Section 7 reviews related work and Section 8 concludes
this paper.
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Figure 1. Reference architecture for a two-tier wireless sensor network.

2. System modeling and problem formulation

2.1. Reference network architecture

We focus on a two-tier architecture for wireless sensor net-
works. The two-tier network architecture is motivated by re-
cent advances in distributed source coding (DSC) [11, 20,
23]. Figures 1(a) and (b) show the physical and hierarchical
network topology for such a network, respectively. Here, we
have three types of nodes in the network: micro-sensor nodes
(MSNs), aggregation and forwarding nodes (AFNs), and a
base-station (BS). The MSNs can be application-specific
sensor nodes (e.g., temperature sensor nodes (TSNs), pres-
sure sensor nodes (PSNs), and video sensor nodes (VSNs))
and they constitute the lower tier of the network. They are
deployed in groups (or clusters) at a strategic location for
surveillance or monitoring applications. The MSNs are small
and low-cost; they are densely deployed within a small geo-
graphical area. The objective of an MSN is very simple: Once
triggered by an event (e.g., the detection of motion or biologi-
cal/chemical agents), it starts to capture live information (e.g.,
video), which it sends directly to the local AFN in one hop. It
is worth pointing out that multi-hop routing among the MSNs
may not be necessary due to the small distance between an
MSN and its AFN. By deploying these inexpensive MSNs
in clusters, and within proximity of a strategic location, it is
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possible to obtain a comprehensive view of the area situation
by exploring the correlation among the scenes collected at
each MSN [11]. Furthermore, the reliability of area surveil-
lance capability can also be improved through redundancy
among the MSNs in the same cluster.

For each cluster of MSNs, there is one AFN, which is
different from an MSN in terms of both its physical properties
and functions. The primary functions of an AFN are: (1) data
aggregation (or “fusion”) for information flows coming from
the local cluster of MSNs, and (2) forwarding (or relaying) the
aggregated information to the next hop AFN toward the base-
station. For data fusion, an AFN analyzes the content of each
data stream (e.g., video) it receives, from which it composes
a complete scene by exploiting the correlation among each
individual data stream from the MSNs. An AFN also serves
as a relay node for other AFNs to carry traffic toward the base-
station. Although an AFN is expected to be provisioned with
much more energy than an MSN, it also consumes energy at a
substantially higher rate (due to wireless communication over
large distances). Consequently, an AFN has limited lifetime.
Upon the depletion of energy at an AFN, we expect that the
coverage for the particular area under surveillance will be
lost, despite the fact that some of the MSNs within the cluster
may still have remaining energy.1 Therefore, it is essential to
maximize the lifetime of each AFN, which is the main focus
of this paper.

The third component in the two-tier architecture is the
base-station. The base-station is, essentially, the sink node
for all the AFNs in the network. A base-station may be as-
sumed to have a sufficient battery resource provision, or its
battery may be re-provisioned during its course of opera-
tion. Therefore, its power dissipation is not a concern in our
investigation.

In summary, the main functions of the lower tier MSNs are
data acquisition and compression while the upper-tier AFNs
are used for data fusion and relaying the information to the
base-station. The routing topology can be controlled by the
power level of a node’s transmitter [13,22,25,28], which in
turn controls the distance coverage of an AFN. Consequently,
by adjusting the power level of an AFN’s transmitter, we can
form different network routing topologies.

2.2. Power dissipation

For the ease of exposition, we assume that the rate of data
stream generated at each AFN (after data aggregation) is at
a constant bit rate. For an AFN, the power consumption by
data communication (i.e., receiving and transmitting) is the
dominant factor [1]. The power dissipation at the transmitter
can be modeled as:

pt (i, k) = cik · rik, (1)

1We assume that each MSN can only forward information to its local AFN
for processing (e.g., video fusion).

where pt(i, k) is the power dissipated at node i when it is
transmitting to node k, rik is the bit rate transmitted from node
i to node k, and cik is the power consumption cost of radio
link (i, k) and is given by

cik = αt1 + αt2 · dm
ik , (2)

where αt1 is a distance-independent constant term, αt2 is a
coefficient term associated with the distance-dependent term,
dik is the distance between these two nodes, and m is the path
loss index, with 2 ≤ m ≤ 4 [24]. Typical values for these
parameters are αt1 = 50 nJ/b and αt2 = 0.0013 pJ/b/m4 (for
m = 4) [14].2 The power dissipation at a receiver can be
modeled as [24]:

pr (i) = αrri, (3)

where ri (in b/s) is the rate of the received data stream. A
typical value for the parameter αr is 50 nJ/b [14].

2.3. The lexicographic max-min node lifetime problem

For a network having N AFNs, suppose that AFN i generates
data stream at a rate gi, and that the initial energy at this node
is given by ei(1 ≤ i ≤ N ). Then, it is straightforward to use
a linear programming (LP) approach to find an optimal flow
routing schedule such that the time until any AFN runs out of
energy is maximized [8,9]. That is, we can solve:

Max T

s.t. fiB +
∑

k �=i

fik −
∑

m�=i

fmi = gi (1 ≤ i ≤ N ) (4)

∑

m�=i

αrfmiT +
∑

k �=i

cikfikT +ciBfiBT ≤ei (1 ≤ i ≤ N )

T , fik, fiB ≥ 0 (1≤ i �=k≤N ) (5)

where fik and fiB are data rates transmitted from AFN i to
AFN k and from AFN i to the base-station B, respectively.
Equations (4) state that, the total data transmitted from AFN
i is equal to the total data received from other AFNs, plus the
data generated locally by AFN i. Equations (5) state that the
energy required to receive and transmit all these data cannot
exceed its initial energy.

Note that since fmi, fik, fiB, and T are all variables, the above
optimization problem is not linear (due to the product terms
fmi T, etc.). To transform it into an LP, we denote Vik = fikT

and ViB = fiBT . Then, we may equivalently solve:

Max T
s.t.

ViB +
∑

k �=i

Vik −
∑

m�=i

Vmi − giT = 0 (1 ≤ i ≤ N ) (6)

∑

m�=i

αrVmi +
∑

k �=i

cikVik+ciBViB ≤ei (1 ≤ i ≤ N ) (7)

T , Vik, ViB ≥ 0 (1≤ i �=k≤N ) (8)

2In this paper, we use m = 4 in all of our numerical results.
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where equations (6) follows by multiplying equations (4) by
T. We now have an LP problem and the optimal solution for
T represents the maximum time until the first node fails.

Although it is important to maximize the time until first
AFN runs out of energy (also know as the network lifetime
in [4,8]), it is even more important to concurrently maximize
also the time that the second, third, and all subsequent AFNs
run of energy. That is, it is important to find a flow routing
schedule among the AFNs such that the lifetimes of all AFNs
in the network can achieve the optimal Lexicographic Max-
Min (LMM) vector. A formal definition for the LMM-optimal
node lifetime vector is hereby given as follows. Numerical
examples for the LMM-optimal node lifetime vector can be
found in Section 6.

Definition 1. A sorted network node lifetime vector
[τ1, τ2, . . . , τN ] with τ1 ≤ τ2 ≤ · · · ≤ τN is LMM-optimal
if and only if for any other sorted node lifetime vec-
tor [τ̂1, τ̂2, . . . , τ̂N ] with τ̂1 ≤ τ̂2 ≤ · · · ≤ τ̂N , there exists a
k, 1 ≤ k ≤ N , such that for i = 1, 2, . . . , k − 1, τi = τ̂i but
τk > τ̂k .

A naive approach to the LMM node lifetime problem
would be to apply a max-min like iterative procedure to find
the sequence of node lifetime for all AFNs in the network
by considering the energy of each AFN as the bottleneck re-
source. Under this approach, an iterative LP for alive nodes in
the form of (6) to (8) could be employed to find the maximum
time until the next node fails. By calculating the remaining
energy at each node at the end of the iteration, we can move on
to the next iteration, until all the nodes drain their energy. Al-
though this approach seems appealing and intuitive, we now
show that it usually gives an incorrect solution.

We first must realize that there is a fundamental difference
between the LMM node lifetime problem here and the clas-
sical max-min rate allocation problem described in [3,15].
That is, the LMM node lifetime problem implicitly embeds
(or couples) a flow routing problem within the LMM node
lifetime problem, while under the classical max-min rate al-
location, there is no routing problem involved since the routes
for all flows are fixed.

Due to this coupling of flow routing and LMM node life-
time optimization, we find that any iterative LMM node life-
time algorithm requiring energy reservation among the nodes
during each iteration is incorrect. This is because, unlike
max-min (which addresses only the rate allocation problem
under fixed routes), starting from the first iteration, there usu-
ally exist non-unique flow routing solutions corresponding to
the same drop point. Consequently, each of these flow routing
schedules, once chosen, will yield different remaining energy
at the AFNs for future iterations and so forth, leading to a
different node lifetime vector, which may not be the same
as the LMM-optimal node lifetime vector. Numerical results
demonstrating the incorrectness of this naive approach (which
we call Serial LP with Energy Reservation (SLP-ER)) will be
given in Section 6.

Recently, Brown et al. [7] studied the LMM node life-
time problem under the notion of a “node lifetime curve”.
In their approach, they first identified the uniqueness of the
LMM-optimal node lifetime vector. Based on this property,
they developed an iterative procedure to solve the LMM node
lifetime problem. In particular, they developed a revised sim-
plex method to calculate the maximum node lifetime curve
(equivalent to the LMM-optimal node lifetime vector). A key
step in their procedure is to use multiple independent LPs to
maximize the sum of slack variables in order to determine the
minimum node set at each drop point. During each iteration,
only the drop point and the corresponding minimum set of
nodes are determined, and there is no resource reservation
process among the nodes. Although their proposed approach
solves the LMM node lifetime problem, there still remain sig-
nificant issues to be addressed. Among others, the problem
formulation proposed in [7] is shown to be of exponential
computational complexity, which could become problematic
when the scale of the network becomes large.

3. An efficient serial LP algorithm based on parametric
analysis

In this section, we present an efficient algorithm for the LMM
node lifetime problem. Unlike the Serial LP with Slack Vari-
able analysis (SLP-SV) approach in [7], our approach results
in a polynomial running time. Moreover, for any given net-
work configuration and initial condition, our approach is much
simpler than the Slack Variable based (SV-based) approach in
[7]. The computational effectiveness of our approach hinges
upon two important techniques. First, we employ a link-based
problem formulation that significantly reduces the problem
size in comparison with a flow-based formulation adopted in
[7]. Second, we invoke a parametric analysis procedure at
each stage to determine the minimum node set at each drop
point. For non-degenerate problems, this parametric analy-
sis results in only a linear time computational complexity per
node, while the SV-based approach in [7] requires the solution
of multiple independent LPs to determine the minimum set of
nodes at each drop point. Even for the rare case when the prob-
lem is degenerate, using our parametric analysis technique is
still more efficient than the SV-based approach because it de-
creases the number of additional LPs that needs to be solved at
each drop point. In the remainder of this section, we elaborate
on the details of our Serial LP algorithm based on Parametric
Analysis (SLP-PA). Table 1 shows the notation used in this
paper.

3.1. Link-based formulation

Suppose that [τ1, τ2, . . . , τN ] with τ1 ≤ τ2 ≤ · · · ≤ τN is
LMM-optimal. If τk = τk+1, then the respective nodes cor-
responding to τ k and τ k+1 have the same node lifetime, i.e.,
the corresponding nodes for τ k and τ k+1 use up their energy
at the same time. To keep a track of distinct node lifetimes,
we remove all repetitive elements in the vector and rewrite
it as [a1, a2, . . . , an] such that a1 < a2 < · · · < an, where
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Table 1
Notation.

Symbol Definition

N The number of AFNs in the network

ei The initial energy at AFN i

gi The data rate generated at AFN i

αr Power consumption coefficient for receiving data

cik (or ciB ) Power consumption coefficient for transmitting data from AFN i to AFN k (or the base-station B)

Ti AFN i’s lifetime under the LMM-optimal node lifetime vector

τi The i-th node lifetime in the sorted LMM-optimal node lifetime vector, i.e. τ1 ≤ τ2 ≤ · · · ≤ τN

n The number of distinct lifetimes in the sorted LMM-optimal node lifetime vector

ai The i-th distinct lifetime in the sorted LMM-optimal node lifetime vector, i.e. a1(=τ1)<a2 < · · ·<an(=τN )

δi = ai − ai−1

Si The minimum set of nodes that uses up energy at time ai

Ŝi The set of all possible AFNs which may use up energy at time ai, Si ⊆ Ŝi

Vik(or ViB ) The total bit volume from AFN i to AFN k (or the base-station B)

fik (or fiB ) The flow rate from AFN i to AFN k (or the base-station B)

x The optimal solution for LP-LMM

w The optimal solution for the dual problem of LP-LMM

b Right-hand-side (RHS) of LP-LMM

Ii A vector having a single 1 corresponding to the index i of Eq. (9) and 0 elsewhere

B The columns corresponding to the basic variables of LP-LMM

Z The columns corresponding to the non-basic variables of LP-LMM

cB The parameters in the objective function corresponding to the basic variables of LP-LMM

cZ The parameters in the objective function corresponding to the non-basic variables of LP-LMM

xB Part of optimal solution corresponding to the basic variables of LP-LMM

xZ Part of optimal solution corresponding to the non-basic variables of LP-LMM

a1 = τ1, an = τN , and n ≤ N . Corresponding to these drop
points, denote S1, S2, . . ., Sn as the sets of nodes that drain
their energy at the drop points a1, a2, . . . , an, respectively.
Clearly, |S1| + |S2| + . . . + |Sn| = |S| = N where S denotes
the set of all N AFNs in the network. The problem is to find the
LMM-optimal values of a1, a2, . . ., an and the corresponding
sets S1, S2, . . ., Sn.

To formulate this problem into an iterative form, we define
a0 = 0 and S0 = Ø. Furthermore, denote δl = al −al−1. Then,
the iterative optimization problem (starting with l = 1) for the
LMM node lifetime problem becomes,

LP-LMM: Max δl

s.t.

ViB +
∑

k �=i

Vik−
∑

m�=i

Vmi −δlgi = al−1gi,



i �∈
l−1⋃

j=0

Sj



 (9)

ViB +
∑

k �=i

Vik −
∑

m�=i

Vmi = ahgi, (i ∈Sh, h<l) (10)

∑

m�=i

αrVmi +
∑

k �=i

cikVik+ciBViB ≤ ei,



i �∈
l−1⋃

j=0

Sj



 (11)

∑

m�=i

αrVmi +
∑

k �=i

cikVik+ciBViB = ei, (i ∈Sh, h<l)

Vik, ViB, δl ≥ 0, (1≤ i �=k≤N) . (12)

The set of constraints in (9) state that the total in-coming
and local data bit volumes are equal to the total out-going
data bit volumes for each node that still has remaining en-
ergy at time al−1. The set of constraints in (10) say that the
total in-coming and local data volumes are equal to the out-
going data bit volume for each node that no longer has any
remaining energy at time al−1. The set of constrains in (11)
state that the total energy consumed for receiving and trans-
mitting data bit volumes is no more than the initial energy
for each node that has remaining energy at time al−1. The set
of constraints in (12) say that the total energy consumed for
receiving and transmitting data is equal to the initial energy
for each node that no longer has any remaining energy at time
al−1.

The above LP formulation can be rewritten in the form:
Max cx, s.t. Ax = b and x ≥ 0, the dual problem for which
is given by: Min wb, s.t. wA ≥ c and w unrestricted [2].
Both can be solved simultaneously by standard LP techniques
(e.g., [2]) in polynomial-time. Although solving LP-LMM
gives the optimal value for δl, we need yet to determine
the minimum set of nodes corresponding to this δl, which
is the main task in this investigation. In the remainder of
this section, we exploit post-LP parametric analysis tech-
niques [2] to determine the minimum node set for each drop
point.
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3.2. Minimum node set determination with parametric
analysis

Denote Ŝl �= ∅ to be the set of nodes for which the constraints
(11) are binding at optimality for LP-LMM, i.e., the set of
nodes that achieve equality in (11). Although at least one of
the nodes in Ŝl must belong to Sl (the minimum node set at
al), some of the nodes in Ŝl may still be further “stretched”
to live longer under alternative flow routing schedules. In the
special case, if |Ŝl| = 1, then Sl = Ŝl ; otherwise, we need to
determine the minimum set of Sl(Sl ⊆ Ŝl) that achieves the
LMM-optimal solution.

We find the so-called parametric analysis (PA) technique
[2] is most effective in addressing this type of problems. The
main idea of parameter analysis is to find how a small per-
turbation of some component in the LP-LMM will affect the
solution. In particular, consider a small increase in the right-
hand-side (RHS) of (9), i.e., changing bi to bi + εi, where εi

> 0. Then this node i belongs to Sl if and only if ∂+δl

∂εi
(0) < 0,

i.e., a small increase in node i’s lifetime (in terms of total bit
volume generated at node i) leads to a decrease in the next
drop point.

To compare ∂+δl

∂εi
(0) with 0, we resort to an important duality

relationship in LP theory. If x and w are the respective optimal
solutions to the primal and dual problems, then based on the
parametric duality property [2], we have

∂+δl

∂εi

(0) = ∂+(cx)

∂bi

(bi) ≤ wi . (13)

Note that by the nature of the problem, we have wi ≤ 0
for an optimal dual solution. Recall that these wi can be
easily obtained at the same time when we solve the primal
LP problem. Therefore, if wi < 0, then we can determine
immediately that i ∈ Sl . On the other hand, if we find that
wi = 0, it is not clear whether ∂+δl

∂εi
(0) is strictly negative or 0

and further analysis is thus needed.
For each node i with wi = 0, we must perform a complete

PA to see whether this RHS can be further increased with-
out changing the objective value of LP-LMM. If there is no
change, then we can determine that node i �∈ Sl ; otherwise,
i ∈ Sl .

Assume that the optimal solution is (xB, xZ ), where xB and
xZ denote the set of basic and non-basic variables; B and Z
denote the columns corresponding to the basic and non-basic
variables; cB and cZ denote the objective function coefficient
vectors for the basic and non-basic variables; and q denotes the
objective value. Then the corresponding canonical equations
yield [2]

q + (
ct
BB−1Z − ct

Z
)
xZ = ct

BB−1b,

xB + B−1ZxZ = B−1b.

If b is replaced by b + εiIi , where the column vector Ii has
a single 1 corresponding to node i in the set of constraints
(9) and has 0 elements otherwise, then the only change in
the constraints due to this perturbation is that B−1b will be
replaced by B−1(b + εiIi). Consequently, the objective value

for the current basis becomes ct
BB−1(b + εiIi). Furthermore,

as long as B−1(b + εiIi) is nonnegative, the current basis
remains optimal. Denote b̄ = B−1b and B−1

i = B−1Ii and let
ε̂i be an upper bound for εi such that the current basis remains
optimal, we have

ε̂i = min
j

{
b̄j

−B−1
ij

: B−1
ij < 0

}
(14)

If ε̂i > 0, the optimal objective value varies according to
ct
BB−1(b + εiIi) for 0 < εi ≤ ε̂i . Since w = ct

BB−1 and wi =
0, we have ct

BB−1Ii = wi = 0. Thus, the objective value will
not change for εi ∈ (0, ε̂i], and consequently, the lifetime for
node i can be “stretched” to last longer beyond current drop
point al. That is, node i does not belong to the minimum node
set Sl.

For most practical problems, this directly yields whether
i ∈ Sl or i /∈ Sl (for all i ∈ Ŝl). But in the rare event where
ε̂i = 0, the problem is degenerate. To develop a polynomial-
time algorithm, denote Wl as the set of all nodes with wi < 0
and Ul the set of all nodes with wi = 0 and ε̂i = 0. Then we
solve the following LP to maximize the slack variables (SV)
for nodes in Ul.

MSV: Max
∑

i∈Ul
εi

s.t.

ViB +
∑

k �=i

Vik−
∑

m�=i

Vmi −εigi =algi, (i ∈ Ul)

ViB +
∑

k �=i

Vik −
∑

m�=i

Vmi = ahgi, (i ∈ Sh, 1 ≤ h < l)

ViB +
∑

k �=i

Vik −
∑

m�=i

Vmi = algi,

(
i �∈ Ul

l−1⋃

h=1

Sh

)

∑

m�=i

αrVmi +
∑

k �=i

cikVik+ciBViB = ei,

(
i ∈Ul

⋃
Wl

l−1⋃

h=1

Sh

)

∑

m�=i

αrVmi +
∑

k �=i

cikVik+ciBViB ≤ ei,

(
i �∈Ul

⋃
Wl

l−1⋃

h=1

Sh

)

Vik, ViB, εi ≥ 0 , (1 ≤ i �= k ≤ N ).

If the optimal objective value is 0, then no node in Ul

can have a positive εi, i.e., these nodes should all belong to
Sl. That is, these nodes should all belong to Sl and we have
Sl = Wl+Ul . On the other hand, if the optimal objective value
is positive, then some nodes in Ul must have positive εi, i.e.,
these nodes should not belong to Sl. Consequently, we remove
these nodes from Ul and if Ul �= ∅, we solve another MSV.
This procedure will terminate when the optimal objective
value is 0 or Ul = Ø.

In a nutshell, the complete PA procedure for the de-
termination of whether or not a node i (∈ Ŝl) belongs
to the minimum node set Sl can be summarized as
follows.
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Algorithm 1 (Minimum node set determination with PA)

1. Initialize Wl = ∅ and Ul = ∅.

2. For each node i ∈ Ŝl ,

a) if wi < 0, add node i to Wl ;

b) otherwise, using B−1 (which is readily available af-
ter solving an LP-LMM), compute b̄ = B−1b, B−1

i =
B−1Ii , and ε̂i according to (14). If ε̂i = 0, add i to Ul

3. If Ul = ∅, let Sl = Wl and stop, else build and solve an
MSV.

4. If the optimal objective value is 0, let Sl = Wl + Ul and
stop. Otherwise, remove all nodes with εi > 0 from Ul and
go to Step 3.

The following lemma establishes an important property for
the minimum node set obtained at each drop point. The proof
is given in the appendix.

Lemma 1. The set of physical nodes corresponding to the
minimum node set at each drop point under the LMM-optimal
solution is unique.

4. LMM-optimal flow routing schedule

4.1. Non-uniqueness of flow routing schedule

The solution to the LMM node lifetime problem would not be
complete without a corresponding flow routing schedule. The
first question to ask is whether such a flow routing schedule
is unique. We show that, although the set of physical nodes
corresponding to the minimum node set at each stage is unique
(Lemma 1), the flow routing schedule is non-unique. This is
because upon the completion of the last LP-LMM in SLP-PA,
there usually exist non-unique bit volume solutions (Vik and
ViB values along each radio link), all of which can achieve the
same unique objective values (δi values). As the bit volumes
(Vik and ViB values) along each radio link are non-unique, the
corresponding flow routing schedule is, as a result, also non-
unique. This observation is formally stated in the following
lemma.

Lemma 2. The flow routing schedule corresponding to the
LMM-optimal node lifetime vector can be non-unique.

Incidentally, this result corrects an error in [7]
(Lemma 3.2), which incorrectly states that such a flow
routing schedule is unique.

4.2. An optimal flow routing schedule

Given that the optimal flow routing schedule is non-unique,
there are potentially many possible flow routing schedules
that achieve the LMM-optimal node lifetime vector. In this
section, we present a simple polynomial-time algorithm that
provides an LMM-optimal flow routing schedule.

The main task in this algorithm is to define flows from
the bit volumes (Vik and ViB values), which are obtained
upon the completion of the last LP-LMM in our SLP-PA
approach. Note that the bit volumes obtained here represent
the total amount of bit volume being transported between
the nodes during [0, an], where an = τN is the time that the
last set of nodes drain their energy. The main result here is
that if we let the total amount of out-going flow at a node
be distributed proportionally to the bit volumes on each out-
going link for all the remaining alive nodes at each stage,
then we can achieve the drop points a1, a2, . . . , an as well as
the corresponding minimum node sets S1, S2, . . . , Sn. The
algorithm is formally described as follows.

Algorithm 2 (An optimal flow routing schedule). Upon
the completion of the SLP-PA algorithm for the LMM node
lifetime vector, we have the drop points (in strictly increasing
order) a1, a2, . . . , an, the corresponding minimum physical
node sets S1, S2, . . . , Sn, and the total amount of bit vol-
ume on each radio link (i.e., Vik and ViB). The following
algorithm gives an LMM-optimal flow routing schedule for
the corresponding time interval (al−1, al], where a0 = 0 and
l = 1, 2, . . . , n.

1. Denote Ul = S−⋃l−1
j=0 Sj , with S0 = ∅. Initialize all flows

to zero, i.e., f
(l)
ik = 0, f

(l)
iB = 0 for 1 ≤ i �= k ≤ N.

2. If Ul = ∅, then stop, else choose a node i from Ul such
that3:

• either node i does not receive data from any other node,
or

• all nodes from which node i receives data are not in Ul

3. The flow routing at node i during (al−1, al] is then defined
as

f
(l)
ik = Vik

ViB + ∑
k �=i Vik




∑

m�=i

f
(l)
mi + gi



 (∀k �= i),

f
(l)
iB = ViB

ViB + ∑
k �=i Vik




∑

m�=i

f
(l)
mi + gi



 ,

where the f
(l)
mi values, if not zero, have all been defined

before calculating the flow routing for node i.

4. Let Ul = Ul − {i} and go to Step 2.

As shown in this algorithm, for each time interval (al−1, al],
l = 1, 2, . . . , n, we initialize Ul as the set of remaining alive
nodes at this stage, which is represented by Ul = S −∪l−1

j=0Sj .
For these nodes, we compute a flow routing by starting with
the “boundary” nodes and then move to the “interior” nodes.
More precisely, we will calculate the flow routing for a node i

3Such an i must exist when Ul �= ∅. For an LMM-optimal solution, there is
no cycle, i.e., we do not have Vi1,i2 , . . . , Vik−1,ik , Vik ,i1 > 0. Otherwise, by
reducing these volumes a little further, we can increase the corresponding
nodes’ lifetimes.
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if and only if we have calculated the flow routing for
each node m that has traffic coming into node i. The out-
going flow at node i is calculated by distributing the ag-
gregated in-coming flow proportionally according to the
overall bit volume along its out-going radio links. As an
example, suppose that during (a4, a5], node 2 receives an
aggregated flow of rate 2 kb/s and generates 0.4 kb/s amount
of data locally. Assume that V24 = 100 kb, V25 = 200 kb, and
V2B = 300 kb over [0, an]. Then the out-going flow at node
2 is routed as follows:f (5)

24 = 0.4 kb/s, f (5)
25 = 0.8 kb/s, and

f
(5)
2B = 1.2 kb/s.

We now give a formal proof that the flow routing schedule
defined by Algorithm 2 will indeed give the LMM-optimal
node lifetime vector.

Proof: For t ∈ (al−1, al], denote fik(t) = f
(l)
ik and

fiB(t) = f
(l)
iB , l = 1, 2, . . . , n; Gi(t) = gi for t ≤ Ti and

Gi(t) = 0 for t > Ti . To show that the flow routing schedule
defined in Algorithm 2 indeed gives the LMM-optimal node
lifetime vector, it is sufficient to show that each physical node
i (i = 1, 2, . . . , N ) has lifetime Ti under this flow routing
schedule, i.e.,

∫ Ti

t=0




∑

m�=i

αrfmi(t)+
∑

k �=i

cikfik(t)+ciBfiB(t)



 dt =ei .

(15)

To show that (15) is true, it is sufficient to show
that,

∫ Ti

t=0 fmi(t)dt = Vmi ,
∫ Ti

t=0 fik(t)dt = Vik , and∫ Ti

t=0 fiB(t)dt = ViB hold. This is equivalent to showing that
∫ T

t=0
fmi(t)dt = Vmi , (16)

∫ T

t=0
fik(t)dt = Vik , (17)

∫ T

t=0
fiB(t)dt = ViB , (18)

and

fmi(t) = 0 for t > Ti, (19)

fik(t) = 0 for t > Ti, (20)

fiB(t) = 0 for t > Ti. (21)

To show that (16) holds, it is sufficient to show that (17)
holds for 1 ≤ i �= k ≤ N . We now show that this is true.

1. Suppose that node i is a “boundary” node that does not re-
ceive any flow from other nodes. Hence, we have Vmi = 0,

and so, fmi(t) = 0. Consequently,
∫ T

t=0
fik(t)dt

=
∫ T

t=0

Vik

ViB + ∑
k �=i Vik

· Gi(t)dt

= Vik

ViB + ∑
k �=i Vik

· giTi

= Vik

ViB + ∑
k �=i Vik



ViB +
∑

k �=i

Vik



 = Vik .

The second equality holds since Gi(t) = gi for t ∈ [0, Ti]
and Gi(t) = 0 otherwise. The third equality follows since
the bit volumes Vik and ViB must meet the volume balance
property at node i.

2. Now, let us suppose that node i is not a “boundary” node
and thus will receive flow from some nodes m. Based
on the selection of node i, node m’s out-going flows
have already been defined. Moreover, it is supposed that
node m has already met the criteria in (16), particularly,∫ T

t=0 fmi(t)dt = Vmi . Based on the definition for flow rout-
ing in Algorithm 2, we have

∫ T

t=0
fik(t)dt

=
∫ T

t=0

Vik

ViB + ∑
k �=i Vik




∑

m�=i

fmi(t) + Gi(t)



 dt

= Vik

ViB + ∑
k �=i Vik




∑

m�=i

Vmi + giTi





= Vik

ViB + ∑
k �=i Vik



ViB +
∑

k �=i

Vik



 = Vik.

The second equality holds since
∫ T

t=0 fmi(t)dt = Vmi

(which we have proved) and
∫ T

t=0 Gi(t)dt = giTi . The third
equation holds since the bit volumes Vik and ViB must meet
the volume balance property at node i.

Combining (i) and (ii), we have proved that (17) holds for
1 ≤ i �= k ≤ N . Following the same argument, we can prove
that (18) also holds for 1 ≤ i ≤ N .

Next, we prove (19), (20) and (21) also hold. For t > Ti ,
suppose that t ∈ (aj−1, aj ]. Then we have aj−1 ≥ Ti . Since
under Algorithm 2, positive flow routing for f

(l)
ik and f

(l)
iB are

only defined for Ti > al−1, we have f
(j )
ik = 0 and for t > Ti ,

i.e., (20) and (21) both hold. Now we show that (19) also
holds. If Vmi = 0, then fmi(t) = 0 for t > Ti holds trivially.
If Vmi > 0, we must have Ti ≥ Tm under the LMM-optimal
solution. Otherwise (i.e., Ti < Tm), we can further increase
node i’s lifetime by decreasing Vmi while increasing VmB ,
but this contradicts the assumption that Ti is the optimal
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node lifetime for node i under the LMM-optimal solution.
Since we have aj−1 ≥ Ti , then aj−1 ≥ Tm. Consequently,
fmi(t) = 0 for t > Ti by the flow routing construction in
Algorithm 2.

An important property for Algorithm 2 is that the flow rout-
ing schedule during each interval (al−1, al], l = 1, 2, . . . , n,
can be calculated independently by referencing the LMM-
optimal solution. Consequently, this property enables a par-
allel computation of the flow routing schedule, i.e., for
computing the flow routing for all n intervals at the same
time.

5. Computational complexity analysis

Complexity of SLP-PA. We now analyze the complexity of
our SLP-PA approach to solve the LMM node lifetime prob-
lem. First we consider the complexity of finding each node’s
lifetime and the total bit volume transmitted along each link.
At each stage, we solve an LP problem, both its primal and
dual have a complexity of O(nA

3L), where nA is the number
of constraints or variables in the problem, whichever is larger,
and L is the number of binary bits required to store the data
[2]. Since the number of variables is O(N2) and is larger than
the number of constraints, which is O(N ), the complexity of
solving the LP is O(N6L). After solving an LP at each stage,
we need to determine whether or not a node that just reached
its energy binding constraint belongs to the minimum node
set for this stage. Note that w and b̂ = B−1b can be readily
obtained when we solve the primal LP problem. To deter-
mine whether a node, say i belongs to the minimum node
set, we examine wi . If wi < 0, then node i belongs to the
minimum node set and the complexity is O(1). On the other
hand, if wi = 0, we need to further examine whether ε̂i > 0
or not. Based (14), the computation for ε̂i is O(N ). So at
each stage, the complexity in PA for each node is O(N ). The
total complexity of PA at each stage for the node set is thus
|Ŝl| · O(N ) or O(N · N ) = O(N2). Thus, the complexity at
each stage is O(N6L) + O(N2) = O(N6L). As there are at
most N stages, the overall complexity is O(N7L).

We now analyze the complexity for the degenerate case.
Upon the completion of Step 2 in Algorithm 1, we denote
U

(0)
l = Ul . Since we need to solve at most |U (0)

l −Sl| LPs, the
complexity is |U (0)

l −Sl|·O(N6L) or O(N ·N6L) = O(N7L).
Hence, the complexity at each stage is O(N6L) + O(N2) +
O(N7L) = O(N7L). Since there are at most N stages, the
overall complexity is O(N8L).

We now analyze the complexity of Algorithm 2 to find the
flow routing schedule. At each stage, we need to define the
transmission rates for the remaining alive nodes. Since the
complexity of defining each node’s flow rates is O(N ), the
complexity of calculating the flow routing schedule at each
stage is thus O(N2). Since there are at most N stages, the over-
all complexity of Algorithm 2 is O(N3). Now combining the
complexity of both parts in our approach, the overall complex-
ity is O(N7L) + O(N3) = O(N7L) for the non-degenerate

case and O(N8L) + O(N3) = O(N8L) for the degenerate
case. Both are polynomial.

Comparison with SLP-SV. We now compare the complexity
of our approach with the SLP-SV approach in [7]. First of all,
SLP-SV needs to keep track of each sub-flow along its route
from the source node toward the base-station. Such a flow-
based (or more precisely, sub-flow based) approach usually
makes the size of the LP coefficient matrix exponential, which
leads to an exponential-time algorithm even with the most
efficient LP technique (e.g., [2]).4 Second, even if a link-
based LP formulation such as ours is adopted in [7], the
computational efficiency of Slack Variable based (SV-based)
approach would be still worse than SLP-PA. This is because
that at each stage, the SV-based approach in [7] solves several
additional LPs (up to |Ŝl − Sl|) to determine Sl , in contrast
with the simpler parametric analysis for the SLP-PA approach,
which only involves O(N2) effort for the non-degenerate case.
Even for the degenerate case, the number of additional LPs are
up to |U (0)

l −Sl|(≤ |Ŝl −Sl|). Consequently, for any problem,
our approach is computationally more efficient than the SLP-
SV approach in [7].

Finally, we discuss a hybrid link-flow approach mentioned
in [7]. This approach requires a sub-flow accounting on each
link and results in an order of magnitude more constraints
than the link-based approach proposed in this paper. Although
this approach can solve the LMM node lifetime problem in
polynomial-time (e.g., using interior point methods [2]), the
overall complexity is still orders of magnitude higher than
that for our proposed SLP-PA approach. Furthermore, there
remains the additional burden associated with the SLP-SV
approach for solving the additional LPs even using the hybrid
link-flow based approach.

6. Numerical Investigation

In this section, we use numerical results to illustrate the solu-
tion of LMM node lifetime problems and compare our SLP-
PA to some other approaches. In particular, we will compare
SLP-PA with the naive approach (see Section 2.3) that uses a
serial LP “blindly” to solve the LMM node lifetime problem.
We call this naive approach Serial LP with energy reservation
(SLP-ER). As discussed in Section 2.3, the naive SLP-ER ap-
proach requires energy reservation at each stage and cannot
give the correct LMM-optimal solution. We also compare our
SLP-PA approach with the Minimum-Power Routing (MPR)
approach that has been considered in the literature (see, e.g.
[12,13,17–19,21,26,27]) and is used to achieve energy effi-
ciency. Under the MPR approach, an AFN always chooses the
path that consumes the minimum amount of power toward the
base-station. As discussed earlier, although energy-efficient
from a per-bit delivery perspective, the MPR approach cannot
achieve the LMM-optimal objective.

4Incidentally, the revised simplex method proposed in [7] is not as efficient
as that in [2] and is itself exponential.
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Table 2
Locations (in meters) for each AFN in a 10-node network.

AFN Location (xi , yi ) AFN Location (xi , yi )

1 (400, −320) 6 (−500, 100)

2 (300, 440) 7 (−400, 0)

3 (−300, −420) 8 (420, 120)

4 (320, −100) 9 (200, 140)

5 (340, −120) 10 (220, −340)

Table 3
Locations (in meters) for each AFN in a 20-node network.

AFN Location (xi , yi ) AFN Location (xi , yi )

1 (200, 130) 11 (110, −230)

2 (−400, −380) 12 (-210, 0)

3 (−100, 420) 13 (210, 320)

4 (0, 430) 14 (300, −480)

5 (−410, 440) 15 (−420, −420)

6 (−200, 230) 16 (120, −240)

7 (400, −490) 17 (220, −440)

8 (410, −300) 18 (−220, 240)

9 (100, 310) 19 (−500, −110)

10 (100, 140) 20 (0, −330)

6.1. Network configurations and parameter settings

We consider two network topologies. The first network con-
sists of 10 AFNs while the second network consists of 20
AFNs. Under each network, the base-station B is located at
the origin (0, 0) (in meters). The locations for these 10 and
20 AFNs are generated at random and are shown in Tables 2
and 3, respectively.

6.2. Results

10-AFN network. We assume that the initial energy at each
AFN is 50 kJ and local data generated by each AFN is 0.2
kb/s. The power dissipation behaviors for transmission and
reception are defined in (1) and (3), respectively.

Table 4 gives each AFN’s lifetime (days) under each
approach.5 The “sorted” index column represents the node
index, in which the AFNs are sorted by their node life-
times in nondecreasing order. Clearly, the node lifetime vec-
tor under SLP-PA dominates that under the SLP-ER and
MPR approaches with respect to the LMM-optimal node
lifetime vector definition (see Definition 1). For example,
comparing the node lifetime vector under SLP-PA and SLP-
ER, we find that τ SLP−PA

1 = τ SLP−ER
1 , τ SLP−PA

2 = τ SLP−ER
2 ,

τ SLP−PA
3 = τ SLP−ER

3 , and τ SLP−PA
4 > τ SLP−ER

4 . Similarly, com-
paring the node lifetime vector under SLP-PA and MPR, we
have τ SLP−PA

1 > τMPR
1 . In general, τMPR

1 (28.91 days) is the
smallest among the three approaches (45.71 days under both
SLP-PA and SLP-ER) since minimum power routing does not

5The results for the SLP-SV are not shown since they are the same as those
under SLP-PA. The difference is in the computational complexity.

Table 4
Node Lifetime performance(in days) under the three approaches for the

10-AFN Network.

Sorted SLP-PA SOP-ER MPR

index τ i AFN τ i AFN τ i AFN

1 45.71 3 45.71 1 28.91 7

2 45.71 6 45.71 2 46.09 3

3 45.71 7 45.71 3 61.63 6

4 146.08 1 45.71 5 87.75 9

5 146.08 2 45.71 6 92.77 4

6 146.08 4 45.71 7 118.79 5

7 146.08 5 45.71 10 142.96 8

8 146.08 8 303.70 4 150.29 2

9 146.08 9 303.70 8 157.62 10

10 146.08 10 303.70 9 182.55 1

guarantee a good performance with respect to node lifetime
performance. Although SLP-ER and SLP-PA have the same
node lifetime (45.71 days) at the first stage, SLP-PA gives
a smaller AFN set (|S1|SLP−PA = 3) at this drop point than
SLP-ER (|S1|SLP−ER = 7), which shows that the naive SLP-
ER approach cannot offer the correct solution to the LMM
node lifetime problem.

Another way to visualize the LMM node lifetime perfor-
mance in Table 4 is to plot the total number of remaining
“alive” AFNs over time, which is given in Figure 2. Viewing
Figure 2(a), in the beginning, all 10 AFNs are alive. As time
goes on, one AFN under MPR drains its energy (at 28.91
days) and the remaining alive AFNs drop to 9. Under both the
SLP-PA and SLP-ER approaches, the first drop point takes
place at 45.71 days, during which 3 AFNs drain their energy
under SLP-PA while 7 AFNs drain energy under SLP-ER.
Among the three approaches, only the SLP-PA provides a
node lifetime solution that meets the LMM-optimal defini-
tion (see Definition 1).

20-AFN network. For the 20-AFN network (Table 3), we
assume that the initial energy at each AFN is 50 kJ and that
the local data generated by each AFN is 0.5 kb/s. Table 5
shows the sorted node lifetime performance under the three
approaches. Plots for the node lifetime curve are given in
figure 2(b). Again, we have similar observations as those for
the 10-AFN network.

Flow routing schedule. We now show how to use Algo-
rithm 2 to calculate a flow routing schedule that achieves
the LMM-optimal node lifetime vector for the 10-AFN net-
work. Under the SLP-PA approach, we have a1 = 45.71
days with S1 = {3, 6, 7} and a2 = 146.08 days with S2 =
{1, 2, 4, 5, 8, 9, 10}.

Also, we obtain the following bit volumes (all in 104 kb)
among the nodes from the last LP-LMM solution:

V1,5 = 320.0419, V1,B = 46.7550;

V2,9 = 233.8006, V2,B = 18.6306;

V3,7 = 48.6548, V3,B = 30.3317;
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Figure 2. Node lifetime curves under the three approaches for the 10-AFN
and 20-AFN networks.

V4,B = 303.3560;

V5,4 = 50.9249, V5,8 = 390.6881, V5,B = 130.8601;

V6,7 = 22.2673, V6,B = 56.7191;

V7,B = 149.9086;

V8,9 = 576.2578, V8,B = 66.8615;

V9,B = 1062.4895;

V10,1 = 114.3658, V10,B = 138.0654

We now find the flow routing schedule for each inter-
val, i.e., [0, a1] and (a1, a2], respectively. For time interval
[0, a1], we get the following.

• Nodes 2, 3, 6, and 10 do not receive any data. Using Algo-
rithm 2, node 2 sends 0.185 kb/s to node 9 and 0.015 kb/s
to the base-station B. Similarly, node 3 sends 0.123 kb/s to
node 7 and 0.077 kb/s to the base-station B; node 6 sends
0.057 kb/s to node 7 and 0.143 kb/s to the base-station B;

Table 5
Lifetime (days) for the 20-AFN network.

Sorted SLP-PA SOP-ER MPR

index τ i AFN τ i AFN τ i AFN

1 43.35 2 43.35 2 31.85 19

2 43.35 15 43.35 7 34.54 11

3 43.35 19 43.35 8 38.72 2

4 68.32 7 43.35 14 56.99 15

5 68.32 8 43.35 15 67.98 16

6 68.32 11 43.35 16 71.79 8

7 68.32 14 43.35 17 72.88 17

8 68.32 16 43.35 19 77.08 14

9 68.32 17 152.72 1 82.40 7

10 152.72 5 152.72 3 92.27 10

11 160.91 1 152.72 4 125.25 6

12 160.91 3 152.72 5 136.33 1

13 160.91 4 152.72 6 143.59 12

14 160.91 6 152.72 9 146.77 9

15 160.91 9 152.72 10 152.72 5

16 160.91 10 152.72 12 162.77 20

17 160.91 12 152.72 13 169.59 18

18 160.91 13 152.72 18 177.54 13

19 160.91 18 152.72 20 188.26 4

20 160.91 20 201.09 11 208.04 3

node 10 sends 0.091 kb/s to node 1 and 0.109 kb/s to the
base-station B.

• Now, since the in-coming flow to nodes 1 and 7 are de-
fined, we can calculate their out-going flow rates. Using
Algorithm 2, node 1 sends 0.254 kb/s to node 5 and 0.037
kb/s to the base-station B; node 7 sends 0.380 kb/s to the
base-station B.

• Next, we consider node 5. After calculation, we find that
node 5 should send 0.040 kb/s to node 4, 0.310 kb/s to node
8, and 0.104 kb/s to the base-station B.

• Following this, we consider nodes 4 and 8. We find that
node 4 sends 0.240 kb/s to the base-station B; node 8 sends
0.457 kb/s to node 9 and 0.053 kb/s to the base-station B.

• Finally, we consider node 9. Using Algorithm 2, we find
that node 9 sends 0.842 kb/s to the base-station B.

In summary, during [0, a1] = [0, 45.71], we have the fol-
lowing flow rates (all in kb/s):

f1,5 = 0.254, f1,B = 0.037;

f2,9 = 0.185, f2,B = 0.015;

f3,7 = 0.123, f3,B = 0.077;

f4,B = 0.240;

f5,4 = 0.040, f5,8 = 0.310, f5,B = 0.104;

f6,7 = 0.057, f6,B = 0.143;

f7,B = 0.380;

f8,9 = 0.457, f8,B = 0.053;
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f9,B = 0.842;

f10,1 = 0.091, f10,B = 0.109.

Likewise, applying Algorithm 2 during (a1, a2] =
(45.71, 146.08], we obtain the following flow routing rates
(all in kb/s):

f1,5 = 0.254, f1,B = 0.037;

f2,9 = 0.185, f2,B = 0.015;

f4,B = 0.240;

f5,4 = 0.040, f5,8 = 0.310, f5,B = 0.104;

f8,9 = 0.457, f8,B = 0.053;

f9,B = 0.842;

f10,1 = 0.091, f10,B = 0.109.

It is easy to verify that above flow routing schedule will
indeed obtain the LMM-optimal node lifetime vector.

The flow routing schedule that achieves the LMM-optimal
node lifetime vector for the 20-AFN network can be obtained
in a similar manner (by using Algorithm 2). This is omitted
for the sake of brevity.

7. Related work

The closest work related to ours is that in [7], which has been
discussed in detail in the paper. In this section, we briefly
review relevant work that contributed to the background for
our investigation.

There have been many recent efforts in the area of
power-aware routing (see e.g., [12,13,17–19,21,26,27]). Most
schemes under power-aware routing use a shortest path algo-
rithm with a power-based metric, rather than a hop-count
based metric. However, as we have shown in the numeri-
cal results section, energy-aware (e.g., minimum-power path)
routing may not ensure good performance in maximizing net-
work lifetime. For example, using the most energy-efficient
route may still result in a premature depletion of energy at
certain nodes, which is not optimal from the network lifetime
perspective.

The notion of network lifetime for wireless sensor net-
works has been studied in [4–6,8–10,16,29]. The notion of
network lifetime discussed in these work focuses on the time
until the first node fails without further consideration of the
remaining nodes in the network. As wireless sensor networks
will typically remain useful even if some nodes run out of
energy, it is essential to further investigate how to maximize
the lifetime for all the remaining nodes in the network, which
is the focus of this paper.

8. Conclusions

In this paper, we considered the problem of how to maximize
the lifetime for all the nodes in a wireless sensor network.
We formally defined this optimization problem as the Lexico-

graphic Max-Min (LMM) node lifetime problem and inves-
tigated approaches to solve it. The main contributions in this
paper are two-fold. First, we developed a polynomial-time
algorithm to obtain the LMM-optimal node lifetime vector,
which improves upon the computational complexity associ-
ated with a state-of-the-art algorithm. Second, we presented a
simple (also polynomial-time) algorithm to calculate the flow
routing schedule among the AFNs such that the LMM-optimal
node lifetime vector can be achieved. The results in this paper
help lay the essential algorithmic foundation for studying net-
work lifetime problems in energy-constrained wireless sensor
networks.

Appendix: Proof of Lemma 1

By the definition of LMM-optimal node lifetime vector (see
Definition 1), the optimal node lifetimes (λl values) are unique
and the corresponding number of nodes in the minimum node
set (|Sl| values) are also unique. To show that the group of
physical nodes in each Sl is also unique, we employ the para-
metric simplex approach to determine the minimum node set
as follows.

In essence, the parametric simplex approach solely relies
on PA technique without resorting the SV approach even
when the problem is degenerate. That is, when the problem
is degenerate, i.e., for some node i ∈ Ŝl , we have wi = 0 and
ε̂i = 0, then the basis can change while the optimal objective
value remains unchanged. We can analyze Wi and εi under
the new basis to determine whether or not node i belongs to
the minimum node set Sl. If we still have wi = 0 and ε̂i = 0,
the basis can change again with the same optimal objective
value. To prevent cycling back to a previous basis, we can use
a de-cycling rule [2]. Thus, this procedure is guaranteed to
terminate within a finite number of steps and we can determine
whether or not node i indeed belongs to the minimum node
set Sl.

Note that in the above parametric simplex approach, the set
of physical nodes corresponding to Sl is uniquely determined
since the analysis is conducted independently for each node.
Therefore, upon the completion of all stages, the group of
physical nodes in each minimum node set is unique.
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