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Abstract—Recently, there has been tremendous interest in
exploring the capacity region of multiple-input multiple-output
broadcast channels (MIMO-BC). However, fairness, a very im-
portant performance measure of multi-user communications
systems and networks, has not been addressed for MIMO-BC
in the literature. In this paper, we study how to determine
the weighted proportional fairness (WPF) capacity of MIMO-
BC. The difficulty of finding the WPF capacity of MIMO-BC
lies in that it contains two difficult subproblems: 1) a complex
combinatorial optimization problem to determine the optimal de-
coding order in the dual MIMO multiple access channel (MIMO-
MAC) and 2) a nonconvex optimization problem in computing
the optimal input covariance matrices to achieve WPF capacity.
To circumvent the difficulty in the first subproblem, we derive
a set of optimality conditions that the optimal decoding order
must satisfy. Based on these optimality conditions, we design
an efficient algorithm called iterative gradient sorting (IGS) to
determine the optimal decoding order by iteratively sorting the
gradient entries and moving across corner points. We also show
that this method can be geometrically interpreted as sequential
gradient projections. For the second subproblem, we propose an
efficient algorithm based on conjugate gradient projection (CGP)
technique, which employs the concept of Hessian conjugate. We
also develop a polynomial time algorithm to solve the projection
subproblem.

I. INTRODUCTION

In network information theory, a MIMO broadcast channel
(MIMO-BC) refers to a communication system where a single
multi-antenna transmitter sends independent information to
multiple uncoordinated multi-antenna receivers. MIMO-BC
belongs to the class of nondegraded broadcast channels, for
which the capacity region is notoriously difficult to analyze
[1]. Over the years, characterizing the capacity region of
MIMO-BC has been one of the most fundamental problems
in network information theory.

Recently, Weigarten et al. [2] proved the long-open con-
jecture that “dirty paper coding” (DPC) achieves the entire
capacity region of MIMO-BC. Moreover, by the channel
duality between MIMO-BC and MIMO multiple access chan-
nel (MIMO-MAC) [3]–[5], the complex DPC rate region of
MIMO-BC can be analyzed using its dual MIMO-MAC under
a sum power constraint. Although DPC is known to be the op-
timal transmission strategy for MIMO-BC, many optimization
problems of MIMO-BC over DPC rate region remain unsolved
even with the channel duality transformation. So far, only
the maximum weighted sum rate (MWSR) problem is solved
in the literature. This is because determining the optimal
decoding order in the dual MIMO-MAC is relatively simple

due to the linearity of the MWSR’s objective function. As a
result, MWSR can be transformed into a convex optimization
problem, which can be solved efficiently [6]–[9].

However, the maximum weighted sum rate-based objective
function may entail fairness issues among users. In practice,
fairness is a key performance measure in a multi-user commu-
nication system. A widely accepted objective is the so-called
weighted proportional fairness (WPF), which is introduced by
Kelly et al. [10]. The problem of MIMO-BC WPF capacity
arises naturally from designing a proportional-fair scheduler
for the downlinks of cellular systems or performing cross-
layer optimization for MIMO-BC based mesh networks with
random access (see [11] for more details).

For a K-user MIMO-BC, the WPF objective function can
be written as

∑K
i=1 wi log Ri, where wi > 0 and Ri > 0

are the weight and the rate of user i, respectively. Despite
the simplicity of the WPF objective function, determining the
WPF capacity for MIMO-BC turns out to be a surprisingly
hard problem. First, the nonlinearity of the WPF objective
function makes it very difficult to determine the optimal
decoding order in its dual MIMO-MAC. Without any smart
algorithm, we may have to enumerate and compare all K!
corner points of the capacity region of the dual MIMO-MAC,
each of which corresponds to one particular decoding order.
As a result, one can be trapped in an intractable combinatorial
optimization problem. Even worse, in some cases, an optimal
decoding order may not even exist and as a result, it is
impossible to detect a nonexistent solution by just enumerating
and comparing the corner points. Second, even if we have the
knowledge of the optimal decoding order, the WPF problem
still cannot be simplified into a convex optimization problem.
This is because the interference terms in the rate expressions
of the corner points in the dual MIMO-MAC capacity region
cannot be canceled out in the WPF objective function, which
is in the form of sum of weighted logs.

In this paper, we aim to tackle this difficult problem of
determining the WPF capacity for MIMO-BC. Our approach
consists of the following two steps: 1) determine the optimal
decoding order in the dual MIMO-MAC or show its nonexis-
tence; and 2) compute the optimal input covariance matrices to
achieve the WPF capacity under the optimal decoding order.
The main contributions of this paper are three-fold:

1) Based on the special structure of the corner points in
the dual MIMO-MAC capacity region, we develop a set
of necessary and sufficient optimality conditions for the



optimal decoding order in the dual MIMO-MAC. For the
case where the optimal decoding order does not exist,
we derive a set of closed-form expressions to quickly
compute the optimal WPF rates of MIMO-BC.

2) Based on the optimality conditions we derive, we design
an efficient algorithm called iterative gradient sorting
(IGS) to determine the optimal decoding order by it-
eratively sorting the gradient entries and moving across
corner points. We show that this method can be geomet-
rically interpreted as sequential gradient projections.

3) We design an efficient algorithm called conjugate gra-
dient projection (CGP) to compute the optimal input co-
variance matrices so as to achieve the WPF capacity. In
CGP, we use conjugate gradient directions to eliminate
the “zigzagging” phenomenon so that CGP can achieve
a superlinear convergence rate.

The remainder of this paper is organized as follows. In
Section II, we describe the network model and formulate our
problem. Section III introduces some important concepts of the
dual MIMO-MAC capacity region. In Section IV, we derive
the optimality conditions for the optimal decoding order and
discuss its geometrical insights. Section V introduces how to
determine the optimal decoding order based on the optimality
conditions and its geometrical interpretations. In Section VI,
we investigate how to compute optimal input covariance ma-
trices under the optimal decoding order. Section VII concludes
this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce notation for matrices, vectors, and com-
plex scalars in this paper. We use boldface to denote matrices
and vectors. For a matrix A, A† denotes the conjugate
transpose, Tr{A} denotes the trace of A, and |A| denotes
the determinant of A. Diag{A1, . . . ,An} represents the block
diagonal matrix with matrices A1, . . . ,An on its main diago-
nal. We let I denote the identity matrix with its dimension
determined from the context. A º 0 represents that A is
Hermitian and positive semidefinite (PSD). (v)m represents
the mth entry of vector v. We let ei be the unit column
vector where the ith entry is 1 and all other entries are 0. The
dimension of ei is determined from the context. We let 1 and
0 be the column vector where all entries are equal to 1 and 0,
respectively. The dimensions of 1 and 0 are determined from
the context. The operator “〈·, ·〉” represents the inner product
operation for vectors or matrices.

Suppose that a MIMO-BC has K users, each of which
is equipped with nr antennas, and the transmitter has nt

antennas. The channel gain matrix for user i is denoted as
Hi ∈ Cnr×nt . In [2], it has been shown that the capacity
region of MIMO-BC is equal to the DPC rate region. In the
DPC rate region, suppose that users 1, . . . , K are encoded
sequentially. Then the rate of user i can be computed as: [3]

RDPC
i (Γ) = log

∣∣∣I + Hi

(∑K
j=i Γj

)
H†

i

∣∣∣
∣∣∣I + Hi

(∑K
j=i+1 Γj

)
H†

i

∣∣∣
, (1)

where Γi ∈ Cnt×nt , i = 1, . . . ,K, are the downlink input
covariance matrices, and where Γ , {Γ1, . . .ΓK} denotes the
collection of all downlink covariance matrices. As a result, the
WPF problem can be written as follows:

Maximize
∑K

i=1 wi log RDPC
i (Γ)

subject to Γi º 0, i = 1, . . . , K∑K
i=1 Tr(Γi) ≤ P,

(2)

where wi is the weight of user i, P represents the maximum
transmit power at the transmitter. Furthermore, due to the
duality between MIMO-BC and MIMO-MAC [3], the rates
achievable in a MIMO-BC are also achievable in its dual
MIMO-MAC. That is, given a feasible Γ, there exists a set of
feasible uplink input covariance matrices for the dual MIMO-
MAC, denoted by Q, such that RMAC

i (Q) = RDPC
i (Γ).

As a result, the complex MIMO-BC capacity region can be
transformed into its dual MIMO-MAC, for which the capacity
region is much easier to analyze [1]. Thus, (2) is equivalent
to the following WPF problem of the dual MIMO-MAC:

Maximize
∑K

i=1 wi log RMAC
i (Q)

subject to RMAC(Q) ∈ CMAC(P,H†), i = 1, . . . , K,
(3)

where RMAC(Q) , {RMAC
i (Q) : i = 1, . . . ,K} is a

collection of all users’ data rates in the dual MIMO-MAC,
and CMAC(P,H†) represents the capacity region of the dual
MIMO-MAC. For simplicity, we drop the superscript “MAC”
and simply refer to user i’s rate in the dual MIMO-MAC as Ri.
From [1, Theorem 14.3.5], it can be shown that CMAC(P,H†)
is determined by

CMAC(P,H†) =

Conv





(R1, . . . , RK)

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈S Ri(Q) ≤

log
∣∣∣I +

∑
i∈S H†

iQiHi

∣∣∣ ,

∀S ⊆ {1, . . . ,K},∑K
i=1 Tr(Qi) ≤ P,

Qi º 0, ∀i.





, (4)

where Conv(·) represents the convex hull operation, Qi ∈
Cnr×nr , i = 1, . . . , K, are the uplink input covariance
matrices. If the dual MIMO-MAC is Gaussian, the convex
hull operation can be dropped [1].

III. CAPACITY REGION OF THE DUAL MIMO-MAC

Since we will study the WPF capacity for MIMO-BC based
on its dual MIMO-MAC, it is beneficial to characterize the
capacity region of the dual MIMO-MAC channel first. It can
be seen from (4) that the capacity region of a K-user dual
MIMO-MAC has a polymatriod structure with 2K − 1 sum
rate constraints in total. In general, the region defined by
(4) for a fixed set of transmit covariance matrices Q is a
beveled box with 2K − 1 faces. The capacity region of a
dual MIMO-MAC is the union of all beveled boxes for all
feasible input covariance matrices. For example, Fig. 1(a) and
Fig. 2(a) show the capacity region of a two-user and a three-
user dual MIMO-MAC, respectively. For easier visualization,
we plot the boundaries of the respective capacity regions in



Fig. 1(b) and Fig. 2(b). As shown in Fig. 1(b), the boundary
of the two-user dual MIMO-MAC capacity region contains
two curves that correspond to decoding order 1 → 2 and
2 → 1, respectively, and a straight line segment represents
time sharing between corner points A and B, which achieve
the maximum sum rate with user 1 and user 2 being decoded
first, respectively. Similarly, as shown in Fig. 2(b), there are
six subregions on the boundary corresponding to 3! = 6
decoding orders. Also, there exists a hexagon defined by six
corner points and six other subregions of surfaces on the
boundary that are achieved by time sharing (labeled as “TS”
in Fig. 2(b)).
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Fig. 1. An example of the capacity region of a two-user dual MIMO-MAC:
H1 = [1 0.5], H2 = [0.5 1], and P = 10.
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Fig. 2. An example of the capacity region of a three-user dual MIMO-MAC:
H1 = [1 0.4 0.5], H2 = [0.5 1 0.4], H3 = [0.4 0.5 1], and P = 10.

In general, we have the following lemma to count the
number of time-sharing subregions on the boundary.

Lemma 1. For a K-user dual MIMO-MAC, the total num-
ber of time-sharing subregions on the boundary is given by∑K

i=2

(
K
i

)
(K − i + 1)!.

Proof. For a time-sharing subregion involving i users in a
decoding order, there are

(
K
i

)
possible combinations in total.

Treating those i users as a single element in an ordering, we
have (K − i + 1)! permutations. Thus, the total number of
time-sharing subregions is

∑K
i=2

(
K
i

)
(K − i + 1)!.

It can be seen that the decoding orders have significant

impact on the objective value of (3). Some of them can achieve
better objective values than the others. So, we introduce the
following definition.

Definition 1 (Optimal Decoding Order and Optimal Corner
Point). A decoding order π(·) is an optimal decoding order of
the dual MIMO-MAC if an optimal solution of (3) is achieved
at a point on the subregion of the boundary that corresponds
to π(·). The corresponding corner point of π(·) is called the
optimal corner point.

In the two-user case, for example, if the optimal solution
is achieved at the red subregion between A and R2 axis, then
the optimal decoding order is 1 → 2 and A is the optimal
corner point. It can be seen that an optimal decoding order
may not exist in the dual MIMO-MAC. For example, For
example, if the optimal solution is achieved at the line segment
AB in Fig. 1(b), then none of the two decoding orders is
optimal. However, if there exists an optimal decoding order,
the following theorem shows the uniqueness of this optimal
decoding order.

Theorem 1 (Uniqueness of Optimal Decoding Order). If there
exists an optimal decoding order in a dual MIMO-MAC, it
must be unique.

Proof. It is obvious that the objective of (3) is strictly concave
and the feasible region is convex with respect to R and non-
empty. Thus, if an optimal decoding order exists, it must be
unique.

IV. CORNER POINT OPTIMALITY CONDITIONS

Noting that different parts on the boundary of a dual MIMO-
MAC capacity region may correspond to different decoding
orders, we need to consider all possible decoding orders when
optimizing a certain objective function. Since there are K!
possible decoding orders for a K-user dual MIMO-MAC,
finding the optimal decoding order would quickly become
intractable as the number of users gets large. In order to
avoid blindly enumerating all possible decoding orders, we
first study what conditions the optimal decoding order must
satisfy. To reveal geometrical insights, we will first consider
a two-user dual MIMO-MAC as an illustrative example and
subsequently generalize the results to the case of K users.

A. Two-User Case

Since the log function is monotonically increasing, we
must have that the optimal WPF solution is achieved on the
boundary. Fig. 3(a) shows the boundary of a two-user dual
MIMO-MAC.

Since all weights and data rates are positive, the gradient
of every point in the capacity region, which is in the form of
[w1
R1

w2
R2

. . . , wK

RK
], must lie in the positive orthant. Suppose

that the optimal WPF is achieved at point C where user 2
is decoded first. Then, the gradient of the objective function
at corner point B, denoted as GB , must be contained in
the cone formed by vectors

[
1 0

]T
and

[
1 1

]T
as

shown in Fig. 3(a). Otherwise, if the gradient is outside of



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

R
1
 (nats/s/Hz)

R
2 (

na
ts

/s
/H

z)

A

B

G
B

2−>1

*C

[1 1]T

[1 0]T

G’

G
CTangent Plane at C

(a) Gradients and the cone.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

R
1
 (nats/s/Hz)

R
2 (

na
ts

/s
/H

z)

A

B

C D E
R

1
(B)

R
2
(A)

O

(b) (7) and (8) not both satisfied.

Fig. 3. An example of a two-user dual MIMO-MAC capacity region
illustrating the corner point optimality conditions.

the cone, as for G′ in Fig. 3(a), then G′, which points to the
increasing objective contours, would have led the search of the
optimal WPF to move away from the subregion where user 2
is decoded first, a contradiction. Let R

(B)
1 and R

(B)
2 denote

the rates at corner point B. The above geometrical fact can be
stated as the following linear combination:

GB =

[ w1

R
(B)
1
w2

R
(B)
2

]
= α1

[
1
0

]
+ α2

[
1
1

]
, (5)

where α1, α2 ≥ 0. Solving (5), we have
{

α1 = w1

R
(B)
1

− w2

R
(B)
2

α2 = w2

R
(B)
2

.
(6)

Note that in (6), α2 is non-negative. Thus, in order for (6) to
be feasible, we must have α1 ≥ 0, i.e., w1

R
(B)
1

− w2

R
(B)
2

≥ 0. This
can be further rewritten as

R
(B)
1

R
(B)
2

≤ w1

w2
. (7)

Similarly, for optimality at corner point A (optimal solution
achieved at some other point C ′ corresponding to decoding
user 1 first), we have

R
(A)
2

R
(A)
1

≤ w2

w1
. (8)

Conditions (7) and (8) correspond to decoding orders 2 → 1
and 1 → 2 being optimal, respectively. However, there are still
two open questions:

1) Is it possible that none of (7) and (8) is satisfied?
2) Is it possible that both (7) and (8) are satisfied?

The answer to the first question is yes. When (7) and (8) are
violated simultaneously, the optimal solution must be located
somewhere on the line segment AB. In this case, the gradient
direction at the optimal solution must be perpendicular to
line segment AB, i.e. [ w1

R∗1
w2
R∗2

]T = α[1 1]T = 0. With
R∗1 + R∗2 = RSum, where RSum denotes the maximum
achievable sum rate, we can derive the closed-form solution

of R∗1 and R∗2 as follows:
{

R∗1 = w1
w1+w2

RSum

R∗2 = w2
w1+w2

RSum.

The answer to the second question is no. To show this, we
can extend the line segment AB to cross the R1 axis at point
E, as shown in Fig. 3(b). Also, draw two line segments AC
and BD, which are perpendicular to the R1 axis. It is obvious
that the lengths |AC| = R

(A)
2 and |OD| = R

(B)
1 . Now, by

contradiction, suppose that it is possible to simultaneously
satisfy (7) and (8). Since (7) and (8) can be rewritten as

R
(B)
1 ≤ w1

w1 + w2
RSum, and R

(A)
2 ≤ w2

w1 + w2
RSum,

it follows that
R

(B)
1 + R

(A)
2 ≤ RSum. (9)

From Fig. 3(b), we see that RSum = |OD| + |DE| =
R

(B)
1 +|DE|. Also, note that |DE| = |BD| and |BD| < |AC|.

It follows that RSum < R
(B)
1 + |AC| = R

(B)
1 + R

(A)
2 , a

contradiction to (9).

B. K-User Case

The corner point optimality conditions for a general K-user
case can be derived by extending the two-user case. We state
the corner point optimality conditions in Theorem 2.

Theorem 2 (Corner Point Optimality Conditions). In a K-
user dual MIMO-MAC channel, a decoding order π∗(i) ∈
{1, 2, . . . , K}, i = 1, 2, . . . , K, is the optimal decoding order
if and only if π∗(·) and the data rates at its corresponding
corner point, denoted by O, satisfies

R
(O)
π∗(i+1)

R
(O)
π∗(i)

≤ wπ∗(i+1)

wπ∗(i)
, for i = 1, . . . , K − 1. (10)

Proof. First, it is not difficult to observe that, if the optimal
corner point exists, the optimal corner point must have the
largest objective value among all corner points. Otherwise,
there would have been an improving direction from the optimal
corner point to another corner point. It is evident that this
improving direction points away from the optimal subregion,
which is contradict to the fact that the optimal solution is
achieved in the optimal subregion. As a result, we can simply
consider the beveled box that corresponds to the K! corner
points.

Suppose that the optimal corner point is O and the optimal
decoding order is π∗(·). Since Problem (3) is convex with
Slater constraint qualification holds, we have that KKT condi-
tion is both necessary and sufficient. The active rate constraints
at O are

K∑

i=j

R
(O)
π∗(i) ≤ log

∣∣∣∣∣∣
I +

K∑

i=j

H†
π∗(i)Q

∗
π∗(i)Hπ∗(i)

∣∣∣∣∣∣
,

j = 1, . . . , K, where Q∗
i , i = 1, . . . , K, are the optimal

input covariance matrices that achieves the maximum sum rate.



Then, by KKT condition, we must have that



wπ∗(1)

R
(O)
π∗(1)

...
wπ∗(K−1)

R
(O)
π∗(K−1)
wπ∗(K)

R
(O)
π∗(K)




= u1




0
...
0
1


 + u2




0
...
1
1


 + · · ·+ uK




1
...
1
1


,

(11)
where ui ≥ 0, ∀i. Solving for ui in (11), we have

uK =
wπ∗(1)

R
(O)
π∗(1)

and uK−i =
wπ∗(i+1)

R
(O)
π∗(i+1)

− wπ∗(i)

R
(O)
π∗(i)

,

i = 1, . . . ,K − 1. Since ui ≥ 0, it then follows that

R
(O)
π∗(i+1)

R
(O)
π∗(i)

≤ wπ∗(i+1)

wπ∗(i)
, for i = 1, . . . , K − 1.

By setting all weights in (10) to 1, we have the following
result.

Corollary 1. In a K-user dual MIMO-MAC channel, a
decoding order π(i) ∈ {1, 2, . . . , K}, i = 1, 2, . . . ,K, is
optimal for the maximum log sum rate problem if and only
if π(·) and the data rates at its corresponding corner point,
denoted by A, satisfies

R
(A)
π(1) ≥ R

(A)
π(2) ≥ . . . ≥ R

(A)
π(K). (12)

On the other hand, if none of the corner points satisfies
(10), then there is no such decoding order along which we
can achieve the maximum WPF in MIMO-BC. In this case,
we have the following theorem.

Theorem 3. If the optimal decoding order does not exist
for a K-user MIMO-BC, then the optimal WPF solution
must be located on one of the

∑K
i=2

(
K
i

)
(K − i + 1)! time-

sharing subregions on the boundary. Without loss of generality,
suppose that the optimal WPF solution is achieved at a time-
sharing subregion that involves users 1, 2, . . . , i. Then we must
have

Rj =
wj∑i

k=1 wk

RSum, j = 1, 2, . . . , i, (13)

where RSum =
∑i

j=1 Rj .

Proof. The first part of the theorem follows immediately
from Lemma 1. To show that second part, we note that the
gradient direction at the optimal point must be orthogonal to
the hyperplane

∑i
k=1 Rk ≤ log

∣∣∣I +
∑i

k=1 H†
kQkHk

∣∣∣. This
means that [

w1
R∗1

. . . wi

R∗i

]T

= α1, (14)

for some α > 0. Thus, we have
w1

R∗1
=

w2

R∗2
= · · · = wi

R∗i
.

It then follows that

R∗j =
wj∑i

k=1 wk

RSum.

In order to determine the optimal decoding order, we need
to further know the data rates for all users at each corner point,
which can be computed as follows. First, solve the maximum
sum rate problem to get the optimal set of input covariance
matrices Q∗

1,Q
∗
2, . . . ,Q

∗
K (see [7] for details). Then, for a

corner point A with decoding order π(·), the data rates can be
computed as follows:

R
(A)
π(K) = log

∣∣∣I + H†
π(K)Q

∗
π(K)Hπ(K)

∣∣∣ (15)

and

R
(A)
π(i) = log

∣∣∣I +
∑K

j=i H
†
π(j)Q

∗
π(j)Hπ(j)

∣∣∣
− log

∣∣∣I +
∑K

j=i+1 H†
π(j)Q

∗
π(j)Hπ(j)

∣∣∣ , (16)

for i = 1, 2, . . . , K − 1.

V. DETERMINING OPTIMAL DECODING ORDER

In fact, a brute force search based on Theorem 2 can be
used to determine the optimal decoding order. However, since
there are K! corner points, such a brute force search is arduous
for large-sized networks. In this section, we exploit the special
geometric structure of the capacity region and take advantage
of the gradient information at each corner point to design an
efficient algorithm called “iterative gradient sorting” (IGS).

A. Iterative Gradient Sorting

The basic idea of IGS is to proactively look for the optimal
corner point rather than blindly enumerate all of them. In IGS,
we start from an arbitrarily selected corner point and use the
gradient at this corner point as an approximation of the true
gradient at the optimal corner point. It is not difficult to see
that if we sort the entries of this approximate gradient, we
would have an approximate decoding order of the true optimal
decoding order. Thus, if the approximate gradient direction is
close enough to the true gradient direction, we can expect
that the resultant approximate decoding order is close to the
optimal decoding order. To reveal geometrical insights, let us
first consider a three-user example as shown in Fig. 4.

Fig. 4 shows the beveled box for which the hexagon is
coincident with the hexagon of the capacity region, i.e., the six
corner points of the hexagon are exactly the same corner points
of the capacity region. Suppose that the optimal decoding order
is achieved at corner point O with π∗ = 1 → 2 → 3. Suppose,
also, that we arbitrarily start at some corner point, say A as
shown in Fig. 4. We use the gradient at A, denoted by GA,
as an approximation of GO. Now, we sort the entries of GA

and denote the resultant ordering as π′. If GA is close to GO,
we should have that π′ is also close to π∗. We can use the
corner point optimality conditions to check if π′ is indeed the
optimal decoding order. If yes, then we are done. Otherwise,
this π′ gives us a new non-optimal corner point, say B as
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Fig. 4. Example of iterative gradient sorting.

shown in Fig. 4. Again, we sort the entries of the gradient GB

at B. This sorting process continues iteratively until we find
the optimal decoding order. The IGS process is summarized
in Algorithm 1. It is worth pointing out that IGS can be

Algorithm 1 Iterative Gradient Sorting (IGS)
1. Compute the set of input covariance matrices Q∗1, . . . ,Q∗K that maxi-

mizes the sum rate capacity of the dual MIMO-MAC channel. Arbitrarily
pick a decoding order to start.

2. For the current decoding order π(·), use (10) to test whether or not
it is optimal. If yes, return π(·) and stop.

3. Compute the gradient at the corner point corresponding to π(·), denoted
by G. Sort the entries of G to have a new ordering π′. Let π = π′ and
repeat Step 2.

geometrically interpreted as “sequential gradient projections.”
Consider the projection of GA onto the K − 1 dimensional
hyperplane

∑K
i=1 Rπ(i) ≤ log2 |I+H†

π(i)Q
∗
π(i)Hπ(i)|. Denote

the projected gradient as G(K)
A and it can be readily verified

that G(K)
A = GA − 〈GA,1〉

K 1. IGS can be geometrically
interpreted as follows: Start from A and move along G(K)

A

until blocked by one user’s rate constraint. Then, compute the
gradient projection onto the K−2 dimensional hyperplane and
continue until the hyperplane becomes one dimensional. Due
to space limitation, we refer readers to [11] for more details.

B. Convergence of IGS and Complexity Analysis

We now show that if the geometric structure of the dual
MIMO-MAC capacity region satisfies certain mild conditions,
IGS is guaranteed to find the optimal corner point and con-
verges in polynomial time. The convergence of IGS hinges
upon the following theorem.

Theorem 4. Start from a corner point, denoted by A, and
sort the entries of its gradient, denoted by GA. Denote the
resultant ordering as π′. We have π′(1) = π∗(1), where π∗(·)
denotes the optimal decoding order, if

wπ∗(1)

R
(A)
π∗(1)

≤ wπ∗(j)

R̄π∗(j)
, j = 1, . . . ,K, j 6= π∗(1), (17)

where R̄π∗(j) = log
∣∣∣I + H†

π∗(j)Qπ∗(j)Hπ∗(j)

∣∣∣ is the upper
bound of Rπ∗(j).

Proof. Suppose that the optimal corner point is O and the
corresponding decoding order is π∗(·). At point O, we must
have that R

(O)
π∗(1) is at the lower bound of Rπ∗(1). This is

because from (16), we can have that

R
(A)
π(i) = log

∣∣∣I + Ĥ†
π(i)Q

∗
π(i)Ĥπ(i)

∣∣∣ ,

where Ĥπ(j) is the effective channel gain matrix that repre-
sents the interference plus noise experienced at user π(j) and
is computed as

Ĥπ(i) =


I +

K∑

j=i+1

H†
π(j)Q

∗
π(j)Hπ(j)



− 1

2

Hπ(i). (18)

Since Rπ∗(1) is the first one to be decoded at point O, from
(18), we see that R

(O)
π∗(1) has the largest number of interferers.

Thus, R
(O)
π∗(1) is at the lower bound of Rπ∗(1). This also implies

that if we move away from O to another corner point, say A,
Rπ∗(1) is non-decreasing. It then follows that

wπ∗(1)

R
(A)
π∗(1)

≤ wπ∗(1)

R
(O)
π∗(1)

.

To ensure that wπ∗(1)
R

(A)
π∗(1)

remains the smallest entry in the gradient

at A, we must have that
wπ∗(1)

R
(A)
π∗(1)

≤ wπ∗(j)

R̄π∗(j)
, j = 1, . . . ,K, j 6= π∗(1).

That is, even if Rπ∗(j) is at its upper bound, its gradient entry
remain larger than that of Rπ∗(1).

Remark 1. It is worth pointing out that the conditions in
Theorem 4 is not very restrictive. This is because when moving
from O to A, the changes of rates scale in logarithmic order,
which does not result in dramatic changes. Therefore, in most
cases, the conditions in Theorem 4 can be easily satisfied.
Also, this implies that in general, the gradients of non-optimal
corner points are usually good approximations of the true
optimal gradient of the optimal corner point.

Along the same line of the proof of Theorem 4, we have
the following corollary.

Corollary 2. During the kth round of gradient projection for a
dual MIMO-MAC with K−k+1 users, We find π′(1) correctly
if
wπ∗(1)

R
(A)
π∗(1)

≤ wπ∗(j)

R̄π∗(j)
, j = 1, . . . , K − k + 1, j 6= π∗(1), (19)

From Theorem 4 and Corollary 2, we see that we can
determine at least one position correctly if the capacity region
satisfies the conditions. Since there are K positions in total,
IGS is guaranteed to terminate in finite number of times.

It can be seen from Theorem 4 and Corollary 2 that for a K-
user dual MIMO-MAC with optimal decoding order existing,
we can determine one decoding position correctly after one
round of gradient sorting. Thus, we need to perform at most
K−1 rounds of sorting to determine the optimal decoding or-
der. As a result, the complexity of IGS is O((K−1)K log K).



C. Numerical Results

We use a 15-user MIMO-BC example to demonstrate the
efficacy of IGS. It is easy to verify that there are 15! ≈
1.3077 × 1012 corner points in total, which means it is not
viable to use a brute force search. As shown in Fig. 5, the
nodes are indexed from 1 to 15 and are randomly distributed
in a square region. The transmitter is located at the center.
The transmitter and all the receivers are equipped with four
antennas. For user 1 to user 15, the weights are 1, 1, 1.2,
0.7, 0.33, 0.25, 0.35, 0.2, 0.9, 5, 0.65, 0.8, 0.4, 0.78, and 1,
respectively. In this example, the optimal decoding order in
the dual MIMO-MAC exists and is: 4 → 12 → 9 → 15 →
11 → 3 → 7 → 5 → 6 → 8 → 13 → 14 → 1 → 10 → 2.
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Fig. 5. Network topology of a 15-user MIMO-BC.

To test IGS’s efficiency and robustness, we start from
two completely reversed initial orders 1, 2, . . . , 15 and
15, 14, . . . , 1, such that they are far away from each other. For
convenience, we call them Case 1 and Case 2, respectively.
The result of IGS in each iteration is shown in Table I. For
both cases, IGS found the optimal decoding order in just two
iterations. The running time is less than 1 second for both
cases. We notice that after the first iteration, the first 5 and 4
positions are already correct in Case 1 and Case 2, respectively.

TABLE I
IGS FOR A 15-USER MIMO-BC EXAMPLE

Case 1 Case 2
No. Initial Iter. 1 Iter. 2 Initial Iter. 1 Iter. 2
1 1 4 4 15 4 4
2 2 12 12 14 12 12
3 3 9 9 13 9 9
4 4 15 15 12 15 15
5 5 11 11 11 3 11
6 6 13 3 10 7 3
7 7 14 7 9 5 7
8 8 6 5 8 6 5
9 9 5 6 7 1 6
10 10 7 8 6 8 8
11 11 10 13 5 11 13
12 12 8 14 4 2 14
13 13 3 1 3 14 1
14 14 1 10 2 10 10
15 15 2 2 1 13 2

VI. OPTIMAL INPUT COVARIANCE MATRICES

After determining the optimal decoding order π∗(·), the next
step is to compute the optimal covariance matrices. However,
from (15) and (16), we see that even with the knowledge of the
optimal decoding order, (3) is still a nonconvex optimization
problem, which is difficult to solve. In this paper, we propose
an efficient algorithm based on conjugate gradient projection
(CGP) to determine a local optimal solution. CGP utilizes the
important concept of Hessian-conjugate direction to deflect the
gradient direction appropriately so as to achieve an asymptotic
K-step superlinear convergence rate [12], similar to that of the
quasi-Newton methods (e.g., BFGS method). The framework
of CGP is shown in Algorithm 2. We adopt the Armijo Rule in-

Algorithm 2 Conjugate Gradient Projection Method
Initialization:

Choose Q
(0)
π∗ = [Q

(0)
π∗(1),Q

(0)
π∗(2), . . . ,Q

(0)
π∗(K)

]T . Let k = 0.
Main Loop:

1. Calculate the conjugate gradients G
(k)
π(i)

, i = 1, 2, . . . , K.

2. Choose an appropriate step size sk . Let Q
′(k)
π∗(i) = Q

(k)
π∗(i)+

skG
(k)
π∗(i), for i = 1, 2, . . . , K.

3. Let Q̄
(k)
π∗ be the projection of Q

′(k)
π∗ onto Ω+(P ).

4. Choose an appropriate step size αk . Let Q
(k+1)
π∗(i) = Q

(k)
π∗(i)+

αk(Q̄
(k)
π∗(i) −Q

(k)
π∗(i)), i = 1, 2, . . . , K.

5. k = k+1. If the maximum absolute value of the elements in Q
(k)
π∗(i)−

Q
(k−1)
π∗(i) < ε, for i = 1, 2, . . . , L, then stop; else go to step 1.

exact line search method to avoid excessive objective function
evaluations [12]. For convenience, we use F (Q) to represent
the objective function in (3), where Q = (Q1, . . . ,QK)
denotes the set of covariance matrices at a node.

1) Computing the Conjugate Gradients: From (15) and
(16), F (Qπ∗) can be written as

F (Qπ∗) = wπ∗(K) log
[

log
∣∣∣I + H†

π∗(K)Qπ∗(K)Hπ∗(K)

∣∣∣
]

+
K−1∑

i=1

wπ∗(i) log
[

log
∣∣∣I +

K∑

j=i

H†
π∗(j)Qπ∗(j)Hπ∗(j)

∣∣∣

− log
∣∣∣I +

K∑

j=i+1

H†
π∗(j)Qπ∗(j)Hπ∗(j)

∣∣∣
]
. (20)

The gradient Ḡπ∗(j) , ∇Qπ∗(j)F (Qπ∗) depends on the
partial derivatives of F (Qπ∗) with respect to Qπ∗(j). For
convenience, we let Mi = I +

∑K
j=i H

†
π∗(j)Qπ∗(j)Hπ∗(j).

By using the formula ∂ ln|A+BXC|
∂X =

[
C(A + BXC)−1B

]T

[13], [14], we can compute the partial derivative of the ith

term in the summation of F (Qπ∗) with respect to Qπ∗(j),
j ≥ i, as follows:

∂F (i)

∂Qπ∗(j)
, ∂

∂Qπ∗(j)
wπ∗(i) log (log |Mi| − log |Mi+1|)

= wπ∗(i)

(
Hπ∗(j)

[
M−1

i −M−1
i+1

]
H†

π∗(j)

)T

log |Mi| − log |Mi+1| .



To compute the gradient of F (Qπ∗) with respect to Qπ∗(j),
we note that only the first j terms in F (Qπ∗) involve Qπ∗(j).
From the definition ∇zf(z) = 2(∂f(z)/∂z)∗ [15], we have,
for 1 ≤ j ≤ K,

Ḡπ∗(j) =
j∑

i=1

2
(

∂F (i)

∂Qπ∗(j)

)∗
= wπ∗(j)

Hπ(j)M
−1
j H†

π(j)

log |Mj | − log |Mj+1|

+
j−1∑

i=1

wπ∗(i)

Hπ∗(j)
(
M−1

i −M−1
i+1

)
H†

π∗(j)

log |Mi| − log |Mi+1| . (21)

It is important to point out that we can exploit the special
structure in (21) to reduce the complexity in computing the
gradients. Note that the most difficult part in computing
Ḡπ∗(j) is the summation of the terms in Mj . However, note
that when j varies, most of the terms in the summation are
still the same. Thus, we can maintain a running sum for Mi,
start out from j = K, and reduce j by one sequentially. As a
result, only one new term is added to the running sum in each
iteration, resulting in only one addition in each iteration.

The conjugate gradient direction in the mth iteration can
be computed as G(m)

π∗(j) = Ḡ(m)
π∗(i) +κmG(m−1)

π∗(i) . We adopt the
Fletcher and Reeves’ choice of deflection [12], which can be
computed as

κm =
‖Ḡ(m)

π∗(j)‖2

‖Ḡ(m−1)
π∗(j) ‖2

. (22)

The purpose of deflecting the gradient using (22) is to find the
Hessian-conjugate direction that tend to reduce the “zigzag-
ging” phenomenon encountered in the conventional gradient
projection method; achieve an asymptotic K-step superlinear
convergence rate under certain regulation conditions [12]; and
without actually storing a large Hessian approximation matrix
as in quasi-Newton methods.

2) Projection onto Ω+(P ): Noting from (21) that Gπ∗(j)

is Hermitian, we have that Q
′(k)
π∗(j) = Q(k)

π∗(j) + skG
(k)
π∗(j) is

Hermitian as well. Then, the projection problem becomes how
to simultaneously project K Hermitian matrices onto the set

Ω+(P ) ,
{
Qi

∣∣∣∣
∑

i Tr{Qi} ≤ P,
Qi º 0, i = 1, 2, . . . ,K

}
.

This problem belongs to the class of “matrix nearness prob-
lems” [16], [17], which is not easy to solve in general. How-
ever, by exploiting the special structure, we are able to design
a polynomial-time algorithm. We construct a block diagonal
matrix D = Diag

{
Qπ∗(1) . . .Qπ∗(K)

} ∈ C(K·nr)×(K·nr). It
is easy to recognize that Qπ∗(j) ∈ Ω+(P ), j = 1, . . . , K,
if Tr(D) =

∑K
j=1 Tr

(
Qπ∗(j)

) ≤ P and D º 0. We use
Frobenius norm, denoted by ‖ · ‖F , as the matrix distance
metric. Thus, given a block diagonal matrix D, we wish to
find a matrix D̃ ∈ Ω+(P ) such that D̃ minimizes ‖D̃−D‖F .
For more convenient algebraic manipulations, we instead study
the following equivalent optimization problem:

Minimize 1
2‖D̃−D‖2F

subject to Tr(D̃) ≤ P, D̃ º 0.
(23)

It is readily verifiable that (23) is a convex minimization
problem. So we can solve it through its Lagrangian dual
problem (assuming a suitable constraint qualification [12]).
Associating Hermitian matrix Π to the constraint D̃ º 0 and µ
to the constraint Tr(D̃) ≤ P , we can write the Lagrangian as
g(Π, µ) = minD̃{(1/2)‖D̃−D‖2F −Tr(Π†D̃) + µ(Tr(D̃)−
P )}. After some simplifications (see [11]), the Lagrangian
dual problem can be written as

Maximize − 1
2‖D− µI + Π‖2F − µP + 1

2‖D‖2F
subject to Π º 0, µ ≥ 0.

(24)

After solving (24), we can have the optimal solution to
(23) as D̃∗ = D − µ∗I + Π∗, where µ∗ and Π∗ are
the optimal dual solutions to Lagrangian dual problem in
(24). From Moreau Decomposition [18], we immediately have
minΠ ‖D− µI + Π‖F = (D− µI)+, where the operation
(A)+ means performing eigenvalue decomposition on matrix
A, keeping the eigenvector matrix unchanged, setting all non-
positive eigenvalues to zero, and then multiplying back. Thus,
the matrix variable Π in the Lagrangian dual problem can be
removed and the Lagrangian dual problem can be rewritten as

Maximize ψ(µ) , − 1
2

∥∥(D− µI)+
∥∥2

F
− µP

subject to µ ≥ 0.
(25)

Suppose that after performing eigenvalue decomposition on
D, we have D = UΛU†, where Λ is the diagonal ma-
trix formed by the eigenvalues of D and U is the uni-
tary matrix formed by the corresponding eigenvectors. Since
U is unitary, we have (D− µI)+ = U (Λ− µI)+ U†.
It then follows that

∥∥(D− µI)+
∥∥2

F
=

∥∥(Λ− µI)+
∥∥2

F
.

Denote the eigenvalues in Λ by λi, i = 1, . . . , K ×
nr, and suppose that we sort them in non-increasing or-
der such that Λ = Diag{λ1 λ2 . . . λK·nr}, where λ1 ≥
. . . ≥ λK·nr . It then follows that

∥∥(Λ− µI)+
∥∥2

F
=∑K·nr

j=1 (max {0, λj − µ})2. So, we can rewrite ψ(µ) as
ψ(µ) = − 1

2

∑K·nr

j=1 (max {0, λj − µ})2 − µP . From the spe-
cial structure of ψ(µ), we are able to design a polynomial time
algorithm. Due to space limitation, we refer readers to [11] for
more details. The projection of D onto Ω+(P ) is summarized
in Algorithm 3.

Algorithm 3 Projection onto Ω+(P )
Initiation:

1. Construct a block diagonal matrix D. Perform eigenvalue decompo-
sition D = UΛU†, sort the eigenvalues in non-increasing order.

2. Introduce λ0 = ∞ and λK·nt+1 = −∞. Let Î = 0. Let the
endpoint objective value ψÎ (λ0) = 0, φ∗ = ψÎ (λ0), and µ∗ = λ0.

Main Loop:
1. If Î > K ·nr , go to the final step; else let µ∗

Î
= (

∑Î
j=1 λj−P )/Î .

2. If µ∗
Î
∈ [λÎ+1, λÎ ]∩R+, then let µ∗ = µ∗

Î
and go to the final step.

3. Compute ψÎ(λÎ+1). If ψÎ(λÎ+1) < φ∗, then go to the final step;
else let µ∗ = λÎ+1, φ∗ = ψÎ(λÎ+1), Î = Î + 1 and continue.

Final Step: Compute D̃ as D̃ = U (Λ− µ∗I)+ U†.



3) Numerical Example: For the 15-user MIMO-BC exam-
ple in Fig. 5, the convergence process of the CGP algorithm
is plotted in Fig. 6. We start from the optimal decoding
corner point (that achieves the maximum sum rate), which
corresponds to an unfair rate vector. It can be seen that CGP
takes only 35 iterations to converge. The data rates of the 15
users are plotted in Fig. 7, from which we can see that the
data rates converge to a proportional fair status.
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Fig. 6. Convergence behavior of the CGP algorithm.
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VII. CONCLUSION

In this paper, we studied how to determine the WPF capacity
for MIMO-BC. Our main contributions are three-fold. First,
we derived a set of optimality conditions that the optimal
decoding order must satisfy. Second, based on the optimality
conditions, we designed an efficient algorithm called iterative
gradient sorting (IGS) to determine the optimal decoding
order by iteratively sorting the gradient entries. We further
showed that this method can be geometrically interpreted as
sequential gradient projections. Third, we proposed an efficient

algorithm based on conjugate gradient projection (CGP) for
computing input covariance matrices to achieve the WPF
capacity. Collectively, these results fill an important gap in
dealing with fairness issues in MIMO-BC. In our future work,
we will further study how to handle the nonconvex difficulty
in computing the optimal input covariance matrices.
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