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Abstract— Researchers have recently shown that the dirty-
paper coding (DPC) is the optimal transmission strategy for
multiple-input multiple-output Gaussian broadcast channels
(MIMO BC). Moreover, by the channel duality, the nonconvex
MIMO BC sum rate problem can be transformed to the convex
dual MIMO multiple-access channel (MIMO MAC) problem with
a sum power constraint. In this paper, we design an efficient
algorithm based on conjugate gradient projection (CGP) to solve
the MIMO BC maximum sum rate problem. Our proposed CGP
algorithm solves the dual sum power MAC problem by utilizing
the powerful concept of Hessian conjugate. We also develop a
rigorous algorithm to solve the projection problem. We show that
CGP enjoys provable convergence, scalability, and efficiency for
large MIMO BC systems.

I. INTRODUCTION

Recently, there is great interest in characterizing the capacity
region for multiple-input multiple-output (MIMO) broadcast
channels (MIMO BC) and MIMO multiple-access channels
(MIMO MAC). Most notably, Weigarten et. al. [1] proved
the long-open conjecture that the “dirty paper coding” (DPC)
strategy is the capacity achieving transmission strategy for
MIMO BC. Moreover, by the channel duality between MIMO
BC and MIMO MAC established in [2]–[4], it can be shown
that the nonconvex MIMO BC sum rate problem can be
transformed to the convex dual MIMO MAC problem with
a sum power constraint.

However, although the standard interior point convex op-
timization method can be used to solve the sum power
MIMO MAC problem, its complexity is considerably higher
than those methods that exploit the special structure of the
sum power MIMO MAC problem. Such custom designed
algorithms include the minimax method (MM) [5], the steepest
descent (SD) method [6], the dual decomposition (DD) method
[7], and two iterative water-filling methods (IWFs) [8]. Among
these algorithms, MM does not have linear complexity and
is more complex than the others. SD and DD have longer
running time per iteration than IWFs due to line searches
and the inner optimization, respectively. Both IWFs in [8],
however, do not scale well as the number of users, denoted by
K, increases. The reason is that in each iteration of IWFs, the
most recently updated solution only accounts for a fraction of
1/K in the effective channels’ computation. The authors of
[8] proposed a hybrid algorithm as a remedy. But the hybrid
algorithm introduces additional implementation complexity
and its performance depends on the empirical switch timing,

which, in turn, are problem specific. In addition, one of the
IWFs in [8], although converges relatively faster than the
other one, requires a storage size for K2 input covariance
matrices. These limitations of the existing algorithms motivate
us to design an efficient and scalable algorithm with a modest
storage requirement for solving large MIMO BC systems.

Our main contribution in this paper is the design of a fast
algorithm based on the Conjugate Gradient Projection (CGP)
approach. Our algorithm is inspired by [9], where a gradient
projection method was used to solve another nonconvex max-
imum sum rate problem for single-hop MIMO-based ad hoc
networks with mutual interference. However, unlike [9], we
use conjugate gradient directions instead of gradient directions
to eliminate the “zigzagging” phenomenon. Also, we develop
a rigorous algorithm to solve the projection problem. This is in
contrast to [9], where the way of handling gradient projection
is based on heuristic. Our proposed CGP has the following
attractive features:

1) CGP is extremely fast, and enjoys provable convergence
as well as nice scalability. As opposed to IWFs, the
number of iterations required for convergence of CGP
is insensitive to the increase of the number of users.

2) CGP has linear complexity. By adopting the inexact line
search method called “Armijo’s Rule,” we show that
CGP has a comparable complexity to IWFs per iteration,
and requires much fewer iterations for convergence in
large MIMO BC systems.

3) CGP has a modest memory requirement: It only needs
the solution information from the previous step, as
opposed to IWF, which requires the solution information
from previous K − 1 steps.

4) CGP is very intuitive and easy to implement.
The remainder of this paper is organized as follows. In

Section II, we discuss the network model and formulation.
Section III introduces the key components in our CGP frame-
work, including conjugate gradient computation and how to
perform projection. We analyze and compare the complexity
of CGP with other algorithms in Section IV. Numerical results
are presented in Section V. Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We begin with introducing notation. We use boldface to
denote matrices and vectors. For a complex-valued matrix A,
A∗ and A† denotes the conjugate and conjugate transpose of



A, respectively. Tr{A} denotes the trace of A. We let I denote
the identity matrix with dimension determined from context.
A º 0 represents that A is Hermitian and positive semidefinite
(PSD). Diag{A1 . . .An} represents the block diagonal matrix
with matrices A1, . . . ,An on its main diagonal.

Suppose that a MIMO Gaussian broadcast channel has K
users, each of which is equipped with nr antennas, and the
transmitter has nt antennas. The channel matrix for user i is
denoted as Hi ∈ Cnr×nt .

In [2]–[4], [10], it has been shown that the maximum sum
rate capacity of MIMO BC is equal to the dirty-paper coding
region, which can be computed by solving the optimization
problem as follows:

Maximize
∑K

i=1 log
det(I+Hi(

∑i
j=1 Γj)H†

i )
det(I+Hi(

∑i−1
j=1 Γj)H†

i )
subject to Γi º 0, i = 1, 2, . . . , K∑K

i=1 Tr(Γi) ≤ P,

(1)

where Γi ∈ Cnt×nt , i = 1, . . . ,K, are the downlink in-
put covariance matrices, P represents the maximum transmit
power at the transmitter. It is evident that (1) is a nonconvex
optimization problem. However, the authors in [2], [4] showed
that due to the duality between MIMO BC and MIMO MAC,
(1) is equivalent to the following MIMO MAC problem with
a sum power constraint:

Maximize log det
(
I +

∑K
i=1 H†

iQiHi

)

subject to Qi º 0, i = 1, 2, . . . , K∑K
i=1 Tr(Qi) ≤ P,

(2)

where Qi ∈ Cnr×nr , i = 1, . . . , K are the uplink in-
put covariance matrices. For convenience, we use the ma-
trix Q =

[
Q1 Q2 . . . QK

]
to denote the set of

all uplink input covariance matrices, and let F (Q) =
log det

(
I +

∑K
i=1 H†

iQiHi

)
represent the objective function

of (2). After solving (2), we can recover the solutions of (1)
via appropriate mapping [2].

III. SOLUTION PROCEDURE

In this paper, we propose an efficient algorithm based on
conjugate gradient projection (CGP) to solve (2). CGP utilizes
the powerful concept of Hessian conjugate to deflect the
gradient direction appropriately so as to achieve the superlinear
convergence rate [11]. This is somewhat similar to the well-
known quasi-Newton methods (e.g., BFGS method). CGP fol-
lows the same idea of gradient projection which was originally
proposed by Rosen [12]. During each iteration, CGP projects
the conjugate gradient direction to find an improving feasible
direction. Its convergence proof can be found in [11]. The
framework of CGP for solving (2) is shown in Algorithm 1.

Due to the complexity of the objective function in (2),
we adopt an inexact line search method called “Armijo’s
Rule” to avoid excessive objective function evaluations, while
still enjoying provable convergence [11]. The basic idea of
Armijo’s Rule is that at each step of the line search, we
sacrifice accuracy for efficiency as long as we have sufficient

Algorithm 1 Conjugate Gradient Projection Method
Initialization:

Choose the initial conditions Q(0) = [Q
(0)
1 ,Q

(0)
2 , . . . ,Q

(0)
K ]T . Let

k = 0.
Main Loop:

1. Calculate the conjugate gradients G
(k)
i , i = 1, 2, . . . , K.

2. Choose an appropriate step size sk . Let Q
′(k)
i = Q

(k)
i + skG

(k)
i ,

for i = 1, 2, . . . , K.
3. Let Q̄(k) be the projection of Q

′(k) onto Ω+(P ), where Ω+(P ) ,
{Qi, i = 1, . . . , K|Qi º 0,

∑K
i=1 Tr{Qi} ≤ P}.

4. Choose appropriate step size αk . Let Q
(k+1)
l = Q

(k)
l + αk(Q̄

(k)
i −

Q
(k)
i ), i = 1, 2, . . . , K.

5. k = k +1. If the maximum absolute value of the elements in Q
(k)
i −

Q
(k−1)
i < ε, for i = 1, 2, . . . , L, then stop; else go to step 1.

improvement. According to Armijo’s Rule, in the kth iteration,
we choose σk = 1 and αk = βmk (the same as in [9]), where
mk is the first non-negative integer m that satisfies

F (Q(k+1))− F (Q(k)) ≥ σβm〈G(k), Q̄(k) −Q(k)〉

= σβm
K∑

i=1

Tr
[
G†(k)

i

(
Q̄(k)

i −Q(k)
i

)]
, (3)

where 0 < β < 1 and 0 < σ < 1 are fixed scalars.
Next, we will consider two major components in the CGP

framework: 1) how to compute the conjugate gradient direction
Gi, and 2) how to project Q

′(k) onto the set Ω+(P ) ,
{Qi, i = 1, . . . ,K|Qi º 0,

∑K
i=1 Tr{Qi} ≤ P}.

A. Computing the Conjugate Gradients

The gradient Ḡi , ∇QiF (Q) depends on the partial
derivatives of F (Q) with respect to Qi. By using the formula
∂ ln det(A+BXC)

∂X =
[
C(A + BXC)−1B

]T
[13] and letting

A = I+
∑K

j=1,j 6=i H
†
jQjHj , B = H†

i , X = Qi, and C = Hi,
we can compute the partial derivative of F (Q) with respect
to Qi as follows:

∂F (Q)
∂Qi

=
∂

∂Qi
log det


I +

K∑

j=1

H†
jQjHj




=


Hi


I +

K∑

j=1

H†
jQjHj



−1

H†
j




T

. (4)

Further, since ∇zf(z) = 2(∂f(z)/∂z)∗ [14], we have

Ḡi = 2
(

∂F (Q)
∂Qi

)∗
= 2Hi


I +

K∑

j=1

H†
jQjHj



−1

H†
i . (5)

Then, the conjugate gradient direction can be computed as
G(k)

i = Ḡ(k)
i +ρkG

(k−1)
i . In this paper, we adopt the Fletcher

and Reeves’ choice of deflection [11], which can be computed
as

ρk =
‖Ḡ(k)

i ‖2
‖Ḡ(k−1)

i ‖2
. (6)



The purpose of deflecting the gradient using (6) is to find G(k)
i ,

which is the Hessian-conjugate of G(k−1)
i . By doing this,

we can eliminate the “zigzagging” phenomenon encountered
in the conventional gradient projection method, and achieve
the superlinear convergence rate [11] without actually storing
a large Hessian approximation matrix as in quasi-Newton
methods.

B. Performing Projection
In this section, we develop a rigorous algorithm for the prob-

lem of projecting the conjugate gradients onto the constraint
set in the dual MIMO MAC problem. This is in contrast to
the heuristic method in [9], where the authors simply set the
first derivative to zero to get the solution when solving the
constrained Lagrangian dual of the projection problem.

First, noting from (5) that Gi is Hermitian, we have that
Q
′(k)
i = Q(k)

i + skG
(k)
i is Hermitian as well. Then, the pro-

jection problem becomes how to simultaneously project a set
of K Hermitian matrices onto the set Ω+(P ), which contains
a constraint on sum power for all users. This is different to
[9], where the projection was performed on each individual
power constraint. Our approach is to construct a block diagonal
matrix D = Diag{Q1 . . .QK} ∈ C(K·nr)×(K·nr). It is easy
to recognize that if Qi ∈ Ω+(P ), i = 1, . . . , K, we have
Tr(D) =

∑K
i=1 Tr (Qi) ≤ P , and D º 0. In this paper,

we use Frobenius norm, denoted by ‖ · ‖F , as the matrix
distance criterion. The distance between two matrices A and
B is defined as ‖A − B‖F =

(
Tr

[
(A−B)†(A−B)

]) 1
2 .

Thus, given a block diagonal matrix D, we wish to find a
matrix D̃ ∈ Ω+(P ) such that D̃ minimizes ‖D̃ −D‖F . For
more convenient algebraic manipulations, we instead study the
following equivalent optimization problem:

Minimize 1
2‖D̃−D‖2F

subject to Tr(D̃) ≤ P, D̃ º 0.
(7)

In (7), the objective function is convex in D̃, the constraint
D̃ º 0 represents the convex cone of positive semidefinite
matrices, and the constraint Tr(D̃) ≤ P is a linear constraint.
Thus, the problem is a convex minimization problem and we
can exactly solve this problem by solving its Lagrangian dual
problem. Associating Hermitian matrix X to the constraint
D̃ º 0, µ to the constraint Tr(D̃) ≤ P , we can write the
Lagrangian as

g(X, µ) = min
D̃

{
1
2
‖D̃−D‖2F − Tr(X†D̃)

+ µ
(
Tr(D̃)− P

)}
. (8)

Since g(X, µ) is an unconstrained convex quadratic minimiza-
tion problem, we can compute the minimizer of (8) by simply
setting the derivative of (8) (with respect to D̃) to zero, i.e.,
(D̃ − D) − X† + µI = 0. Noting that X† = X, we have
D̃ = D− µI + X. Substituting D̃ back into (8), we have

g(X, µ) =
1
2
‖X− µI‖2F − µP + Tr [(µI−X) (D + X− µI)]

= −1
2
‖D− µI + X‖2F − µP +

1
2
‖D‖2F . (9)

Therefore, the Lagrangian dual problem can be written as

Maximize − 1
2‖D− µI + X‖2F − µP + 1

2‖D‖2F
subject to X º 0, µ ≥ 0.

(10)

After solving (10), we can have the optimal solution to (7) as

D̃∗ = D− µ∗I + X∗, (11)

where µ∗ and X∗ are the optimal dual solutions to Lagrangian
dual problem in (10). Although the Lagrangian dual problem
in (10) has a similar structure as that in the primal problem
in (7) (having a positive semidefinitive matrix constraint), we
find that the positive semidefinite matrix constraint can indeed
be easily handled. To see this, we first introduce Moreau
Decomposition Theorem [15] from convex analysis.

Theorem 1: (Moreau Decomposition) Let K be a closed
convex cone. For x,x1,x2 ∈ Cp, the two properties below
are equivalent:

1) x = x1 + x2 with x1 ∈ K, x2 ∈ Ko and 〈x1,x2〉 = 0,
2) x1 = pK(x) and x2 = pKo(x),

where Ko , {s ∈ Cp : 〈s,y〉 ≤ 0, ∀y ∈ K} is called the
polar cone of cone K, pK(·) represents the projection onto
cone K.

In fact, the projection onto a cone K is analogous to
the projection onto a subspace. The only difference is that
orthogonal subspaces is replaced by polar cones.

Now we consider how to project a Hermitian matrix A ∈
Cn×n onto the positive and negative semidefinite cones. First,
we can perform eigenvalue decomposition on A yielding
A = UADiag{λi, i = 1, . . . , n}U†

A, where UA is the uni-
tary matrix formed by the eigenvectors corresponding to the
eigenvalues λi, i = 1, . . . , n. Then, we have the positive
semidefinite and the negative semidefinite projections of A
as follows:

A+ = UADiag{max{λi, 0}, i = 1, 2, . . . , n}U†
A, (12)

A− = UADiag{min{λi, 0}, i = 1, 2, . . . , n}U†
A. (13)

The proof of (12) and (13) is a straightforward application of
Theorem 1 by noting that A+ º 0, A− ¹ 0, 〈A+,A−〉 =
0, A+ + A− = A, and the positive semidefinite cone and
negative semidefinite cone are polar cones to each other.

We now consider the term D − µI + X, which is the
only term involving X in the dual objective function. We
can rewrite it as D − µI − (−X), where we note that
−X ¹ 0. Finding a negative semidefinite matrix −X such
that ‖D−µI− (−X)‖F is minimized is equivalent to finding
the projection of D− µI onto the negative semidefinite cone.
From the previous discussions, we immediately have

−X = (D− µI)− . (14)

Since D − µI = (D − µI)+ + (D − µI)−, substituting (14)
back to the Lagrangian dual objective function, we have

min
X
‖D− µI + X‖F = (D− µI)+ . (15)



Thus, the matrix variable X in the Lagrangian dual problem
can be removed and the Lagrangian dual problem can be
rewritten as

Maximize ψ(µ) , − 1
2

∥∥(D− µI)+
∥∥2

F
− µP + 1

2‖D‖2F
subject to µ ≥ 0.

(16)
Suppose that after performing eigenvalue decomposition on D,
we have D = UΛU†, where Λ is the diagonal matrix formed
by the eigenvalues of D, U is the unitary matrix formed by
the corresponding eigenvectors. Since U is unitary, we have
(D− µI)+ = U (Λ− µI)+ U†. It then follows that

∥∥(D− µI)+
∥∥2

F
=

∥∥(Λ− µI)+
∥∥2

F
. (17)

We denote the eigenvalues in Λ by λi, i = 1, 2, . . . , K · nr.
Suppose that we sort them in non-increasing order such that
Λ = Diag{λ1 λ2 . . . λK·nr

}, where λ1 ≥ . . . ≥ λK·nr
. It

then follows that

∥∥(Λ− µI)+
∥∥2

F
=

K·nr∑

j=1

(max {0, λj − µ})2 . (18)

From (18), we can rewrite ψ(µ) as

ψ(µ) = −1
2

K·nr∑

j=1

(max {0, λj − µ})2−µP +
1
2
‖Dn‖2F . (19)

It is evident from (19) that ψ(µ) is continuous and (piece-wise)
concave in µ. Generally, piece-wise concave maximization
problems can be solved by using the subgradient method.
However, due to the heuristic nature of its step size selection
strategy, subgradient algorithm usually does not perform well.
In fact, by exploiting its special structure, (16) can be solved
efficiently. We can search the optimal value of µ as follows:
Let Î index the pieces of ψ(µ), Î = 0, 1, . . . ,K · nr. Initially
we set Î = 0 and increase Î subsequently. Also, we introduce
λ0 = ∞ and λK·nr+1 = −∞. We let the endpoint objective
value ψÎ (λ0) = 0, φ∗ = ψÎ (λ0), and µ∗ = λ0. If Î > K ·nr,
the search stops. For a particular index Î , by setting

∂

∂µ
ψÎ(ν) , ∂

∂µ


−1

2

Î∑

i=1

(λi − µ)2 − µP


 = 0, (20)

we have

µ∗
Î

=
∑Î

i=1 λi − P

Î
. (21)

Now we consider the following two cases:
1) If µ∗

Î
∈ [

λÎ+1, λÎ

] ∩ R+, where R+ denotes the set
of non-negative real numbers, then we have found the
optimal solution for µ because ψ(µ) is concave in µ.
Thus, the point with zero-value first derivative, if it
exists, must be the unique global maximum solution.
Hence, we can let µ∗ = µ∗

Î
and the search is done.

2) If µ∗
Î

/∈ [
λÎ+1, λÎ

] ∩ R+, we must have that the local
maximum in the interval

[
λÎ+1, λÎ

]∩R+ is achieved at
one of the two endpoints. Note that the objective value

ψÎ

(
λÎ

)
has been computed in the previous iteration.

This is because from the continuity of the objective
function, we have ψÎ

(
λÎ

)
= ψÎ−1

(
λÎ

)
. Thus, we

only need to compute the other endpoint objective value
ψÎ

(
λÎ+1

)
. If ψÎ

(
λÎ+1

)
< ψÎ

(
λÎ

)
= φ∗, then we

know µ∗ is the optimal solution; else let µ∗ = λÎ+1,
φ∗ = ψÎ

(
λÎ+1

)
, Î = Î + 1 and continue.

Since there are K ·nr +1 intervals in total, the search process
takes at most K ·nr +1 steps to find the optimal solution µ∗.
Hence, this search is of polynomial-time complexity O(nrK).

After finding µ∗, we can compute D̃∗ as

D̃∗ = (D− µ∗I)+ = U (Λ− µ∗I)+ U†. (22)

That is, the projection D̃ can be computed by adjusting
the eigenvalues of D using µ∗ and keeping the eigenvectors
unchanged. The projection of Dn onto Ω+(P ) is summarized
in Algorithm 2.

Algorithm 2 Performing Projection
Initiation:

1. Construct a block diagonal matrix D. Perform eigenvalue decompo-
sition D = UΛU†, sort the eigenvalues in non-increasing order.

2. Introduce λ0 = ∞ and λK·nt+1 = −∞. Let Î = 0. Let the
endpoint objective value ψÎ (λ0) = 0, φ∗ = ψÎ (λ0), and µ∗ = λ0.

Main Loop:
1. If Î > K ·nr , go to the final step; else let µ∗

Î
= (

∑Î
j=1 λj−P )/Î .

2. If µ∗
Î
∈ [λÎ+1, λÎ ]∩R+, then let µ∗ = µ∗

Î
and go to the final step.

3. Compute ψÎ(λÎ+1). If ψÎ(λÎ+1) < φ∗, then go to the final step;
else let µ∗ = λÎ+1, φ∗ = ψÎ(λÎ+1), Î = Î + 1 and continue.

Final Step: Compute D̃ as D̃ = U (Λ− µ∗I)+ U†.

IV. COMPLEXITY ANALYSIS

In this section, we compare our proposed CGP with existing
methods for solving MIMO BC. Similar to IWFs [8], SD [6],
and DD [7], CGP has linear complexity property. Although
CGP also needs to compute gradients in each iteration, the
computation is much easier than that in SD due to the different
perspectives in handling MIMO BC. In this paper, we compare
CGP with IWF (Algorithms 1 and 2 in [8]) as IWF has
the least complexity among aforementioned algorithms. For
convenience, we will refer to Algorithm 1 and Algorithm 2 in
[8] as IWF1 and IWF2, respectively.

TABLE I
PER ITERATION COMPLEXITY COMPARISON BETWEEN CGP AND IWFS

CGP IWFs
Gradient/Effective Channel K 2K

Line Search O(mK) N/A
Projection/Water-Filling O(nrK) O(nrK)

Overall O((m + 1 + nr)K) O((2 + nr)K)

To better illustrate the comparison, we list the complex-
ity per iteration for each component of CGP and IWFs in
Table I. For both CGP and IWFs, it can be seen that the
most time-consuming part (increasing with respect to K) is
the additions of the terms in the form of H†

iQiHi when
computing gradients and effective channels. Since the term



(I +
∑K

i=1 H†
iQiHi) is common to all gradients, we only

need to compute this sum once in each iteration. Thus,
the number of such additions per iteration for CGP is K.
In IWF1 and IWF2, the number of such additions can be
reduced to 2K by a clever way of maintaining a running sum
of (I +

∑K
j 6=i H

†
jQjHj). However, the running sum, which

requires K2 additions for IWF1, still needs to be computed in
the initialization step.

On the other hand, although the basic ideas of the projection
in CGP and water-filling are different, the algorithm structures
of them are very similar and they have exactly the same
complexity of O(nrK). The only unique component in CGP
is the line search step, which has the complexity of O(mK)
(in terms of the additions of H†

iQiHi terms), where m is
the number of trials in Armijo’s Rule. Therefore, the overall
complexity per iteration for CGP and IWFs are O((m + 1 +
nr)K) and O((2 + nr)K), respectively. According to our
computational experience, the value of m usually lies within
two and four. Thus, when nr is large (e.g., nr ≥ 4), the overall
complexity per iteration for CGP and IWFs are comparable.

In the next section, however, we will show that the numbers
of iterations required for convergence in CGP is much less
than that in IWFs for large MIMO BC systems, and it is
insensitive to the increase of the number of users. Moreover,
CGP has a modest memory requirement: It only requires the
solution information from the previous step, as opposed to
IWF1, which requires previous K − 1 steps. This means that
IWF1 requires a storage size for K2 input covariance matrices.

V. NUMERICAL RESULTS

We show results for a large MIMO BC system consisting
of 100 users with nt = nr = 4. The convergence processes
are plotted in Fig. 1. It is observed from Fig. 1 that CGP
takes only 29 iterations to converge and it outperforms both
IWFs. IWF1’s convergence speed significantly drops after its
initial improvement. It is also seen that IWF2’s performance
is inferior to IWF1, and this observation is consistent to
the results in [8]. Both IWF1 and IWF2 fail to converge
within 100 iterations. The scalability problem for both IWFs is
not surprising because for both algorithms, the most recently
updated covariance matrices only account for a fraction of
1/K in the effective channels’ computation, which means it
does not effectively make use of the most recent solution. In
all of our numerical examples with different number of users,
CGP is found to converge within 30 iterations.

VI. CONCLUSION

In this paper, we developed an efficient algorithm based on
conjugate gradient projection (CGP) for solving the maximum
sum rate problem of MIMO BC. We analyzed its complex-
ity and convergence behavior and showed that CGP enjoys
provable convergence, scalability, and efficiency. The attractive
features of CGP and encouraging results indicate that CGP
is an excellent method for solving the maximum sum rate
problem for large MIMO BC systems.
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Fig. 1. Comparison in a 100-user MIMO BC channel with nt = nr = 4.
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