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Spectrum Sharing for Multi-Hop Networking with
Cognitive Radios

Y. Thomas Hou, Senior Member, IEEE, Yi Shi, Student Member, IEEE, and Hanif D. Sherali

Abstract—Cognitive Radio (CR) capitalizes advances in signal
processing and radio technology and is capable of reconfiguring
RF and switching to desired frequency bands. It is a frequency-
agile data communication device that is vastly more powerful
than recently proposed multi-channel multi-radio (MC-MR)
technology. In this paper, we investigate the important problem of
multi-hop networking with CR nodes. For such a network, each
node has a pool of frequency bands (typically of unequal size)
that can be used for communication. The potential difference in
the bandwidth among the available frequency bands prompts the
need to further divide these bands into sub-bands for optimal
spectrum sharing. We characterize the behavior and constraints
for such a multi-hop CR network from multiple layers, including
modeling of spectrum sharing and sub-band division, scheduling
and interference constraints, and flow routing. We develop a
mathematical formulation with the objective of minimizing the
required network-wide radio spectrum resource for a set of
user sessions. Since the formulated model is a mixed-integer
non-linear program (MINLP), which is NP-hard in general, we
develop a lower bound for the objective by relaxing the integer
variables and using a linearization technique. Subsequently, we
design a near-optimal algorithm to solve this MINLP problem.
This algorithm is based on a novel sequential fixing procedure,
where the integer variables are determined iteratively via a se-
quence of linear programs. Simulation results show that solutions
obtained by this algorithm are very close to the lower bounds
obtained via the proposed relaxation, thus suggesting that the
solution produced by the algorithm is near-optimal.

Index Terms—Cognitive Radio (CR), spectrum sharing, multi-
hop networking, interference modeling, cross-layer optimization.

I. INTRODUCTION

RECENT studies sponsored by the FCC have shown that
traditional fixed allocation policy is becoming inadequate

in addressing today’s rapidly evolving wireless communica-
tions. Studies show that many allocated spectrum blocks are
not used in certain geographical areas and are idle most
of the time. These frequency bands are called the spectrum
“white space” (or “hole”). Measurements conducted by the
Shared Spectrum Company [18] find that even in the most
crowded area near downtown Washington, DC, where both
government and commercial spectrum use is intensive, 62%
of the spectrum remain white space (a bandwidth is considered
white space if it is wider than 1 MHz and remains unoccupied
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for at least 10 minutes). Another measurement, also conducted
by the Shared Spectrum Company [19], shows that even
during the 2004 Republican National Convention in New York
City (perhaps the most heavily-congested area in the U.S. at
that time), there was still significant white space available in
the public sector spectrum. These studies have prompted the
FCC to explore new innovative policies to encourage dynamic
access to the under-utilized spectrum [7]. Wireless devices are
allowed to sense and explore a wide range of the frequency
spectrum and identify currently unused spectrum blocks for
data communication. This approach is also called dynamic
spectrum access (DSA).

The enabling physical layer technology to realize DSA
is cognitive radio (CR), which is a frequency-agile data
communication device that has a rich control and monitoring
(spectrum sensing) interface [12], [21]. It capitalizes advances
in signal processing and radio technology, as well as recent
advancements in spectrum policy [25]. A frequency-agile radio
module is capable of sensing the available bands [3], [9], [10],
[20], [26], [30], reconfiguring RF, and switching to newly-
selected frequency bands. Thus, a CR can be programmed
to tune and operate on specific frequency bands over a wide
spectrum range [25]. An even more profound advance in CR
technology is that there is no requirement that selected fre-
quencies/channels be contiguous: the radio can send packets
over non-contiguous frequency bands. From an application
perspective, CR allows a single radio to provide a wide variety
of functions, acting as a cell phone, broadcast receiver, GPS
receiver, wireless data terminal, etc.

In this paper, we focus on the multi-hop networking problem
for a CR-based wireless network. For such a network, each
node senses a set of spectrum bands that it can use. Due
to the unequal size of spectrum bands, it is necessary to
further divide each band into sub-bands (likely of unequal
size) to schedule transmission and reception. There are many
fundamental problems that can be posed for such a wireless
network in the context of rates and capacity. In this paper, we
consider the following problem. Suppose there is a set of user
sessions in the network that is characterized by a set of source-
destination pairs each having a certain rate requirement. Then,
how can we perform spectrum allocation, scheduling and
interference avoidance, and multi-hop multi-path routing such
that the required network-wide radio spectrum resource is
minimized?

To formulate the problem mathematically, we characterize
behaviors and constraints from multiple layers for a general
multi-hop CR network. Special attention is given to modeling
of spectrum sharing and unequal (non-uniform) sub-band
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division, scheduling and interference modeling, and multi-
path routing. We formulate an optimization problem with
the objective of minimizing the required network-wide radio
spectrum resource for a set of source-destination pair rate
requirements. Since such a problem formulation is a mixed-
integer non-linear program (MINLP), which is NP-hard in
general [8], we aim to derive a near-optimal solution.

We present a near-optimal algorithm for the formulated
MINLP problem. First, we develop a lower bound for the
objective by relaxing the integer variables and employing a
linearization technique. This lower bound will be used as a
measure for the quality of any solution. Then we present
a novel sequential fixing (SF) solution procedure where the
determination of integer variables is performed iteratively
through a sequence of linear programs (LPs). Upon fixing
all the integer variables, other variables in the optimization
problem can be solved using an LP. Since the solution obtained
by the proposed SF algorithm represents an upper bound for
the objective, we compare it to the lower bound developed
earlier. Simulations show that the results obtained by the SF
algorithm are very close to the lower bound, thus suggesting
that (1) the lower bound is very tight; and (2) the solution
obtained by the SF algorithm is even closer to the optimum
and thus is near-optimal. The significance of this theoretical
work is to provide a performance benchmark which can be
used to evaluate protocols and distributed algorithms for real
implementation.

The remainder of this paper is organized as follows. In
Section II, we review related work on CR and state-of-the-
art on cross-layer optimization for MC-MR networks. In
Section III, we characterize the behavior of CR networks
from multiple layers and formulate them as mathematical
constraints. We also elaborate on the optimal radio resource
sharing problem and formulate it as an MINLP problem. In
Section IV, we develop a lower bound for this MINLP prob-
lem by relaxing integer variables and using linearization. In
Section V, we describe the proposed SF algorithm. Section VI
presents simulation results and demonstrates the near-optimal
performance of the SF algorithm. Section VII concludes this
paper.

II. RELATED WORK

CR is based on software defined radio (SDR) [25]. Since
its inception, SDR development has witnessed rapid advances.
Standards bodies such as IEEE 802 Standards Committee,
the SDR Forum, the Object Management Group have been
instrumental in promoting open standards for SDR com-
mercialization. Among others, the Software Communications
Architecture core framework is the result from standardization
efforts on SDR. The IEEE 802.22 working group is in the
process of developing a standard for a CR-based interface for
use by license-exempt devices on a non-interfering basis in
spectrum that is allocated to the TV Broadcast Service. CR
employs all the technologies that are available to SDR, plus
the additional capability of spectrum sensing and cognition
(learning and adaptation).

In CR research community, there have been extensive
activities devoted to effective sharing of spectrum or spectrum

allocation. For a multi-user single-hop communication in a
network environment, a number of approaches have been pro-
posed. For example, in [4], [22], game theory was applied to
study spectrum sharing, while in [13], [14], pricing mechanism
was used. In [6], Etkin et al. studied a utility maximization
problem and solved it under certain condition. In [23], Peng
et al. studied the spectrum assignment problem with the aim
of maximizing the total utility. In these efforts, routing is not
part of the problem.

For the multi-hop networking problem with CRs, there is
limited amount of work to date available in the literature. In
[32], Zhao et al. designed a distributed coordination approach
for spectrum sharing. They showed that this approach offers
throughput improvement over a dedicated channel approach.
In [29], Ugarte and McDonald studied the network capacity
problem for multi-hop CR-based networks and found an upper
bound, although it is not clear how tight this bound is. In
[31], Xin et al. studied how to assign frequency bands at
each node to form a topology such that a certain performance
metric can be optimized. A layered graph was proposed to
model frequency bands available at each node and to facil-
itate topology formation and achieve optimization objective.
The authors considered the so-called fixed channel approach
whereby the radio is assumed to operate on only one channel at
a specific time. In [28], Steenstrup studied three different fre-
quency assignment problems: common broadcast frequencies,
non-interfering frequencies for simultaneous transmissions,
and frequencies for direct source-destination communications.
Each is viewed as a graph-coloring problem, and both central-
ized and distributed algorithms were presented. Within these
limited efforts, there remains a lack of results on fundamental
theoretical performance limits for multi-hop CR networks.

A closely related line of research is the so-called multi-
channel multi-radio (MC-MR) networks (e.g., [1], [5], [15],
[16], [24]). It is important to understand that a CR is vastly
more powerful and flexible than MC-MR technology. First,
the MC-MR platform employs a traditional hardware-based
radio technology (i.e., signal processing, modulation, etc., are
all implemented in the hardware), and thus each radio can only
operate on a single channel at a time and there is no switching
of channels on the packet level. As a result, the number of
concurrent channels that can be used at a wireless node is
limited by the number of hardware-based radios. In contrast,
the radio technology in CR is software-based; a CR is capable
of switching frequency bands on the packet level. As a result,
the number of concurrent frequency bands that can be shared
by a single CR is typically much larger than that which can be
supported by MC-MR. Second, due to the nature of hardware-
based radio technology in MC-MR, a common assumption
in MC-MR is that there is a set of “common channels”
available for every node in the network; each channel typically
has the same bandwidth. However, such an assumption is
hardly true for CR networks, in which each node may not
have an identical set of frequency bands and each band is
likely to be of unequal size. Due to this difference, CR is
required to work on a set of frequency bands that are scattered
over widely-separated slices of the frequency spectrum with
different bandwidths. In summary, these important differences
between MC-MR and CR warrant that the algorithmic design
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Fig. 1. A schematic illustrating bands and sub-bands concept in spectrum
sharing.

for a CR network is substantially more complex than that for
MC-MR. In some sense, an MC-MR-based wireless network
can be considered as a special case of a CR-based wireless
network. Thus, algorithms designed for CR networks can be
tailored to address MC-MR networks, while the converse is
not true.

III. CR NETWORK MODEL AND PROBLEM FORMULATION

Table I lists all the relevant notation used in this paper.
We consider an ad hoc network consisting of a set of N
nodes. Among these nodes, there are a set of L uni-cast
communication sessions. Denote s(l) and d(l) the source
and destination nodes of session l ∈ L, and r(l) the rate
requirement (in b/s) of session l.

A. Modeling of Multi-layer Characteristics

Modeling of Spectrum Sharing and Sub-band Division.
This mathematical modeling feature and constraints are unique
to CR networks and do not exist in MC-MR networks. In a
multi-hop CR network, the available spectrum bands at one
node may be different from another node in the network. Given
a set of available frequency bands at a node, the size (or
bandwidth) of each band may differ drastically. For example,
among the least-utilized spectrum bands found in [19], the
bandwidth between [1240, 1300] MHz (allocated to amateur
radio) is 60 MHz, while bandwidth between [1525, 1710] MHz
(allocated to mobile satellites, GPS systems, and meteoro-
logical applications) is 185 MHz. Such large difference in
bandwidths among the available bands suggests the need for
further division of the larger bands into smaller sub-bands
for more flexible and efficient frequency allocation. Since
equal sub-band division of the available spectrum band is
likely to yield sub-optimal performance, an unequal division
is desirable.

More formally, we model the union of the available spec-
trum among all the nodes in the network as a set of M
unequally sized bands (see Fig. 1). Denote M the set of these
bands and Mi ⊆ M the set of available bands (or white-
space) at node i ∈ N , which is likely to be different from
that at another node, say j ∈ N , i.e., possibly Mi �= Mj .
For example, at node i, Mi may consist of bands I, III, and
V, while at node j, Mj may consist of bands I, IV, and VI.
Denote W (m) the bandwidth of band m ∈ M. For more
flexible and efficient bandwidth allocation and to overcome
the disparity in the bandwidth size among the spectrum bands,
we assume that band m can be further divided into up to

TABLE I
NOTATION.

Symbol Definition
N The set of nodes in the network
L The set of active user sessions in the network

r(l) Rate of session l ∈ L
s(l), d(l) Source and destination nodes of session l

Mi The set of available bands at node i ∈ N
M =

⋃
i∈N Mi, the set of available bands in the network

M = |M|, the number of available bands in the network
Mij = Mi

⋂
Mj , the set of available bands on link (i, j)

W (m) Bandwidth of band m ∈ M
K(m) The maximum number for sub-band division in band m
dij Distance between nodes i and j
n Path loss index

gij Propagation gain from node i to node j
Q Transmission power spectral density at a transmitter
η Ambient Gaussian noise density

QT The minimum threshold of power spectral density to
decode a transmission at a receiver

QI The maximum threshold of power spectral density for
interference to be negligible at a receiver

RT , RI Transmission range and interference range, respectively
T m

i The set of nodes that can use band m and are within the
transmission range of node i

Ti =
⋃

m∈Mi
T m

i , the set of nodes within the transmission
range of node i

Im
j The set of nodes that can use band m and are within the

interference range of node j
u(m,k) The fraction of bandwidth for the k-th sub-band in band m

x
(m,k)
ij Binary indicator to mark whether or not sub-band (m, k)

is used by link (i, j).
fij(l) Data rate that is attributed to session l on link (i, j)

K(m) sub-bands, each of which may be of unequal bandwidth.
Denote u(m,k) the fraction of bandwidth for the k-th sub-
band in band m, which is part of our cross-layer optimization
variables. Then we have

K(m)∑
k=1

u(m,k) = 1 .

Note that some u(m,k)’s can be 0 in the final optimization
solution, in which case we will have fewer number of sub-
bands than K(m). As an example, Fig. 1 shows M bands in
the network and for a specific band m, it displays a further
division into K(m) sub-bands. Then the M bands in the
network are effectively divided into

∑M
m=1 K(m) sub-bands,

each of which may be of different size.

Transmission Range and Interference Range. We assume
that the power spectral density from the transmitter of a CR
node is Q. In this paper, we assume that all nodes use the same
power density for transmission. The more complex issue of
power control will be deferred for future research. A widely-
used model for power propagation gain is [11]

gij = β · d−n
ij , (1)

where β is an antenna related constant, n is the path loss index,
and dij is the distance between nodes i and j.1 We assume
that a data transmission is successful only if the received

1In this paper, we consider a uniform gain model and assume the same
gain model on all frequency bands. The case of a non-uniform gain model
or a band-dependent gain behavior can be extended without much technical
difficulty.
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power spectral density at the receiver exceeds a threshold QT .
Likewise, we assume interference will become non-negligible
only if it produces a power spectral density over a threshold of
QI at a receiver. Based on the threshold QT , the transmission
range for a node is thus RT = (βQ/QT )1/n, which comes
from β ·(RT )−n ·Q = QT . Similarly, based on the interference
threshold QI (< QT ), the interference range for a node is
RI = (βQ/QI)1/n. Since QI < QT , we have RI > RT .
Both, the transmission range RT and the interference range
RI , will be used in the modeling of the interference constraints
as follows.

Scheduling and Interference Constraints. Scheduling can
be done either in time domain or frequency domain. In this
paper, we consider frequency domain sub-band assignment,
i.e., how to assign sub-bands at a node for transmission and
reception. A feasible scheduling on frequency bands must
ensure that there is no interference at the same node and
among the nodes.

Suppose that band m is available at both node i and node
j, i.e., m ∈ Mi

⋂Mj . To simplify the notation, let Mij =
Mi

⋂Mj . Denote

x
(m,k)
ij =

⎧⎨
⎩

1 if node i transmits data to node j on
sub-band (m, k),

0 otherwise.

For a node i ∈ N and a band m ∈ Mi, denote T m
i the set

of nodes that can use band m and are within the transmission
range to node i, i.e.,

T m
i = {j : dij ≤ RT , j �= i, m ∈ Mj} .

Note that node i cannot transmit to multiple nodes on the same
frequency sub-band. We therefore have∑

q∈T m
i

x
(m,k)
iq ≤ 1 . (2)

Also, node i cannot use the same frequency sub-band for
transmission and reception, due to “self-interference” at the
physical layer. That is, if x

(m,k)
ij = 1, then for any q ∈ T m

j ,

x
(m,k)
jq must be 0. In other words, we have

x
(m,k)
ij +

∑
q∈T m

j

x
(m,k)
jq ≤ 1 . (3)

Note that in (3), we are referring to a specific node j to which
node i is transmitting. If x

(m,k)
ij = 1, then

∑
q∈T m

j
x

(m,k)
jq = 0,

i.e., node j cannot use the same frequency sub-band (m, k)
for transmission. On the other hand, if x

(m,k)
ij = 0, then∑

q∈T m
j

x
(m,k)
jq ≤ 1, i.e., node j may use frequency sub-band

(m, k) for transmission, but can only use it for one receiving
node q ∈ T m

j (same as in (2)).
In addition to the above constraints at the same node, there

are also scheduling constraints due to potential interference
among the nodes in the network. In particular, for a frequency
sub-band (m, k), if node i uses this sub-band for transmitting
data to a node j ∈ T m

i , then any other node that can produce
interference on node j should not use this sub-band.2 To model

2Note that the so-called “hidden terminal” problem is a special case under
this constraint.
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Fig. 2. An example illustrating interference among links.

this constraint, we denote Pm
j the set of nodes that can produce

interference at node j on band m, i.e.,

Pm
j = {p : dpj ≤ RI , p �= j, T m

p �= ∅} .

The physical meaning of T m
p �= ∅ in the above definition is

that node p may use band m for a valid transmission to a node
in T m

p and then may interfer node j. Then we have

x
(m,k)
ij +

∑
q∈T m

p

x(m,k)
pq ≤ 1 (p ∈ Pm

j , p �= i) . (4)

In (4), if x
(m,k)
ij = 1, i.e., node i uses frequency sub-band

(m, k) to transmit to node j, then any node p that can produce
interference on node j should not transmit on this sub-band,
i.e.,

∑
q∈T m

p
x

(m,k)
pq = 0. On the other hand, if x

(m,k)
ij = 0,

(4) degenerates into (2), i.e., node p may transmit on sub-band
(m, k) to one node q ∈ T m

p , i.e.,
∑

q∈T m
p

x
(m,k)
pq ≤ 1.

It is important to understand that in the interference con-
straint (4), if x

(m,k)
ij = 0, two nodes that can produce

interference at node j but are far apart and outside each
other’s interference range can use the same sub-band (m, k)
for transmission. We use an example to illustrate this point.
In Fig. 2, suppose node 1 is transmitting to node 2 on sub-
band (m, k), then any node that can produce interference at
node 2 (i.e., node 3 or 5) cannot use the same sub-band for
transmission. On the other hand, if node 1 is not using sub-
band (m, k) to transmit to node 2, then node 3 may use this
sub-band to transmit (to node 4) as stated in (4). Likewise,
node 5 may also use this sub-band to transmit (to node 6) as
stated in (4). That is, both nodes 3 and 5 may use the same
sub-band for transmission.

We now use a compact form to include both (3) and (4).
Denote

Im
j = {p : dpj ≤ RI , T m

p �= ∅}

which is equivalent to

Im
j =

{
Pm

j

⋃{j} If T m
j �= ∅ ,

Pm
j otherwise .
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Thus, both (3) and (4) can be described by the following
constraint.

x
(m,k)
ij +

∑
q∈T m

p

x(m,k)
pq ≤ 1 (p ∈ Im

j , p �= i)

Routing. At the network level, a source node may need
a number of relay nodes to route the data stream toward its
destination node. Clearly, a route having only a single path
may be overly restrictive and is not able to take advantage of
load balancing. A set of paths (or multi-path) is more flexible
to route the traffic from a source node to its destination.
Mathematically, this can be modeled as follows.

Denote fij(l) the data rate on link (i, j) that is attributed
to session l, where i ∈ N , j ∈ ⋃

m∈Mi
T m

i , and l ∈ L. To
simplify the notation, let Ti =

⋃
m∈Mi

T m
i . If node i is the

source node of session l, i.e., i = s(l), then
∑
j∈Ti

fij(l) = r(l) . (5)

If node i is an intermediate relay node for session l, i.e., i �=
s(l) and i �= d(l), then

∑
j∈Ti,j �=s(l)

fij(l) =
∑

p∈Ti,p�=d(l)

fpi(l) . (6)

If node i is the destination node of session l, i.e., i = d(l),
then ∑

p∈Ti

fpi(l) = r(l) . (7)

It can be easily verified that if (5) and (6) are satisfied, then
(7) must be satisfied. As a result, it is sufficient to list only
(5) and (6) in the formulation.

In addition to the above flow balance equations at each
node i for each session l, the aggregate flow rates on each
radio link cannot exceed this link’s capacity. To model this
mathematically, we need to first find the capacity on link (i, j)
in sub-band (m, k). If node i sends data to node j on sub-
band (m, k), i.e., x

(m,k)
ij = 1, then the capacity on link (i, j)

in sub-band (m, k) is

c
(m,k)
ij = u(m,k)W (m) log2

(
1 +

gijQ

η

)
,

where η is the ambient Gaussian noise density. Note that the
denominator inside the log function contains only η. This is
due to one of our interference constraints stated earlier, i.e.,
when node i is transmitting to node j on sub-band (m, k), then
all the other neighbors of node j within its interference range
are prohibited from using this sub-band. This interference
constraint significantly helps to simplify the calculation of the
link capacity c

(m,k)
ij . When x

(m,k)
ij = 0, we have c

(m,k)
ij = 0.

Thus, c
(m,k)
ij can be written in the following compact form.

c
(m,k)
ij = x

(m,k)
ij · u(m,k)W (m) log2

(
1 +

gijQ

η

)
. (8)

Now, returning to our earlier requirement that the aggregate
data rates on each link (i, j) cannot exceed the link’s capacity,

we have,

∑
l∈L,s(l) �=j,d(l) �=i

fij(l) ≤
∑

m∈Mij

K(m)∑
k=1

c
(m,k)
ij

=
∑

m∈Mij

K(m)∑
k=1

x
(m,k)
ij · u(m,k)W (m) log2

(
1 +

gijQ

η

)
.

B. Problem Formulation

For the multi-hop CR networks that we are investigating,
various performance objectives can be used. In this paper,
we use the total required radio resource to support the user
sessions as our performance objective. The radio resource
can be measured in terms of the total bandwidth used by all
nodes in the network, which is the simplified form of the so-
called space-bandwidth product proposed in [17] with fixed
transmission power spectral density. It is not hard to see that
the solution procedure in this paper can be applied when other
performance objectives are used.

To re-cap, we are given a set of source-destination pairs
(user sessions) in the network, each with a certain rate
requirement. Each node in the network has a set of available
frequency bands that it can use for communication. We want
to find an optimal solution to divide the set of available
frequency bands at each node, the scheduling of sub-bands
for transmission and reception, and multi-hop routing for each
flow such that the total radio bandwidth used in the network
is minimized (or the solution declares that there is no feasible
solution). Mathematically, we have the following optimization
problem,

Min
∑

i∈N
∑

m∈Mi

∑
j∈T m

i

∑K(m)

k=1
W (m)x

(m,k)
ij u(m,k)

s.t.
K(m)∑
k=1

u(m,k) = 1 (m ∈ M)

∑
q∈T m

i

x
(m,k)
iq ≤ 1 (i ∈ N , m ∈Mi, 1 ≤ k ≤ K(m)) (9)

x
(m,k)
ij +

∑
q∈T m

p

x(m,k)
pq ≤ 1 (i ∈ N , m ∈ Mi, j ∈ T m

i ,

1 ≤ k ≤ K(m), p ∈ Im
j , p �= i) (10)

s(l) �=j,d(l) �=i∑
l∈L

fij(l)−
∑

m∈Mij

K(m)∑
k=1

W (m) log2

(
1+

gijQ

η

)
x

(m,k)
ij u(m,k)

≤ 0 (i ∈ N , j ∈ Ti)

∑
j∈Ti

fij(l) = r(l) (l ∈ L, i = s(l))

j �=s(l)∑
j∈Ti

fij(l)−
p �=d(l)∑
p∈Ti

fpi(l)=0 (l ∈ L, i ∈ N , i �= s(l), d(l))

x
(m,k)
ij = 0 or 1, u(m,k) ≥ 0 (i∈N , m∈Mi, j∈T m

i , 1≤k≤K(m))

fij(l) ≥ 0 (l∈L, i∈N , i �=d(l), j∈Ti, j �=s(l)) ,

where W (m), gij , Q, η, and r(l) are all constants, and x
(m,k)
ij ,

u(m,k), and fij(l) are all optimization variables.
The above optimization problem is a mixed-integer non-

linear programming (MINLP) problem, which is NP-hard in
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general [8]. Although existing software (e.g. BARON [2]) can
solve very small-sized network instances (e.g., several nodes),
the time complexity becomes prohibitively high for large-sized
networks.

Our approach to solve this problem is as follows. In
Section IV, we first explore a lower bound for the objective,
which can be obtained by relaxing the integer variables and
using a linearization technique. Using this lower bound as a
performance benchmark, in Section V, we develop a highly
effective algorithm based on a novel sequential fixing (SF)
procedure. Using simulation results, we show that the SF
algorithm has a performance very close to the lower bound.
Since the optimal objective value lies between the lower bound
and the solution obtained by the SF algorithm, the solution by
the SF algorithm must be even closer to the true optimum.

IV. A LOWER BOUND FOR THE OBJECTIVE FUNCTION

The complexity of the problem formulated in Section III-B
arises from the binary x

(m,k)
ij variables and the product of vari-

ables x
(m,k)
ij u(m,k). To pursue a lower bound for the objective,

we first multiplying (9) and (10) by the corresponding u(m,k),
so that x

(m,k)
ij appears throughout as a product with u(m,k).

We then relax the integrality (binary) requirement on x
(m,k)
ij

with 0 ≤ x
(m,k)
ij ≤ 1 and replace x

(m,k)
ij u(m,k) with a single

variable, say s
(m,k)
ij , i.e., s

(m,k)
ij = x

(m,k)
ij u(m,k) ≤ u(m,k).

Such a relaxation leads to the following lower-bounding
problem formulation.

Min
∑

i∈N
∑

m∈Mi

∑
j∈T m

i

∑K(m)

k=1
W (m)s

(m,k)
ij

s.t.
K(m)∑
k=1

u(m,k) = 1 (m ∈M)

∑
q∈T m

i

s
(m,k)
iq − u(m,k) ≤ 0 (i∈N , m∈Mi, 1≤k≤K(m)) (11)

s
(m,k)
ij +

∑
q∈T m

p

s(m,k)
pq −u(m,k)≤0 (i ∈ N , m ∈Mi, j ∈ T m

i ,

1≤k≤K(m), p∈Im
j , p �= i)(12)

s(l) �=j,d(l) �=i∑
l∈L

fij(l)−
∑

m∈Mij

K(m)∑
k=1

W (m) log2

(
1+

gijQ

η

)
s
(m,k)
ij ≤0

(i ∈ N , j ∈ Ti)

∑
j∈Ti

fij(l) = r(l) (l ∈ L, i = s(l))

j �=s(l)∑
j∈Ti

fij(l)−
p �=d(l)∑
p∈Ti

fpi(l)=0 (l∈L, i∈N , i �=s(l), d(l))

u(m,k), s
(m,k)
ij ≥ 0 (i ∈ N , m ∈ Mi, j ∈ T m

i , 1 ≤ k ≤ K(m))

fij(l) ≥ 0 (l ∈ L, i ∈ N , i �= d(l), j ∈ Ti, j �= s(l))

This new (relaxed) formulation is a standard linear program
(LP), the solution of which can be obtained in polynomial
time. Due to the relaxation (and thus enlarged optimiza-
tion space), the solution value to this LP problem yields

a lower bound for the objective of the original problem in
Section III-B. Note that there may not exist a feasible solution
that achieves this lower bound.

Nevertheless, this lower bound offers a benchmark to mea-
sure the quality of a feasible solution, which we will develop in
the next section. It turns out that this lower bound is extremely
tight (see results in Section V). This can be explained by the
convex hull results presented by Sherali et al. [27].

V. A NEAR-OPTIMAL ALGORITHM BASED ON

SEQUENTIAL FIXING

A. Basic Algorithm

We now take a closer look at the original MINLP problem
formulation in Section III-B. Observe that once the binary
values for all x variables are determined, i.e., whether or not
a node will indeed use a particular sub-band to send data to
another node, then this MINLP reduces to an LP, which can
be solved in polynomial time. In other words, the key obstacle
in solving this MINLP problem lies in the determination of
the binary values for the x

(m,k)
ij variables. To this end, we

propose a two-step solution procedure: i) fix the binary values
for x

(m,k)
ij iteratively through a sequence of LPs; ii) once all

the x
(m,k)
ij variables are fixed, find a solution (to determine

how to divide sub-bands and flow routing) corresponding to
this set of x

(m,k)
ij values. Such a two-step approach will yield

a sub-optimal (upper bound) solution to the original MINLP
problem. The quality of this algorithm can be assessed by
comparing its solution to the lower bound that we developed
in the previous section.

As said, the key to the two-step approach resides in the
determination of the binary values for all the x

(m,k)
ij -variables.

Our main idea is to fix (set) the values of the x
(m,k)
ij -variables

sequentially through solving a series of relaxed LP problems,
with each iteration setting at least one binary value for some
x

(m,k)
ij . Specifically, during the first iteration, we relax all

binary variables x
(m,k)
ij to 0 ≤ x

(m,k)
ij ≤ 1 as in Section IV

to obtain an LP. Upon solving this LP, we have a solution
with each x

(m,k)
ij = s

(m,k)
ij /u(m,k) being a value between 0

and 1. Among all the x-values, suppose some x
(m,k)
ij has the

largest value. Then we fix (set) this particular x
(m,k)
ij to 1. As

a result of this fixing, by (9), we also need to fix x
(m,k)
iq = 0

for q ∈ T m
i and q �= j. Further, by (10), we can fix x

(m,k)
pq

to 0 for p ∈ Im
j , p �= i, and q ∈ T m

p . Technically, in an
implementation, we can fix all the x-variables that have a
value of 1 and perform an additional fixing for the largest
fractional variable as above.

Now, having fixed some x-variables in the first iteration, we
update the problem to obtain a new LP for the second iteration
as follows. For those x

(m,k)
ij -variables that are already fixed at

1, since s
(m,k)
ij = x

(m,k)
ij u(m,k) = u(m,k), we can replace the

corresponding s
(m,k)
ij by u(m,k). For those x

(m,k)
iq and x

(m,k)
pq

that are fixed to 0, we can set s
(m,k)
iq = 0 and s

(m,k)
pq = 0.

As a result, all the terms in the LP involving these s-variables
can be removed and the corresponding constraint in (11) and
(12) can also be removed.
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Sequential Fixing (SF) Algorithm
1. Set up and solve the initial relaxed LP problem as shown in

Section IV.

2. Suppose x
(m,k)
ij has the largest value among all the x-variables

that remain to be fixed; fix this x
(m,k)
ij = 1.

Also, fix x
(m,k)
iq = 0 (for q ∈ T m

i and q �= j) and x
(m,k)
pq = 0

(for p ∈ Im
j , p �= i, and q ∈ T m

p ).

3. If all the x
(m,k)
ij -variables are fixed, go to Step 5.

4. Reformulate and solve a new relaxed LP problem with the newly
fixed x-variables and go to Step 2.

5. Formulate and solve the LP problem based on all fixed x-values.

Fig. 3. Sequential Fixing (SF) algorithm.

In the second iteration, we solve this new LP and then fix
some additional x-variables based on the same process (now
the ordering of the x-values is done only for the remaining
un-fixed x-variables). The iteration continues and eventually
we fix all x-variables to be either 0 and 1.

Upon fixing all the x-values, the original MINLP reduces
to an LP problem, which can be solved in polynomial time.
Unlike the solutions obtained in Section IV, the final solution
obtained here is a feasible solution since all x-values are
binary. The complete Sequential Fixing (SF) algorithm is
given in Fig. 3.

B. An Iteration-Speedup Technique

In the SF algorithm, we need to solve a sequence of
LPs. The complexity of SF is polynomial. By exploiting the
space and frequency dimensions involved in radio resource
allocation, we may decrease the number of LPs by fixing more
x-variables during each iteration in Fig. 3. As a result, the
complexity can be further decreased. From a space dimen-
sion viewpoint, a sub-band usage will only have an impact
within the interference range and the same sub-band can be
used by other links outside this range. Thus, for the same
sub-band (m, k), we may fix multiple links that have non-
overlapping interference ranges within a single iteration of
the SF algorithm. From the frequency dimension viewpoint,
the transmission in one sub-band will not interfere with the
transmission in a different sub-band. Thus, for the same link
(i, j), we may fix multiple sub-bands within a single iteration
of the SF algorithm. Specifically, we can use a threshold
α > 0.5 in this fixing process and fix all the x-variables that
exceeds α to 1 in a single iteration. Note that in (9) and (10),
it is required that at most one binary variable x

(m,k)
ij = 1

while in the relaxed problem, there is at most one fraction
s
(m,k)
iq /u(m,k) > 0.5. Thus, α > 0.5 ensures that both the

constraints (9) and (10) (interference constraints at each node
and among the nodes) will hold during the SF procedure.3 In
the case that none of the x-variables exceed α, we will fall
back to the basic algorithm in Fig. 3 and simply choose the
largest valued x-variable.

VI. SIMULATION RESULTS

In this section, we present simulation results for our SF
algorithm and compare it to the lower bound obtained in
Section IV. We consider |N | = 20, 30 or 40 nodes in a

3We use α = 0.85 in our simulation results.

TABLE II
AVAILABLE BANDS M IN THE NETWORK IN THE SIMULATION STUDY.

Band Index Spectrum Range (MHz) Bandwidth (MHz)
I [1240, 1300] 60.0
II [1525, 1710] 185.0
III [902, 928] 26.0
IV [2400, 2483.5] 83.5
V [5725, 5850] 125.0

500 × 500 area (in meters). Among these nodes, there are
|L| = 5 active sessions, each with a random rate within
[10, 100] Mb/s.

We assume that there are M = 5 bands that can be used for
the entire network (see Table II). Bands I and II are among
the least-utilized (less than 2%) spectrum bands found in [19]
and bands III, IV, and V are unlicensed ISM bands used for
802.11. Recall that available bands at each CR node is a subset
of these five bands based on its location and the available
bands at any two nodes in the network may not be identical.
In the simulation, this is done by randomly selecting a subset
of bands from the pool of five bands for each node. Further,
we assume bands I to V can be divided into 3, 5, 2, 4, and
4 sub-bands although other desirable divisions can be used.
Note that the size of each sub-band may be unequal and is
part of the optimization problem.

We assume that the transmission range at each node is
100 m and that the interference range is 150 m, although other
settings can be used. The path loss index n is assumed to be
4 and β = 62.5. The threshold QT is assumed to be 10η.
Thus, we have QI =

(
100
150

)n
QT and the transmission power

spectral density Q = (100)nQT /β = 1.6 · 107η.
Note that it is possible that there is no feasible solution for

a specific data set. This could be attributed to dis-connectivity
in the network (due to random network topology), resource
bottleneck in a hot area, etc. Thus, we only report results
based on those data sets that have feasible solutions.

We first present simulation results for 100 data sets for 20-
node networks that can produce feasible solutions. For each
data set, the network topology, source/destination pair and bit
rate of each session, and available frequency bands at each
node are randomly generated. We use the SF algorithm to
determine the cost, which is the total required bandwidth in
the objective function. As discussed, we compare this result
with the lower bound developed in Section IV. The running
time for each simulation is less than 10 seconds on a Pentium
3.4 GHz machine.

Figure 4 shows the normalized costs obtained by the SF
algorithm with respect to the lower bound costs for 100 data
sets. The average normalized cost among the 100 simulations
is 1.04 and the standard derivation is 0.07. There are two
observations that can be made from this figure. First, since the
ratio of the solution obtained by SF (upper bound of optimal
solution) to the lower bound solution is close to 1 (in many
cases, they coincide with each other), the lower bound must
be very tight. Second, since the optimal solution (unknown)
is between the solution obtained by the SF algorithm and
the lower bound, the SF solution must be even closer to the
optimum.
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Fig. 4. 100 data sets of normalized costs (with respect to lower bound) for
20-node networks.

TABLE III
SIMULATION RESULTS (IN MHZ) OF THE FIRST 40 DATA SETS FOR

20-NODE NETWORKS.

Data Set Lower Result Data Set Lower Result
Index Bound by SF Index Bound by SF

1 138.33 138.33 21 156.43 156.43
2 156.12 156.12 22 238.41 308.51
3 173.53 173.53 23 184.78 184.78
4 189.70 189.70 24 241.42 243.22
5 203.05 213.18 25 135.39 140.96
6 184.37 184.37 26 247.30 251.18
7 160.45 182.33 27 280.80 290.85
8 232.23 232.23 28 353.98 354.17
9 223.00 223.53 29 260.56 260.56

10 182.13 182.13 30 127.06 127.06
11 220.20 220.20 31 170.35 170.35
12 277.83 277.83 32 207.74 207.74
13 130.54 134.05 33 183.59 183.59
14 172.62 172.62 34 138.33 143.00
15 256.96 256.96 35 270.76 319.71
16 178.73 178.73 36 325.59 394.43
17 152.08 152.08 37 288.72 288.72
18 359.03 359.03 38 244.77 247.74
19 150.61 150.61 39 215.72 223.83
20 164.97 164.97 40 126.05 126.05

To get a sense of how the actual (rather than normalized)
numerical results appear in the simulations, we list the first 40
sets of results in Table III. Note that in many cases, the result
obtained by the SF algorithm is identical to the respective
lower bound obtained via relaxation. This indicates that the
solution found by SF is optimal.

Simulation results for 100 random data sets for 30-node and
40-node networks that produce feasible solutions are displaced
in Figs. 5 and 6, respectively. For 30-node networks, the
average normalized cost among the 100 simulations is 1.10
and the standard derivation is 0.16. For 40-node networks, the
average normalized cost among the 100 simulations is 1.18
and the standard derivation is 0.16. Thus, the SF solutions are
also close to the optimal solutions.
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Fig. 5. 100 data sets of normalized costs (with respect to lower bound) for
30-node networks.
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Fig. 6. 100 data sets of normalized costs (with respect to lower bound) for
40-node networks.

VII. CONCLUSIONS

In this paper, we conducted a systematic study on the im-
portant problem of multi-hop networking with CR nodes. The
nature of the problem calls for a characterization and modeling
of multi-layer behaviors and constraints. We characterized
behaviors and constraints for a multi-hop CR network from
multiple layers, including the modeling of spectrum sharing
and sub-band division, scheduling and interference constraints,
and flow routing. We formulated an optimization problem
with the objective of minimizing the required network-wide
radio spectrum resource for a set of user sessions. Since the
problem formulation is an MINLP, we developed a lower
bound to estimate the objective function. Subsequently, we
developed a novel sequential fixing algorithm to the cross-
layer optimization problem. Simulation results showed that
results obtained by this algorithm are very close to the lower
bound, thus confirming that they are near-optimal.
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