
Vulnerability and Protection for Distributed
Consensus-based Spectrum Sensing in Cognitive

Radio Networks

Qiben Yan∗ Ming Li† Tingting Jiang∗ Wenjing Lou∗ Y. Thomas Hou∗
∗ Virginia Polytechnic Institute and State University, VA, USA

† Utah State University, Logan, Utah, USA

Abstract—Cooperative spectrum sensing is key to the success of
cognitive radio networks. Recently, fully distributed cooperative
spectrum sensing has been proposed for its high performance
benefits particularly in cognitive radio ad hoc networks. However,
the cooperative and fully distributed natures of such protocol
make it highly vulnerable to malicious attacks, and make the
defense very difficult. In this paper, we analyze the vulnerabilities
of distributed sensing architecture based on a representative
distributed consensus-based spectrum sensing algorithm. We find
that such distributed algorithm is particularly vulnerable to a
novel form of attack called covert adaptive data injection attack.
The vulnerabilities are even magnified under multiple colluding
attackers. We further propose effective protection mechanisms,
which include a robust distributed outlier detection scheme
with adaptive local threshold to thwart the covert adaptive
data injection attack, and a hash-based computation verification
approach to cope with collusion attacks. Through simulation and
analysis, we demonstrate the destructive power of the attacks,
and validate the efficacy and efficiency of our proposed protection
mechanisms.

I. INTRODUCTION

Cognitive radio (CR) [1] has emerged as a key technology to

enabling the use of licensed spectrum bands from incumbents,

also known as primary users (PUs), when they are idle. An

important challenge in CR technology is reliable spectrum
sensing [2], by which cognitive radio devices, also known as

secondary users (SUs), detect and exploit a spectrum band

when it is unused, but vacate the channel immediately upon

detecting the presence of primary users. Cooperative spectrum

sensing, which exploits the cooperation of multiple SUs and

leverages the spatial diversity among those location-dispersed

SUs, has shown significant advantages in achieving reliable

spectrum sensing results [3].

Cooperation in spectrum sensing can be achieved in two

models: centralized or distributed. The former uses a common

receiver (i.e., fusion center) to collect sensing results from all

SUs and to make final spectrum sensing decision. It relies on a

centralized infrastructure which may be unavailable in ad-hoc

CR networks. In contrast, a distributed approach allows SUs

to share individual sensing results with their neighbors, and

to make their own sensing decisions. Therefore, distributed

This work was supported in part by the US National Science Foundation
under grants CNS-1117111, CNS-0831628, and CNS-0910531. T. Jiang’s
work has been supported by an NSF Graduate Research Fellowship.

spectrum sensing model is more suitable for cognitive radio

ad-hoc networks (CRAHN) [4].

Despite the many benefits cooperative spectrum sensing

entitles, it is vulnerable to many potential attacks. Attack-

ers may generate a false primary user signal to launch a

primary user emulation (PUE) attack [5] in order to gain un-

fair share of the spectrum usage, or they can manipulate

SUs’ sensing reports by various means in order to invert the

detection results (i.e., presence or absence of PUs), which is

often termed as data falsification attack [6]. Current research

in securing cooperative spectrum sensing have been focusing

on addressing these attacks under the centralized model [7],

[8]. Similar security threats exist in the distributed schemes

but are left under addressed thus far. In fact, a distributed

scheme is even more vulnerable to such attacks due to its

distributed and cooperative natures. As an example, recently,

a bio-inspired consensus-based distributed spectrum sensing

algorithm has been proposed [9], [10]. It is merely based on

localized sensing status measuring and exchanging, thus is

very efficient and scalable. However, due to the distributed and

cooperative natures of the protocol, the impact of malicious

behaviors of an attacker, if not defended properly, would

propagate through the whole network [11], causing long-term

widespread impacts. More involved attacks which would un-

dermine the distributed spectrum sensing mechanisms without

being detected are also possible.

In this paper, we focus on the protection of distributed

spectrum sensing in CR ad hoc networks. We first identify

various forms of attacks that can subvert distributed consensus-

based spectrum sensing, and then propose corresponding pro-

tection mechanisms. To the authors’ best knowledge, this is

the first paper to address the security issues in distributed

spectrum sensing in CR networks. This paper makes three

major contributions as follows.

(1) We analyze the vulnerabilities of distributed consensus-

based spectrum sensing by proposing several novel at-

tacks. They include naive ones that aim at causing dis-

ruption to sensing operations, and more sophisticated

covert adaptive data injection attack, which is capable of ad-

justing attack strategies via learning through perceived en-

vironments and stealthily manipulating the sensing results

without being caught by traditional detection schemes. The

2

latter is the first adaptive attack with learning capability in the

area of secure spectrum sensing. We also discuss advanced

collusion attacks that are hard to defend against.

(2) We present several protection mechanisms correspond-

ing to the various attacks we have identified. In particular,

we propose a novel robust distributed outlier detection algo-

rithm with adaptive local threshold to defend against covert

adaptive data injection attack, and a hash-based computation

verification scheme to defend against colluding attackers.

(3) Through extensive simulation and analysis, we show

the severe impacts of covert adaptive attacks to distributed

spectrum sensing. We also present the effectiveness of our

detection mechanisms under various detection parameters,

network topologies and sensing data variances. Moreover, the

costs of proposed protection mechanisms are shown to be low.

II. RELATED WORK

The existing work on secure cooperative spectrum sensing

mainly focused on centralized secondary network model. The

vulnerabilities in the centralized model lead to two types

of attacks. The spectrum sensing data falsification attack

is considered in [6], [7], [12], [13]. Li et al. [12] pro-

posed dependent attack to deviate the OR rule at fusion

center, in which case the attackers know the reports from

other secondary users. In [13], Fatemieh et al. presented

omniscient attack to stealthily manipulate the average power,

by which coordinated attackers have the measurements of

the whole network. However, these attackers are incapable

of adapting their attack strategies for each sensing period. In

contrast, our proposed attacks have the following differences:

1) our attacks employ adaptive attack strategies with learning

capability, by which the attackers can adjust their strategies

according to their perceived local environments and sensing

algorithm; 2) we consider distributed model, with only local

information available; 3) our attacks focus on consensus-based

spectrum sensing algorithm [9] to disrupt the consensus oper-

ation or covertly deviate the sensing result. Another existing

attack termed as primary user emulation attack is proposed in

[5], in which an attacker may mimic a primary user’s signal to

evict secondary users, which is complementary to our attacks.

For defense mechanisms, outlier detection is widely used,

either by statistics-based methods [6] or signal propagation-

based methods [7], [13]. Our outlier detection mechanism

depends on signal propagation model for classifying original

measurements from different SUs. However, our approach

further introduces an adaptive detection algorithm with varying

parameters, which differs from all existing work based on fixed

defense strategies. Furthermore, oppose to current detection

mechanisms, ours will ensure the correctness of consensus

operations by integrating hash-based computation verification

at each node that is able to testify the integrity of data involved

in its neighbors’ computations. The verification process is

different from existing hash-based scheme [14] that only

attests the data from the node itself.

III. SYSTEM MODEL

In this section, we describe the network model considered

in this paper, and we briefly review the distributed consensus-

based spectrum sensing algorithm.

A. Network Model

We consider a CR network where PUs and SUs coexist.

PUs are located far away from the secondary network, but

usually have high transmission power, so we assume the whole

secondary network is within the PUs’ transmission range.

Different PUs working under the same spectrum are separated

far away enough to reduce interference. As a result, in one

secondary network, the entire spectrum can be regarded as

multiple disjoint primary channels and each SU needs to

sense all of them. Without loss of generality, we consider the

scenario that all the SUs in a secondary network are detecting

the incumbent existence in one primary channel.

SUs form a CRAHN. We assume the collective coverage

range of the SUs that form the CRAHN is small compared

with the coverage range of a PU, while the distance between

two SUs is long enough for spatial diversity exploitation. We

assume the primary and secondary network topologies remain

unchanged during one sensing period, which starts from each

SU measuring its local received PU power level and ends upon

achieving a unanimous decision by all SUs. We also assume

the communication links between SUs employ some reliable

communication protocol so the communications are error-free.

We adopt energy detection spectrum sensing method. The

sensing output of each SU ni is the received power of the

PU, Pi, which can be expressed by following the signal

propagation model [15] as follows:

Pi = P0 − (10αlog10(di/d0) + Si +Mi)(dB), (1)

where P0 is the transmit power of PU, α is the path-

loss exponent, d0 is the reference distance (in this paper,

d0 = 1m), di denotes the distance from SU to the measured

PU, Si represents power loss due to shadowing fading, and

Mi represents the multi-path fading effect. We adopt the

widely used log-normal shadowing model [15], by which Si is

modeled as a Gaussian random variable with Si ∼ N(0, σ2).
We consider Mi as negligible. Therefore, Pi can be mod-

eled as a Gaussian distribution Pi ∼ N(μi, σ
2), in which

μi = P0 − 10αlog10(di). For simplicity, we assume σ is

distance-independent to PU, so that each SU experiences i.i.d.

Gaussian shadowing and fading.

B. Distributed Consensus-based Spectrum Sensing

In a nutshell, a distributed consensus-based spectrum sens-

ing algorithm works as follows. It starts a sensing period by

each SU taking the local measurement of the received PU’s

signal using an energy detection mechanism. The SUs then

exchange their local sensing measurements with their direct

neighbors. Each SU, upon receiving the updates from all its

neighbors, updates its sensing state following a state update

algorithm; if the differences among these new sensing states

are above a certain threshold, an update is necessary and the

3

SU will send a state update message to all its neighbors. This

process continues iteratively till no more update is triggered

and the sensing state at every node in the network has reached

the consensus. In what follows, we briefly review a distributed

consensus-based spectrum sensing algorithm focusing on the

state update algorithm and distributed state update protocol.

The secondary network can be modeled as an undi-

rected graph, denoted by a pair (N , E), where N =
{n1, n2, . . . , nm} denoting a set of secondary nodes, E ∈ N 2

denoting a set of undirected edges. We will use secondary

nodes and SUs interchangeably in the following sections. The

performance of consensus algorithm is associated with the

connectivity of secondary network, which can be represented

by an adjacency matrix of the network graph. The consensus-

based spectrum sensing algorithm can be expressed using a

discrete-time state equation:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

(xj(k)− xi(k)), (2)

where the initial state xi(0) is the original sensing measure-

ment of node ni, and xi(k) is the updated state at time step

k, Ni = {j|(j, i) ∈ E} ∈ N denotes the neighbor set of

node ni, and ε is a consensus parameter. State update occurs

at discrete time k = 0, 1, 2, . . . for each node locally. With

some constraints on network connectivity and parameter ε
[16], the final average consensus result α = [

∑m
i=1 xi(0)]/m

is asymptotically reached for all nodes. The final sensing

decision at each node is made by comparing the consensus

result with a primary detection threshold γ as follows:

α =
[m∑
i=1

xi(0)
]
/m

H1

�
H0

γ, (3)

where H1 and H0 denote the hypotheses corresponding to

the presence or the absence of PU. The primary detection

threshold γ is determined by performance requirements. For

instance, if we want to keep the primary miss detection rate

PMD = P (α < γ|H1) below a threshold, while minimizing

the primary false alarm rate PFA = P (α > γ|H0), the

threshold γ is given as follows [17]:

γ =
σ√
m
Q−1(1− PMD) + μα, (4)

where α ∼ N(μα, σ
2/m), in which μα = (

∑m
i=1 μi)/m,

Q−1(.) is the inverse of well-known Q-function.

Compared to the centralized cooperative spectrum sensing

schemes, distributed consensus protocols are fully distributed,

scalable, and with exponential convergence rate. It well suits

the CRAHN.

IV. VULNERABILITY ANALYSIS OF DISTRIBUTED

CONSENSUS-BASED SPECTRUM SENSING

Although the distributed nature of the consensus-based

protocols entitles such protocols significant performance ben-

efits, it also exposes such protocols to a number of security

threats. In this section, we identify and evaluate the vulner-

abilities of consensus-based protocols under various potential

attacks. We consider both passive and active attackers. We

also consider both insider and outsider attackers. An outsider

attacker is one who may intercept other nodes’ states, inject

false states, perform replay attack, camouflage other honest

nodes with their captured identities, etc., but who does not

possess valid security keying material. An insider attacker is

a compromised SU, who has knowledge of all the keying

material stored in the SU node if any, capable of manipulating

its sensing measurements/states, and then disseminating the

spoofed information, etc. Note that another type of attackers

is faulty nodes who may output measurements/states with a

large deviation due to hardware or software failure. We do

not differentiate intentional attackers from faulty nodes as the

consequence caused is the same.

To facilitate our analysis, we classify the attacks

into two categories based on the intended objectives

and consequences: disruption of sensing operation and

stealthy manipulation of sensing results. Attackers in the

former category have limited information and capabilities,

and typically launch arbitrary attacks with the objective to

disrupt the sensing operation. In contrast, attackers in the

latter category are more capable. To avoid being detected, they

can adapt their attack strategies to the perceived environment,

and can collude with each other.

Note that, we do not consider sybil attack in which a node

fabricates multiple identities, or radio-jamming attack. Those

are considered outside the scope of this paper and could be

addressed in separate publications.

A. Disruption of Sensing Operation

We identify two types of attacks that can lead to disruption

of sensing operation. The attacks in this category may come

from insider attackers, outsider attackers or faulty nodes.

We also analyze their harmful impacts on consensus-based

spectrum sensing algorithm.

1) Blocking attack: Blocking attack refers to unexpected

cease of information transmission from a SU. This is the

weakest attack in the sense that the only induced damage is

the isolation of the SU and possible partition of the network

graph. Intuitively, if the network graph is divided into several

subgraphs, the consensus can only be reached for each isolated

subgraph. Its impacts are stated in the following theorem:

Theorem 1. let A ∈ Mn×n be the adjacency matrix of a
secondary network. After blocking several secondary users by
the attackers, if the adjacency matrix of the remaining network
Ã ∈ Mñ×ñ satisfies

(I + Ã)ñ−1 > 0,

the attackers achieve no more benefit than defeating several
secondary users. Otherwise, the whole secondary network is
partitioned so that a global decision can never be attained.

The proof of the theorem is straightforward based on graph

theory, thus is omitted here.

4

2) Arbitrary False Data Injection Attack: Here, the attacker

injects forged data during each consensus iteration. Two forms

of such attack, differing in their ways of data injection, are

presented as follows.

• Constant data injection: the attacker ignores the state

update algorithm and keeps transmitting a constant value in

each state update message. We have the following theorems

to illustrate the impacts of single attacker scenario and multiple

attackers’ scenario separately:

Theorem 2. In a connected undirected graph with one ar-
bitrary false data injection attacker sending constant data, a
consensus can be asymptotically reached which equals to the
constant value injected by the attacker, for any set of initial
states.

Theorem 3. In a connected undirected graph with more than
one arbitrary false data injection attackers sending constant
data at different values, a consensus cannot be reached for
the whole network.

We omit the proof here. Intuitively, the consensus algorithm

with a single attacker will take a much longer time to converge

than the normal case, because the information flow is sourced

from a single node, while in the normal case information are

more evenly distributed across the whole network and all the

nodes cooperatively propagate the information flow. Therefore,

such attack also delays the consensus reaching time.

• Random data injection: the attacker injects random

values into its neighborhood at each iteration. The impacts of

random data injection attack are hard to analyze, but we can

conclude that unstopped random value injection will disrupt

the consensus algorithm by causing network divergence in

most cases or converging to an arbitrary value.

B. Stealthy Manipulation of Sensing Results

The goal of stealthy manipulation of sensing results is

to reverse the consensus result of a PU’s status, either

from absence to presence, i.e. exploitation objective, or from

presence to absence, i.e. vandalism objective [13]. With the

exploitation objective, attackers can evacuate other SUs to

obtain exclusive usage of the available spectrum, while with

vandalism objective, attackers will cause severe interference

to the primary network. We propose two novel attacks:

(1) covert adaptive data injection attack that achieves stealthy

manipulation of sensing results with independent attacker(s),

and (2) covert adaptive data injection attack with node collu-
sion.

1) Covert Adaptive Data Injection Attack: This attack has

two major features: “adaptive” means the attacker can adapt

its strategy based on neighbors’ state update information,

with prior knowledge about the detection algorithm; “covert”

reflects the attacker’s goal of covertly manipulating the sensing

results, without being detected by the detection mechanism.

Outsider attackers can be effectively expelled from the network

with an authentication mechanism. In this paper, we focus on

insider attackers that reside in legitimate nodes.

Outlier detection algorithms are commonly used to defend

against insider attackers performing data injection attacks.

Generally, the current outlier detection algorithms all rely

on a static attack detection threshold1 λ to classify honest

SUs and attackers. Suppose we directly apply these detection

algorithms into the distributed system, i.e. at each iteration,

a detection algorithm automatically expels the abnormal SUs.

However, according to Kerckhoffs’s principle, if the attacker

knows the detection algorithm and detection threshold λ, a

covert adaptive data injection attacker defined below is capable

of bypassing the traditional detection algorithms.

Attack strategy. (1) At each iteration, the attacker first

collects all its neighbors’ states normally.

(2) The attacker then computes a maximal acceptable

deviated state based on all its neighbors’ submitted states

and the threshold in the detection algorithm. The difference

between the deviated state and genuine state indicates the

attack strength a(k̂), where k̂ ∈ [0, kstop] is the attack time.

(3) Finally, it injects the forged state into its neighborhood.

To illustrate the attacker strategy of computing a maximal

acceptable deviated state, we give an example of a simple

detection scheme with a threshold λd, by which one node na

is flagged as attacker whenever any of its neighbors detect

its abnormality. Assume the attacker has vandalism objective

with its neighbors’ states as {st1, ..., st|Na|}, then the maximal

acceptable deviated state can be { max
i=1→|Na|

(sti)−λd} to avoid

being detected.

In practice, if the attacker is unable to collect all its neigh-

bors’ states before sending its own states, at current iteration, it

replaces its previous state with a maximal acceptable deviated

state calculated by a collection of neighbors’ previous states.

And then, it updates its current state with the spoofed previous

state and sends it to the neighbors. In this case, the attack

strength enforced at the current state will directly affect the

next state of the network.

For an attacker, the knowledge of attack stop time kstop
is crucial for launching a successful attack. If kstop → ∞,

the consensus protocol will not converge. The following in-

equalities show the basic principle in terms of the amount of

changes an attacker has to inject in order to fulfill exploitation

objective and vandalism objective respectively:

x̄+

∑kstop

i=0 a(i)

m
> γ, a(i) ≥ 0, exploitation objective, (5)

x̄+

∑kstop

i=0 a(i)

m
< γ, a(i) ≤ 0, vandalism objective, (6)

where x̄ is the average value of the original measurements

of the whole network, which is also the legitimate consensus

result, and m is the number of nodes in the network. Because

1This threshold is for the purpose of detecting the presence of attacks,
which is different from primary detection threshold γ mentioned before. In
the later section, unless otherwise noted, the detection threshold denotes attack
detection threshold.

5

the consensus algorithm has invariant average quantity [16],

the impact of each attack strength a(i) can be quantified as

augmenting the final consensus result by a(i)/m. However, the

attackers have no way of knowing x̄ without the global knowl-

edge. Therefore, we propose an iterative stop strategy. Let

x̃min(k) and x̃max(k) be the minimal and maximal state from

neighbors of the attacker at k-th iteration, the attacker injects

forged states only when x̃min(k) < γ or x̃max(k) > γ for

exploitation or vandalism objectives respectively. Otherwise,

the attacker follows the consensus protocol. The proposed stop

strategy guarantees the attacker’s neighborhood to achieve the

objective first, whose deviated states will then spread through

the whole network for reversing the consensus result.

Multiple attackers with the covert adaptive attack strategy

can jointly set their attack strengths, so that the protocol

converges faster to their desired consensus objectives. Covert

adaptive data injection attack is effective in evading traditional

outlier detection. In section V-A, we will present a novel

detection mechanism to invalidate such attack.

2) Covert Adaptive Data Injection Attack with Node Collu-
sion: The covert adaptive data injection attack becomes even

more powerful and harder to defend against when nodes start

to collude. Not only can such attack obtain a faster conver-

gence rate to their desired objectives, but it can also evade

the computation verification scheme proposed in section V-B.

Both the insider attacker and outsider attacker can perform

such collusion attack.

When we involve the protection mechanism with com-

putation verification to check the legitimacy of consensus

operation, collusion attackers will avoid being caught by

sending forged verification to cover up each other’s false

data. Moreover, stronger collusion attackers are capable of

employing more malicious neighbors for false validations.

In section V-B, we will present a hash-based computation

verification mechanism to defend against collusion attacks.

V. PROTECTION OF DISTRIBUTED CONSENSUS-BASED

SPECTRUM SENSING

The vulnerabilities of distributed consensus-based spectrum

sensing algorithm demand for effective protection mecha-

nisms. In this section, we first present a robust distributed

outlier detection mechanism with adaptive local threshold to

counter covert adaptive data injection attack. Then, we put

forward a hash-based computation verification mechanism that

ensures the correctness of a neighbor’s state update process to

thwart collusion attacks by common neighbor cross-validation.

A. Robust Distributed Outlier Detection with Adaptive Local
Threshold

The goal of this protection mechanism is to detect and elim-

inate the abnormal states injected by attackers. As described

in section IV-B1, the traditional outlier detection mechanisms

used in the existing spectrum sensing rely on a fixed and

known global detection threshold, which enables an attacker to

have strengthened attacking capabilities throughout the whole

consensus process.

According to the consensus algorithm, the maximum state of

the network is monotonically decreasing, while the minimum

state of the network is monotonically increasing until reaching

consensus [18]. The updated states of each node are bounded

by the maximum and minimum states, which gradually con-

verge on the same value, while the differences among updated

states of various SUs are bounded by the differences between

the maximum and minimum states, which gradually diminish

until reaching zero.2 So the main idea of our detection al-

gorithm is to use localized detection threshold at each node,

and adapt the threshold with the diminishing behavior of

state differences. The benefits of adaptive local threshold are

twofold: (1) it becomes more difficult for attackers to guess

all the instant detection thresholds of its neighbors without

two-hop information; (2) the detection thresholds drop with

the shrinking of variances among different states. Especially

at the final consensus state, the detection thresholds reach zero

which gives zero-tolerance to the attackers.3

To illustrate the detection mechanism, we assume a common

communication range for each SU dcr. Consider to compute

the threshold at honest SU nh in its neighborhood, we have

its two honest neighbors ni and nj with distances di and dj
from the PU with dj = di + Δdij , 0 < Δdij ≤ 2dcr. We

use the method in [7] to find a detection threshold λh0 for

SU nh at starting time, such that with high probability (e.g.

0.99), xi(0)−xj(0) ≤ λh0 satisfies. According to Eq. (1), the

distribution of difference is as follows:

xi(0)− xj(0) = N(10αlog10
di +Δdij

di
, 2σ2). (7)

For a fixed di, Δdij = 2dcr will maximize the mean of the

distribution. We assume a large attenuation factor α to reduce

the influence from uncertainty of α. Then, di is estimated

through a robust statistic estimation. Median estimate is used

in [7], while biweight estimate [19] is another good candi-

date, which has a higher efficiency in terms of the variance

of estimation. To trade off the overhead and performance,

we use median and biweight estimation comparatively to

determine the estimation of xi(0): xest =median(xk(0)) or

biweight(xk(0)) for k ∈ Nh. Thus, di ≈ dest = 10
P0−xest

10α .

Now we have the following distribution of difference:

xi(0)− xj(0) = N(10αlog10
dest + 2dcr

dest
, 2σ2). (8)

Assume Pr(xi(0) − xj(0) < λh0) > 1 − μ, where μ is

detection parameter (typically μ = 0.01), we can calculate

λh0 using Eq. (8) as λh0 =
√
2Q−1(μ)+10αlog10(

dest+2dcr

dest
).

Up to now, we obtain the detection threshold at starting

time. Then the updating threshold of node nh at k-th iteration

is denoted as λhk. From the above deduction, we notice the

2Although the differences between the updated states of any two SUs are
not monotonically decreasing, the diminishing trends are guaranteed.

3Even if the attacker has global knowledge to guess all the instant detection
thresholds, and compute a deviated state to bypass the detection at each
iteration, the influence to the final results will be limited due to the shrinking
thresholds.

6

Assume: every SU in the network owns a unique ID and shares a unique key with every neighbor; every pair of neighbor nodes has at least one common
neighbor; there exists a secure neighborhood discovery mechanism, with which each node can obtain two-hop neighborhood information. In the k-th
iteration (k > 0) (when k = 0, every node first submits its measurement to its neighbors using authenticated broadcast.)

• Update Commit: (First round) after one node collects all its neighbors’ submissions, it computes and disseminates an updated submission using
authenticated broadcast containing a hash commitment of its inputs together with its own data. Therefore, node nv receives a collection of updated
submissions from its neighbors.

• Distributed Verification: (Second round) every node disseminates all its neighbors’ data collected at the beginning of first round using authenticated
broadcast, so node nv receives a collection of data from the two-hop neighbors. Then node nv performs the following verification: (1) it checks the
IDs in the collection are consistent with its stored neighbor IDs; (2) it checks whether its own data and the common neighbors’ data are incorporated
in each updated state by recomputing each updated state and hash commitment; (3) whenever one of the verification for node np fails, multiple
MACKvi

(ERR, IDp) will spread through the whole network to stop the state update process, where ERR is a unique message identifier, Kvi

is the shared key between nv and its neighbor ni.

Fig. 1: The Distributed Hash-based Verification of Neighbor State Update.

implicit meaning of detection threshold is the maximal accept-

able difference between two honest SUs in the neighborhood.

Then in order to adapt the detection threshold according to

the shrinking difference, we calculate the robust statistic esti-

mate for differences, estdifhk =median(|xj1(k)−xj2(k)|) or

biweight(|xj1(k)−xj2(k)|), where nj1, nj2 ∈ Nh. Therefore,

we propose the following updating algorithm:

λh(k+1) =
estdifh(k+1)

estdifhk
λhk. (9)

As estdifhk
k→kfinal−−−−−−−→ 0, we can guarantee λhk

k→kfinal−−−−−−−→ 0,

finally revealing zero-tolerance to attackers. To prevent attack-

ers from forging an alarm to exclude legitimate nodes, we

adopt majority rule to dispute any suspicious attacker. The

whole protocol is described as follows:

• Every node computes its detection threshold at each

iteration according to Eqs. (8) and (9), and then identifies

suspicious attackers in its neighborhood.

• Once a node discovers a suspicious attacker, it broadcasts

a primitive alarm to its neighbors which will not be forwarded.

• Assume the number of common neighbors between a node

and the suspicious attacker is B. If the node collects no less

than
B/2� primitive alarms from the common neighbors,

it will broadcast a confirmed alarm and forward it to the

remaining network.

• Finally, once the presence of covert adaptive data injection

attackers is disclosed, it is straightforward to handle them or

eliminate their impacts.

B. Hash-based Computation Verification of Neighbor State
Update

The above outlier detection mechanism detects abnormal

node measurements/states in the statistical sense. It is only

effective when the majority of nodes in a neighborhood are

honest. When malicious colluding nodes exist, the statistical

outlier detection methods become less effective. In order

to defend against collusion attacks, each node must ensure:

(1) the authenticity and integrity of the updated states sent

by neighbor nodes; (2) the state update algorithm has been

followed truthfully at a neighbor node nv , i.e. it has correctly

executed the update algorithm using all nv’s neighbors’ data.

To realize the above additional goals, we propose a hash-

based approach with common neighbor cross-validation to

counter collusion attacks with honest common neighbors and

provide computation verification. To provide sensing data

legitimacy check, data authenticity/integrity and computation

verification simultaneously, we can combine our outlier detec-

tion with the hash-based verification mechanism. Next we will

focus on the hash-based verification mechanism.

We assume each node has a unique identifier and shares a

unique secret symmetric key with every neighbor. In addition,

every node uses authenticated broadcast such as μTESLA

[20] to send messages to its neighbors to enforce message

authenticity and integrity. In the fully distributed CRAHN,

every node should keep a unique one-way key chain and send

the key chain commitments to every neighbor.

The main goal of this approach is to ensure each neighbor

node perform trustworthy state updates. We adapt the idea

of common neighbor cross-validation in traditional secure

data aggregation techniques [14] to counter collusion attacks.

In our scheme, each SU is responsible for checking not

only its own contributions, but also the common neighbors’

contributions incorporated into the updated states. The details

of our proposed scheme are illustrated in Fig. 1.

We assume there exists a secure neighbor discovery mech-

anism [21], by which each node can securely discover its

two hop neighbors during the network initialization process.

Each iteration contains two phases: update commit and dis-

tributed verification. We give an example to illustrate how the

scheme works. In the k-th iteration, the initial submission

of node nh has the format: 〈k, IDh, value〉, where value
is the power measurement. In the update commit phase,

node nh collects the following data from its neighbors:

d
(k−1)
1 , d

(k−1)
2 , . . . , d

(k−1)
q , and its updated submission s

(k)
h

has the format:

〈k, IDh, state
(k),

H(k‖IDh‖state(k)‖ID1‖d(k−1)
1 ‖ID2‖d(k−1)

2 ‖ . . .
|IDq‖d(k−1)

q ‖)〉, k > 0.

The hash digest in each submission is called

hash commitment used for computation integrity check.

In the distributed verification phase, nh disseminates its

neighbors’ data 〈ID1, d
(k−1)
1 , ID2, d

(k−1)
2 , . . . , IDq, d

(k−1)
q 〉

using authenticated broadcast. Each node in its neighborhood

7

0 10 20 30 40 50 60 70 80 90 100
−50

−49

−48

−47

−46

−45

−44

−43

−42

−41

−40

Iteration Step

N
od

e
St

at
es

node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9
node 10

(a) No attacker case

0 50 100 150 200 250 300
−70

−65

−60

−55

−50

−45

−40

−35

Iteration Step
N

od
e

S
ta

te
s

node 1(Attacker)
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9
node 10

(b) One covert adaptive attacker case

0 50 100 150 200 250 300
−80

−75

−70

−65

−60

−55

−50

−45

−40

Iteration Step

N
od

e
St

at
es

node 1(Attacker)
node 2(Attacker)
node 3(Attacker)
node 4(Attacker)
node 5(Attacker)
node 6
node 7
node 8
node 9
node 10

(c) Ten covert adaptive attackers case

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Number of Attackers

A
tta

ck
 S

to
p

Ti
m

e
&

C

on
ve

rg
en

ce
 T

im
e

Attack Stop Time
Convergence Time

(d) Impact of attacker population

Fig. 2: Performance of covert adaptive data injection attack to distributed consensus-based spectrum sensing protected by traditional detection
scheme with detection threshold -56dB.

TABLE I: Simulation Parameters

Parameter Value Description
N 50 Number of secondary users
Rs 1km Length and Width of secondary network
dsp 5km Distance between primary user and center of

secondary network
P0 66dBm Transmission power in dBm
dcr 300m Communication range of secondary user
α 3 Path-loss exponent
σ 3dB Standard variance for fading and shadowing
N0 -80dB Noise power
ε 0.05 Consensus parameter

can then recompute the updated states based on Eq. (2) and

regenerate the hash commitments, and compare the updated

states and hash commitments with the received ones to

verify the computation. This approach enables each honest

node to check whether its neighbor nodes have performed

the consensus-based state update algorithm correctly. In

addition, as long as each pair of colluding attackers shares

one honest common neighbor, this scheme can also detect

colluding attacks. We provide a detailed security analysis in

section VI-C.

VI. EVALUATION

In this section, we first evaluate the vulnerabilities of dis-

tributed consensus-based spectrum sensing. We then demon-

strate the effectiveness and present the security analysis of

our proposed protection mechanisms, followed by a numerical

analysis on their efficiency. Table I lists the system parameters

used in our simulation with MATLAB. The performance

results are averaged over 1000 simulation runs.

A. Impact of Covert Adaptive Data Injection Attacker

Fig. 2(a)-Fig. 2(d) show how vulnerable the consensus-

based spectrum sensing with traditional outlier detection

scheme [7] is under covert adaptive data injection attacks.

Fig. 2(a) depicts the normal behavior in terms of protocol

convergence without attackers. In less than 10 iterations, the

difference among all the nodes becomes less than 1dB, which

means a consensus has been reached. Fig. 2(b) shows the

effect of a single attacker launching the attack. It stealthily

deviates its states in order to subvert the consensus results for

vandalism objective. In around 60 iterations, the nodes’ states

in the attacker’s neighborhood has been dragged lower than the

threshold so the attacker temporarily stops injecting false states

and starts to follow the algorithm properly. After that, the at-

tacker repeatedly enforce attack strength for several iterations

whenever it finds the maximal state in its neighborhood stays

higher than γ, until the consensus of the whole network. At

around the 100th iteration, the network reaches a consensus

but it is a wrong one (i.e., the opposite one). When there

are multiple attackers working for the same objectives, the

consensus can be reached much faster as shown in Fig. 2(c).

Finally, Fig. 2(d) demonstrates the connection between the

attack stop time and the convergence time4 with respect to

the attacker population. We observe that with the growing

of attacker population, both times will decrease gradually,

indicating an increasing attack power. In general, we observe

that the proposed attack can be very effective in bypassing the

traditional outlier detection mechanism and manipulating the

final spectrum sensing result.

B. Effectiveness of Robust Distributed Outlier Detection with
Adaptive Local Threshold

We evaluate our proposed outlier detection scheme by com-

paring with existing outlier detection scheme [7]. We study the

impacts of detection parameter, network topology and sensing

data variance to two primary detection performance criteria,

primary miss detection rate PMD and primary false alarm rate

PFA, determined by attack capabilities under the protection

mechanisms. Fig. 3(a)-Fig. 3(c) show the effectiveness of

our detection scheme, which can successfully eliminate the

impacts of attackers. We observe from Fig. 3(a), the detection

performance is insensitive to μ, because the attackers know

the values of detection threshold and μ, and employ them

to bypass the detection scheme. Fig. 3(b) shows that when

the SU’s communication range increases, correspondingly the

density of the neighborhood increases, both PMD and PFA of

existing scheme increase.However, with our detection scheme,

PMD and PFA both decrease, owning to the increasing at-

tacker detection rate with more neighbors. We notice that when

4The convergence time is defined as the number of iterations before
the network-wide consensus is reached. Reaching a consensus means the
difference among all the node states falls below 0.5dB.

8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Primary miss detection & false alarm performance

µ

P
M

D

&

P
FA

PMD with existing scheme
PMD with our scheme
PFA with existing scheme
PFA with our scheme

(a) Impact of detection parameter μ

100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Primary miss detection & false alarm performance

Communication Range of Secondary users
P

M
D

&

P

FA

PMD with existing scheme
PMD with our scheme
PFA with existing scheme
PFA with our scheme

(b) Impact of communication range

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Primary miss detection & false alarm performance

Variance of Channel Fading and Shadowing

P
M

D

&

P
FA

PMD with existing scheme
PMD with our scheme
PFA with existing scheme
PFA with our scheme

(c) Impact of sensing data variance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Attacker detection & miss identification performance

Variance of Channel Fading and Shadowing

Pa D

&

Pa M
I

Pa
MI with existing scheme

Pa
MI with our scheme

Pa
D with existing scheme

Pa
D with our scheme

(d) Attacker detection performance

Fig. 3: Performance of robust distributed outlier detection with adaptive local threshold

communication range is extremely small, existing scheme

is shown to outperform our scheme. This is because when

neighborhood has a small population, cross-validation is less

effective. Some honest nodes may be mistaken as attackers,

which potentially amplifies the impacts of uncovered attackers

to the remaining network. Fig. 3(c) indicates with the increase

of data variance, the attackers have a much larger influence

to the existing detection method, but our method effectively

impedes the influence. To further evaluate attacker detection

performance, we involve two more criteria: P a
D as the attacker

detection rate5 and P a
MI as the attacker miss identification

rate6. Fig.3(d) shows both P a
D and P a

MI are steadily growing

with the increasing of data variance with our scheme, while

the increasing of P a
MI is a side effect of our scheme caused

by adaptive threshold, but it will not degrade the primary

detection performance.

C. Security analysis of hash-based computation verification
approach

We first consider the case where there is a single attacker

A in the network. The security of the hash-based compu-

tation verification scheme is based on the following. (1)

The secure neighborhood discovery scheme utilized in the

network initialization process ensures each node learn two-

hop neighborhood information securely, so that the attacker

can neither discard the state value of a legitimate neighbor

node nor include a forged state value while updating its state.

(2) The message authenticity and integrity are guaranteed

by the broadcast authentication. (3) Whether the attacker A

uses a different state value d
′(k−1)
B from what submitted by a

neighbor node B for state update computation, and includes

d
′(k−1)
B in the message sent to B in the verification phase;

or computes a wrong state′(k) using the correct neighbor

states, the inconsistency will be detected by B. (4) Otherwise,

based on the collision resistant property of hash function, it

is computationally infeasible to generate a valid hash commit-

ment H(k||A||state′(k)||ID1||d
′(k−1)
1 || · · · ||IDn||d

′(k−1)
n) =

H(k||A||state(k)||ID1||d(k−1)
1 || · · · ||IDn||d(k−1)

n), where at

least one of the primed state values does not equal to the

authentic ones.

5This rate is defined as the probability of detecting one attacker.
6This rate is defined as the probability of mistakenly identifying a legitimate

node as an attacker.

Next, we discuss the security of state update algorithm with

colluding attackers. In Fig. 4, we identify four types of collu-

sion attacks based on their increasing colluding capabilities:

• Pairwise collusion: this collusion (in Fig. 4(a)) empha-

sizes the collusion by two neighboring attackers.

• Collusion attack with honest common neighbors:
this collusion (in Fig. 4(b)) involves more neighbors of two

pairwise attackers as their collusion companions, but every

pair of nodes has at least one honest common neighbor.

• Collusion attack without honest common neighbor: this

collusion (in Fig. 4(c)) involves all the common neighbors of

two pairwise attackers as their collusion companions.

• Neighborhood Collusion: If all the neighbors of an

attacker are also malicious attackers, they form a neighborhood

collusion (in Fig. 4(d)).

We show that the hash-based computation verification

scheme is able to deal with the former two types of collusion

attacks, but not the latter two. In cases that pairwise attackers

exist (including Fig. 4(a) and Fig. 4(b)), a malicious neighbor

node can cover up the forgery of the central node. However,

inconsistency will still be discovered by a honest common

neighbor of these colluding nodes, because the honest neighbor

overhears colluding attacker’s input state value.

However, when there exists collusion attackers without

honest common neighbor (Fig. 4(c)), one node can arbitrarily

deviate its malicious neighbor’s states without being detected.

Note that neighborhood collusion in Fig. 4(d) cannot be

addressed by distributed computation verification schemes.

The central attacker in the colluded neighborhood is regarded

as a hidden attacker, whose malicious behavior is most difficult

to detect, because none of its neighbors is honest to follow the

verification mechanism. Thus, the misbehavior of a hidden

node will continue and eventually, the entire network will be

inevitably controlled by the hidden attacker.

D. Cost evaluation of hash-based computation verification
approach

Finally, we evaluate the efficiency of our proposed hash-

based computation verification scheme through its computa-

tional and communication costs. We skip the discussion of

the overhead for authenticated broadcast. We measure the

computational cost by the number of hash operations at one

node in each iteration, while assessing the communication

9

(a) Pairwise collusion attack (b) Collusion attack with honest com-
mon neighbors

(c) Collusion attack without honest
common neighbor

(d) Neighborhood collusion attack

Fig. 4: Different collusion styles (solid points represent attackers, hollow points represent honest SUs)

TABLE II: Costs of Hash-based Computation Verification Scheme at
one node for each iteration (N is the number of neighbors, P is the
length of state in bytes, h is the length of hash in bytes.)

Computation O(N + 1)
Communication N(NP +N + h+ 1)
Key Storage N

cost in terms of number of transmitted/received bytes. Another

important metric for computational cost is key storage, which

is defined as number of keys stored by each node. The costs

are listed in Table II, where we estimate both the iteration

number and node ID by one byte. The computational costs of

the hash operation depend on the number of input, which relies

on the number of neighbors. Therefore, the computational cost

of this approach is determined by the number of neighbors.

The table shows that the computational and communication

costs are both acceptable.

VII. CONCLUSION

In this paper, for the first time, we investigated the vulner-

ability and protection of consensus-based spectrum sensing.

We proposed various attacks that can disrupt the consensus

algorithm or stealthily subvert the sensing results, especially

the covert adaptive attacks with learning capability. We also

developed a robust distributed outlier detection scheme with

adaptive local threshold to counter covert adaptive attacks

by exploiting the state convergence property. In addition, a

hash-based computation verification scheme is presented to

effectively defend against colluding attackers. Our simulation

results demonstrated the severe vulnerabilities of distributed

spectrum sensing, and also showed that our protection mech-

anisms are secure, robust, and efficient.

REFERENCES

[1] S. Haykin, “Cognitive radio: brained-empowered wireless communica-
tions,” Selected Areas in Communications, IEEE Journal on, vol. 23,
no. 2, pp. 201–220, 2005.

[2] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for
cognitive radio,” Proceedings of the IEEE, vol. 97, no. 5, pp. 849–877,
May 2009.

[3] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum
sensing in cognitive radio networks: a survey,” Physical Communication,
vol. 4, pp. 40–62, 2011.

[4] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHN: cognitive
radio ad hoc networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810–836,
July 2009.

[5] R. Chen, J.-M. Park, and J. H. Reed, “Defense against primary user
emulation attacks in cognitive radio networks,” Selected Areas in Com-
munications, IEEE Journal on, vol. 26, no. 1, pp. 25–37, 2008.

[6] R. Chen, J.-M. Park, and B. Kaigui, “Robust distributed spectrum
sensing in cognitive radio networks,” in INFOCOM 2008, IEEE, April
2008, pp. 1876–1884.

[7] O. Fatemieh, R. Chandra, and C. A. Gunter, “Secure collaborative
sensing for crowdsourcing spectrum data in white space networks,”
in New Frontiers in Dynamic Spectrum, 2010. (DySPAN ’2010) IEEE
Symposium on, April 2010, pp. 1–12.

[8] A. W. Min, K.-H. Kim, and K. G. Shin, “Robust cooperative sensing
via state estimation in cognitive radio networks,” in New Frontiers in
Dynamic Spectrum, 2011. (DySPAN ’2011) IEEE Symposium on, 2011.

[9] Z. Li, F. R. Yu, and M. Huang, “A distributed consensus-based coopera-
tive spectrum-sensing scheme in cognitive radios,” Vehicular Technology,
IEEE Transactions on, vol. 59, no. 1, pp. 383–393, 2010.

[10] F. R. Yu, M. Huang, and H. Tang, “Biologically inspired consensus-
based spectrum sensing in mobile ad hoc networks with cognitive
radios,” Network, IEEE, vol. 24, no. 3, pp. 26–30, May 2010.

[11] J. L. Burbank, “Security in cognitive radio networks: the required
evolution in approaches to wireless network security,” in Cognitive Radio
Oriented Wireless Networks and Communications, 2008. CrownCom
2008. 3rd International Conference on, May 2008, pp. 1–7.

[12] H. Li and Z. Han, “Catch me if you can: an abnomality detection ap-
proach for collaborative spectrum sensing in cognitive radio networks,”
Wireless Communications, IEEE Transactions on, vol. 9, no. 11, pp.
3554–3565, 2010.

[13] O. Fatemieh, A. Farhadi, R. Chandra, and C. A. Gunter, “Using classifi-
cation to protect the integrity of spectrum measurements in white space
networks,” in Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS ’11), February 2011.

[14] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in CCS ’06 Proceedings of the 13th
ACM conference on Computer and communications security, October
2006.

[15] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[16] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[17] R. Tandra, S. M. Mishra, and A. Sahai, “What is a spectrum hole and
what does it take to recognize one?” Proceedings of the IEEE, vol. 97,
no. 5, pp. 824–848, May 2009.

[18] V. Yadav and M. V. Salapaka, “Distributed protocol for determining
when averaging consensus is reached,” in Proceedings of 2007 Allerton
Conference on Communication, Control, and Computing, 2007.

[19] F. Mosteller and J. W. Tukey, Data analysis and regression: A second
course in statistics. Addison-Wesley Publishing Company, 1977.

[20] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. E. Culler, “SPINS:
Security protocols for sensor networks,” Wireless Networks, vol. 8, pp.
521–534, 2002.

[21] I. Khalil, S. Bagchi, and N. B. Shroff, “LITEWORP: a lightweight
countermeasure for the wormhole attack in multihop wireless networks,”
in DSN 2005, Dependable Systems and Networks, 2005.

