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Abstract

Capacity scaling laws offer fundamental understandinghenttend of user throughput behavior when the
network size increases. Since the seminal work of Gupta amdaf, there have been active research efforts
in developing capacity scaling laws for ad hoc networks undeious advanced physical layer technologies.
These efforts led to different custom-designed solutiorsst of which were intellectually challenging and lacked
universal properties that can be extended to address gdaiirs of ad hoc networks with other physical layer
technologies. In this paper, we present a set of simple yeegdal general criteria that one can apply to quickly
determine the capacity scaling laws for various physigaidechnologies under the protocol model. We prove
the correctness of our proposed criteria and demonstraiteusage through a number of case studies, such as ad
hoc networks with directional antenna, MIMO, multi-chahmeulti-radio, cognitive radio, and multiple packet
reception. These simple criteria will serve as powerfullsdo networking researchers to obtain throughput
scaling laws of ad hoc networks under different physicagtagchnologies, particularly those to be developed in

the future.
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1 Introduction

Capacity scaling laws refer to how a user’s throughput scasethe network size increases to infiritguch scaling

law results, expressed @(-), ©(-), and©(-) as a function of. (wheren is the number of nodes in the network and

*Please direct all correspondence to Prof. Tom Hou, Deptleaftical and Computer Engineering, Virginia Tech, Blduksg, VA 24061,
USA. Email: thou@vt.edu, URL: http://www.ece.vt.eduftiho
1When there is no ambiguity, we use the terms “asymptoticaiggand “capacity scaling law” interchangeably throughthis paper.



approaches infinity), offer fundamental understandinghanttend of user throughput behavior when the network
size increases.

Since the seminal results of Gupta and Kumar (“G&K” for shom capacity scaling law of ad hoc networks
with classical single omnidirectional antenna [4], theas been a flourish of research efforts on exploring capacity
scaling laws for ad hoc networks under various physicalrlagehnologies. These include directional antennas
[11, 20], MIMO [7], multi-channel multi-radio (MC-MR) [8]cognitive radios [5, 6, 14, 21], and multiple packet
reception (MPR) [12], among others. For each of these adhpbysical layer technologies, a custom-designed
analytical approach was employed to develop its capaciljrgclaw. Each of these solutions is usually intellectuall
challenging and lacks universal properties that can bendetbto address scaling laws of ad hoc networks with other

physical layer technologies.

A fundamental question we ask in this paper is the followimgtead of custom-designing a sophisticated an-
alytical approach for each physical layer technology, can we devise a set of simple yet universal rules (or general
criteria) that one can easily apply to quickly determine the capacity scaling law for various physical layer technolo-
gies? Should such unified rules/criteria exist, then they wilkofa set of powerful tools to networking researchers to
understand throughput scaling behavior of ad hoc netwankieiuvarious physical layer technologies, particularly
those new technologies that will appear in the future.

The main contribution of this paper is the development ofpdencriteria for establishing capacity upper bounds
under the protocol model for ad hoc networks under varioysiphl layer technologies. The following is a summary

of our contributions.
e We conceive a novel “interference square” concept thatldsvia normalized x 1 network area into small
interference squares, each with side IengﬂﬁAf{?n)}, wherer(n) is the transmission range am is a
parameter to set the interference range under the protamin\We offer some unique interference properties

regarding transmissions inside each interference square.

e Based on the new interference square concept, we developitmme yet powerful scaling order criteria to
determine the asymptotic capacity upper bounds for vanysical layer technologies. Either criterion is
sufficient to give a capacity upper bound for a given phydagér technology, and the choice to use which
criterion is purely a matter of convenience and only depemdthe underlying problem. We also prove the

correctness of applying these criteria to obtain capagifyen bounds.

e To demonstrate the usage of our criteria, we study asyrneptaipacity of ad hoc networks under various
physical layer technologies, such as directional anteMi&]O, MC-MR, cognitive radio, and MPR. We
show that by applying our simple criteria, one can easilaimbtapacity upper bounds under these physical
layer technologies, which are consistent to those resultsd literature that were developed under custom-

designed analytical approaches. Note that our criteriaonlyt can recover those results already reported in
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literature, but can also determine the upper bounds of adhéveorks with certain physical layer technology
that has not been studied before, and ad hoc networks wittphgsical layer technologies that will appear in

the future.

The only limitation of our simple criteria is that it is desigd to derive capacity upper bounds. For capacity
lower bounds, we argue that a set of simple criteria do notapf exist, and we give rational on why this is the

case in Section 10.

The remainder of this paper is organized as follows. In 8a@j we take a closer look at G&K'’s approach (for
ad hoc networks with classical single omnidirectional ants) and understand why it falls short as an universal
approach for various physical layer technologies. Subsmty in Section 3, we propose a novel interference
square concept and based on this concept, in Section 4, wenprevo simple yet powerful scaling order criteria,
which can be used to quickly derive capacity upper boundsdoous physical layer technologies. To demonstrate
our criteria, in Sections 5 to 9, we apply our simple critédaad hoc networks based on different physical layer
technologies such as directional antenna, MIMO, MC-MR nitbge radio, and MPR. We show that one can easily
obtain capacity upper bounds for these networks, which ansistent to those reported in the literature under
custom-designed analysis. Section 10 offers some dismsssif our work and Section 11 concludes this paper.

Table 1 lists notation used in this paper.

2 Lesson Learned From G& K's Approach

In this section, we take a close look at G&K'’s approach iniah capacity scaling law and try to understand why
such an approach poses a barrier in analyzing capacityngdalivs when advanced physical layer technologies are

employed.

2.1 Background

In G&K'’s work [4], they considered an ad hoc network witmodes that are randomly located within a unit square
area. Each node in the network is a source node and trangsnitata to a randomly chosen destination node. A
node’s transmission is limited by its transmission rangéeWthe distance between a source node and its destination
node is large, multi-hop routing is needed to relay the dEite. per-node throughpui(n) is defined as the data rate
that can be sent from each source to its destination. A dypsealing law attempts to characterize the maximum
per-node throughput(n) when the number of nodesgoes to infinity.

In [4], two interference models, the protocol model and thgsical model, were considered in their study. In
this study, we focus on the protocol model and leave the phalsiodel for future research. In the protocol model

[4], each transmitting node is associated with a transpnissinger(n), and an interference range + A)r(n),



Table 1: Notation.

General notation

d;j Distance between nodésndj
D Average distance between all source-destination pairs
frx(n) | An upper bound for the maximum number of successful trarsams whose receivers are in the
same interference square
fix(n) | An upper bound for the maximum number of successful trarsaoris whose transmitters are in
the same interference square
n The number of nodes in the network
N The set of nodes in the network
w The data rate of a successful transmission in a channel
r(n) | The (common) transmission range of all nodes under the gubtoodel
Rx(1) | Receiver of linkl
Tx(1) | Transmitter of linkl
A A parameter to set interference range in the protocol model
A(n) | Per-node throughput of a random network withodes
Ad hoc network with directional antennas
S An interference square in the unit area
Ag Area of S
Ng Number of nodes iy
MIMO ad hoc networ k
7 The set of links that are interfered by link
9 The set of links that are interfering lirik
z Number of data streams on lirik
@ Number of antennas at each node
II(-) | The mapping between a node and its order in the node list
MC-MR network
c The number of channels in the network
m The number of radio interfaces at each node
CR ad hoc network
B; The set of available bands at node
Bi; | The set of available bands on lirtk ;)
M = |Ui-, Bi|, i.e., the number of distinct frequency bands in the network
Ad hoc network with MPR
51 Number of simultaneous packets from intended transmitiese transmission range covers a rece
5o Number of unintended transmitters that produce interfaram the same receiver
15} A constant representing the total available resource ateaver

ver



Figure 1: Overlapping of two circular footprints of two régag nodes.

where A is a constant. To guarantee the connectivity of the netwwansmission range(n) must satisfy the

following condition (regardless of the underlying physieger technology) [3]:

Inn

r(n) >4/ —. )

n

When node transmits to nodg, the necessary and sufficient conditions for a successfastnission are

e nodej is within the transmission range of nodd.e., d;; < r(n), whered;; is the distance between nodes

andj, and
¢ nodej is outside the interference range of any other transmitiodgk, i.e.,dy; > (1 + A)r(n), k # .

In [4], when the transmission from a node to another node dsessful, then the achieved data rate for this trans-

mission is assumed to be a constlnt

2.2 G&K’sApproach and ItsLimitation

A key component in G&K’s approach in deriving capacity uppeund is to calculate how much footprint area each
successful transmission occupies. Then by dividing the square area by this area, they were able to obtain an
upper bound of the maximum number of successful transnmissad a time and subsequently to derive a capacity

upper bound. Specifically, in [4], G&K showed that for sugfakreception at each receiver, one can draw a circle

around each receiver with radi€§2(i) and these circles must be disjoint. This result can be prbyembntradiction.

That is, suppose two two circles centered at receiyeasd k with radiusA’"T(”) are not disjoint (see Fig. 1), then

d;ji < Ar(n). Suppose receiver is receiving data from transmittér Then we havel;; < r(n). Based on the
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Figure 2: The unit square is divided into equal-sized smallases. Each small square has a side length of

/[ 5551

triangle inequality, we havé;, < d;; + d;, < (1 + A)r(n), which means that receivéris within the interference
range ofi. But this contradicts with the fact that receiving nddeust fall out of the interference range of nade

2
Under the above approach, a successful transmission wilipyca footprint area af [ATT(”)] . Then the maximum

number of successful transmissions within the unit squera & at mosl/[w(mT(”))z] at any time. Based on this

result, G&K derived a capacity upper bound.

The essence of the above footprint area approach is tofidéindi size of the circular area that each successful
transmission will occupy. But this approach poses a baniem we encounter advanced physical layer technologies
(e.g., MIMO, directional antennas) beyond single omnitticmal antenna node considered in [4]. This is because
under these advanced physical layer technologies, thdardace relationships among the nodes are much more
complicated than that under the single omnidirectionag¢mmh scenario in [4]. As a result, the footprint area of each
successful receiver doest have to be disjoint. For example, in a MIMO ad hoc network weteach node employs
multiple transmit/receive antennas, receiving néde Fig. 1 may use its degree-of-freedoms (DoFs) to cancel the
interference from transmitting nod¢1, 15]. As aresult, G&K’s approach of associating disjdottprint area with

each successful transmission falls apart here.
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Figure 3: A set of transmissions whose receivers are in the saterference square.

3 A New Approach

Given that the footprint area approach in [4] is not capalflbamdling more complex interference relationships
(brought by advanced physical layer technologies), we @ggem new approach that handles interference from a
different perspectivelnstead of focusing on how much footprint area each successful transmission occupies, we

will calculate how many successful transmissions that a given small area in the network can support. Specifically,

we divide the unit square into small equal-sized squareg @iwith the side length of each small square being

1/[A§{§n)}. We call each small square amterference square. As we shall show in Section 4, if one can find the

maximum number of successful transmissions in each imeerée square (under a specific physical layer technol-
ogy), then we can derive the capacity upper bound for theeesnétwork. Subsequently, in Sections 5 to 9, we show
how to find the maximum number of successful transmissioreaah interference square under different physical

layer technologies, thus deriving capacity upper bouneémh of these technologies.

Before we show how this new interference square approactoffansimple scaling law criteria, we discuss

some important properties associated with such small eques follows.

Property 1 For a set of successful simultaneous transmissions whose receivers fall in the same interference square,
the receiver of any such transmission must be within the interference range of any other transmitter from the same

set of transmissions.

Proof Note that the distance between any two receivers in the satadarence square is at moge - ATT(Q”) =

A -r(n). Denote TX!) and RX!) the transmitter and receiver of transmissiprespectively. Referring to Fig. 3, for

any two transmissionsand#k with their receivers R{) and Rxk) in the interference square, we hayg) qx) <

A - r(n). Sincedr ) ry < r(n) (recall thatr(n) is transmission range) based on the triangle inequalityhave



(1) mx(k) < drul) rek) T ey re) < (1 + A)r(n). Similarly, we can prove that the receiver Rxof transmission

lis also in the interference range of transmittef A)xof transmissiork. O

Similar to Property 1 (which considers receivers in the sartexference square), we can consider transmitters

in the same interference square and have the following prope

Property 2 For a set of successful simultaneous transmissions whose transmitters reside in the same interference
square, the receiver of any such transmission must be within the interference range of any other transmitter from the

same set of transmissions.

The proof of Property 2 is similar to that of Property 1 andnistted.

Properties 1 and 2 show us two complementary ways on how ésagsterference relationship when consider-
ing either receivers or transmitters in the same interferesguare. It turns out that these two properties allow us to
calculate the number of successful transmissions witleettieir receivers or transmitters in the same interference
square under various physical layer technologies. For plgmnder the single omnidirectional antenna setting in
Section 2.1, we can easily conclude that there can be at mesadive receiver (or transmitter) in an interference
square for a successful transmission and the maximum nuohlseiccessful transmissions with either receivers or
transmitters in the same interference square is one. Abanexample, for MIMO ad hoc network where each node
is equipped with multiple transmit/receiver antennaspBrties 1 and 2 allow us to show that the maximum number
of successful transmissions whose receivers (or traremsiitin the same interference square is upper bounded by
the number of antennas at each node (see details in Sectidsye shall show in the next section (Theorems 1
and 2), the maximum number of successful transmissions eviexeivers (or transmitters) are in the same inter-
ference square will determine the capacity scaling law adidihoc network under various advanced physical layer

technologies.

4 Main Results: Simple Scaling Order Criteria

As we shall show in Sections 5 to 9, for a specific physicallagehnology, the newly defined interference square
and Properties 1 and 2 enable us to characterize the maximombar of successful transmissions whose receivers
(or transmitters) are in the same interference square. Bpedafic physical layer technology, dengtg(n) as an
upper bound for the maximum number of successful transamissivhose receivers are in the same interference
square. Similarly, denotg«(n) as an upper bound for the maximum number of successful tiasems whose
transmitters are in the same interference square. In thi®eewe show that once we hayg(n) or fx(n), we

can quickly determine a capacity scaling order based omretihe of two simple scaling order criteria. Figure 4

summarizes the idea of the above discussion.
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Figure 4. A flowchart illustrating our approach to derive acipy scaling law for a specific physical layer technology.

The two criteria that we present in this section (Theoremd 2nshow that the capacity upper bound scales

asymptotically with eithe ;:((:)) or (™) \we formally state these results as follows.

nr(n)

Theorem 1 (Criterion 1) For agiven fx(n), the asymptotic capacity of a random ad hoc network is
_ frx(n)
A(n) =0 (nr(n)

almost surely whenn — oco. Inthe special case when fr((n) isaconstant, then A\(n) = O(1/vnInn) almost surely

whenn — oo.

The proof of Theorem 1 is given in the appendix. Similarlywé can findf:x(n), then the following criterion

can also give an upper bound for the asymptotic capacity.

Theorem 2 (Criterion 2) For agiven fx(n), the asymptotic capacity of a random ad hoc network is
A fx(n)
Aln) =0 <nr(n)

almost surely whenn — oco. Inthe special case when fr(n) isa constant, then A\(n) = O(1/v/nInn) almost surely

whenn — oo.

The proof of Theorem 2 is similar to that of Theorem 1 and isttedito conserve space.



Several remarks about the above two criteria are in ordest, For a specific physical layer technology, we only
need to focus on the calculation of eithik(n) or frx(n), whichever is more convenient. An asymptotic capacity
will follow once we have eithelfx(n) or fx(n), based on either Theorem 1 or Theorem 2. Second, when either
fax(n) or fix(n) is a constant, then the asymptotic capacity upper bou{ igv/nInn), which is precisely the
same as that in [4] by G&K for the protocol model. This offerguack test on whether the underlying physical
layer technology will indeed change the scaling order ofacép upper bound comparing to the classical single
omnidirectional antenna based ad hoc network in [4]. Hmalie two criteria allow us to focus on calculation
(fax(n) or fix(n)) only within a small interference square. The details assed with network-wide multi-hop
end-to-end throughput have been folded in the proof of tleethg@orems and are no longer of concerns to users of

these two theorems in deriving asymptotic capacity uppantidor a given physical layer technology.

Example 1 As the first application of our scaling order criterion, $etalidate the classical single omnidirectional

antenna based ad hoc network considered in [4]. As discussBdction 3, we have thaky(n) = 1. Thus, by

Theorem 1, we havg(n) = O(1/vnlnn), which is precisely the same result in [4] by G&K. O

In the remaining several sections, we will explore capastgling laws for ad hoc networks under various
physical layer technologies. Referring to Fig. 4, for eaabe; we will first calculatgry(n) or fx(n), whichever is
more convenient, based on the new interference square apdres 1 and 2. This is the upper righthand block in
Fig. 4. Once we havégqx(n) or fc(n), then we will apply one of the two criteria in this section taiekly obtain

the capacity scaling law for this physical layer technol@iggttom block in Fig. 4).

5 Case Study |I: Ad Hoc Networ ks with Directional Antennas

Compared to omnidirectional antenna, directional anteraracontrol its beam width and concentrate its beam
toward its intended destination. Since nodes outside thenkbie not interfered, greater spatial reuse inside the
network can be achieved. In this section, we apply our aitier Section 4 to explore asymptotic capacity of a
random ad hoc network with each node being equipped witheztitinal antenna. We follow the same model as in
[11] by Peraki and ServettoThe scaling law results in [11] are well known and widely dit&hey showed that for
single-beam model, the asymptotic capacity scales @gn)) and for multi-beam model, it scales @s(nr3(n)).

The analysis approach in [11] was custom-designed andeliffrlom that by G&K. In this section, we show that
by applying our criteria in Section 4, we can quickly obtdia same results for asymptotic capacity upper bound in
[11].

2Another major work on scaling law for directional antenr&§20] by Yi et al., which employed a slightly different model and thus led
to a different set of results. The approach in [20] followhd same token as that in [4] by G&K. It can be shown that ouegétcan be
easily applied there and we leave the details to readers aseacise.
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We organize this section as follows. First, we consider #sedor the single-beam model. Then, we consider

the multi-beam model.

5.1 Scaling Law Analysisfor Single Beam Model

5.1.1 SingleBeam Modédl

In [11], single beam model refers that a transmitter can ggaat most one directional beam to an intended receiver,

although a receiver can receive multiple directed beanms tifferent nodes.

5.1.2 Calculating frx(n)

In this case study, we choose to calculfitg(n), which is more convenient thafax(n). As discussed in Section 4,
the choice of calculating«(n) or fxx(n) is solely based on convenience and either one is sufficietiétermine
asymptotic capacity.

Recall thatf.x(n) is an upper bound for the maximum number of successful tressgons whose transmitters
are in the same interference square. In the case of single-lbeodel,f;«(n) corresponds to an upper bound for
the maximum number of successful beam transmission whassnhitters are in the same interference square. To

calculatefrx(n), we need the following lemma.
Lemma 1 The number of nodesin the same interference square is © (nr?(n)) almost surely when n — oo.

Proof DenoteS an interference square within the unit area. Denbieand Ng the area and the number of nodes in
S, respectively. Since nodes fhare randomly distributed, we have the average number ofsiodeis F(Ng) =

nAg. For the number of nodes i, we have the following probabilities (also known as Chefrboiinds) [10].

nA
e Foranyd >0, P{Ng > (14 d)ndg} < [ﬁ] s

e Foranyd < § <1, P{Ng < (1 — )ndg} < e~ 2m4s%,
Combining the above two inequalities, for alhy § < 1, we have
P{|Ng —nAg| > énAs}
=P{Ng > (1+06)nAs}+ P{Ns < (1 —-0)nAg}

el nds 1 2
< |:(1 — 5)14_5] + 6_5”A55

:e—elnAs + e—@gnAs

; 2
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wheref; = (1+6)In(1 +6) — & andd, = 62,

Note thatds = { é T = O(r%(n)). Letting As = O(r%(n)) in (2), we have
A-r(n)

P{|Ng —nAg| > dnAg} < e~0mOU(m) 4 ¢=02n0(*(n)) (3)

Based on (1), we havgn) = Q(4/ lnT”). Thus, the right-hand-side of (3) goes to zero wher oo, which shows

that the probability that the deviation of the number of rooteS from the mean by more than a constant factor of

the mean is zero whem — co. Based on the definition @(-), we haveNgs = ©(nr?(n)). O

Based on Lemma 1, we have the following lemmayfgi(n).

Lemma 2 For a random ad hoc network under single-beam directiortahan, we havey (n) = ©(nr?(n)).

Proof By Lemma 1, there ar®(nr?(n)) nodes in the interference square. Since each node can ardyage one
beam, the total number of successful beam transmissiorexyaged by the transmitters in this interference square

cannot excee® (nr?(n)), i.e., fix(n) = O(nr?(n)). O

5.1.3 ScalingLaw

Following Fig. 4, withf.(n) = ©(nr?(n)), we can now apply Theorem 2 and quickly obtain the followiagaity
scaling law.

Proposition 1 For a random ad hoc network under single-beam directional antenna, we have A\(n) = O (r(n))

almost surely when n — oo.

Proof Combining Lemma 2 and Theorem 2, we haye) = O (fTX—(")) =0 (nr2(n) p— ) =0(r(n). 0O

nr(n)

Note that this result for single-beam case is the same amtfit].

5.2 Scaling Law Analysisfor the Multi-Beam M odel
521 Multi-Beam Model

In [11], multi-beam model refers that a transmitting node ganerate multiple beams to different receiving nodes at
the same time. On the other hand, a receiving node can ordjveecne beam from the same transmitting node but
may receive multiple beams from different transmitting emdwe follow the same model in [11] for the multi-beam

case.
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Figure 5: The larger square contains all the transmitteasdan transmit directional beams to the receivers that are
in the small interference square at the center.

522 Calculating frx(n)

We will calculatefqx(n).2 Recall thatfzy(n) is an upper bound of the maximum number of successful trassonis
whose receivers are in the same interference square. Iratieeaf multi-beam modelfzx(n) corresponds to an
upper bound of the maximum number of successful beam trasgms received by the receivers that are in the
same interference square.

For receivers residing in the same interference squareedsy to see that their transmitters cannot be outside a

V2
A-r(n)

larger square, with the same center as the interferenceesdud with side length of /| 1+2r(n) (see Fig. 5).

Otherwise, a receiver in the interference square will beidatof a transmitter’s transmission range). For the

number of nodes inside the larger square (regardless afvittiers or receivers), we have the following lemma.

V2
A-r(n)

Lemma 3 The number of nodes in the larger square with side length 2r(n) + { 1 W is©(nr?(n)) almost surely

whenn — oo.

The proof of Lemma 3 is similar to the proof of Lemma 1 and isttedi here. Now, we are ready to calculate

frx(n) as follows.

Lemma4 For arandom ad hoc network under multi-beam directional antenna, we have fu(n) = O(n?rt(n)).

3The level of difficulty in calculatingfrx (n) is the same agrx (n) for the multi-beam model. Either choice will lead to the saneult.
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Proof Based on Lemma 3, we know that the number of transmittersciratransmit beams to the same receiver
in the interference square is at m@gtnr2(n)). That is, a receiver in the interference square can receinoat
O(nr?(n)) beams. By Lemma 1, there are at m&sghr?(n)) receivers in the same interference square. So we have

frax(n) = ©(nr?(n)) - O(nr®(n)) = O(n?ri(n)). .

5.2.3 ScalingLaw

Following Fig. 4, with fxx(n) = O(n?r*(n)), we can now apply Theorem 1 and quickly obtain the following

capacity scaling law.

Proposition 2 For a random ad hoc network under multi-beam directional antenna, we have A(n) = O (nr®(n))

almost surely when n — oc.

nr(n)

Proof Combining Lemma 4 and Theorem 1, we ha\@) = O (fRX(")) =0 <n2r4(n) — ) = O (nr(n)).
]

This result is the same as that in [11] for the multi-beam case

6 CaseStudy Il: MIMO Ad Hoc Networks

6.1 MIMO Model

By employing multiple antennas at both transmitting aneérgong nodes, MIMO has brought significant benefits
to wireless communications, such as increased link capgitl6], improved link diversity [23], and interference
cancellation between conflicting links [1, 15]. In this sewt we characterize asymptotic capacity for multi-hop
MIMO ad hoc networks. Although there are many schemes tooéxiile benefits of antenna arrays at a node,
we focus on the two key characteristics of MIM&uatial multiplexing and interference cancellation [1, 15, 22].
Spatial multiplexing refers that a transmitter can sendesdvindependent data streams to its intended receiver
simultaneously on a link. Interference cancellation ietbat by properly exploiting multiple antennas at a node,

potential interference to and/or from other nodes can beedkad.

To model spatial multiplexing and interference canceallatiwe employ recent advance in MIMO link model in
[13] by Shiet al. In this model, degree-of-freedom (DoF) is used to repressuturce at a MIMO node. Simply put,
the number of DoFs at a node is equal to the number of antedeasied ag;, at the node. Denotg the number
of active data streams on linkin a time slot. Denote TX) and RX!) the transmitter and the receiver of lik
respectively. To spatial multipley data streams on link we need to allocate; (z; < «) DoFs at both transmitter

Tx(l) and receiver R¥). To cancel interference from and/or to other nodes in thevordt it is necessary to have
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an ordered list for all nodes and allocate DoFs at each ndteviog this order [13]. DenotédI(-) the mapping
between a node and its order in the node list. Suppose tthat iincarryingz; data streams. Denof& and Q, the
set of links that are interfered by lirlkand the set of links that are interfering libkrespectively. Transmitter Tk
is responsible for cancelling the interference from itsel&ll receivers R ), k € Z;, that are before node T¥ in
the order list. Similarly, receiver RK of link [ is responsible for cancelling the interference from alhsmaitters
Tx(k), k € Qy, that are before node RY in the order list. Since the total number of DoFs for spatialtiplexing
and interference cancellation cannot exceedve have the following two constraints on each active link the

network.

1. DoF constraint at Tot): The number of DoFs that TK can use for spatial multiplexing (for transmission)

and interference cancellation cannot exceed the total ruoftDoFs at node T), i.e.,

TI(Tx(1))>I1(Rx(k))

Z] + Z zp <o (4)

keZ;

2. DoF constraint at RX): The number of DoFs that receiver Rxcan use for spatial multiplexing (for recep-

tion) and interference cancellation cannot exceed thénataber of DoFs at node R¥, i.e.,

TI(rRx(1))>TI(Tx(k))

Z] + Z zp <o )

ke,

We use the following simple example to illustrate DoF altamain a MIMO network.

Example 2 Consider the three-linkk( [, andm) example in Fig. 6(a). The number of antennas at each nodgois a
shown in the figure. Under the above MIMO model, we need anrdacdgetermine the DoF resource usage at each
node. Suppose we are following an order list, say>» d — b — ¢ — e — f among the nodes. Then, the DoF

allocation in this MIMO network works as follows.

We start with node:, which is the first node in the list. Given it is the first in thst,| nodea does not have any
interference with which it needs to be concerned. Since moldas only 1 antenna, it can transmit at most 1 data
stream to its intended receiver The second node on the ordered list is nddeSince it appears in the order list
after nodea, noded needs to suppress the interference fremThis implies that node needs to expend 1 DoF
to cancel the interference from Sinced has 2 antennas, we have tliatan receive at mog — 1 = 1 stream,
i.e., z; < 1. The DoF consumption on nodésandc follows exactly the same token, and it can be verified that
andc can each receive and transmit 1 stream, respectively. 8oaee's transmission should not interfere with the
reception ab andd that had appeared in the order list earlieneeds to expend 2 DoFs for this purpose. At this

point, e can transmit up td — 1 — 1 = 2 streams, i.e.z,, < 2. Finally, along the same line, nogecan receive at
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Figure 6: A three-link network example.

most4 — 1 — 1 = 2 streams, i.ez,,, < 2. Therefore, after the above steps, we can see that the sta@abination
(zr = 1,2 =1, z,, = 2) can be scheduled feasibly on links/, andm. It can be shown that the entire DoF region
(the set of all feasible stream combinations) for the tHirdeexample in Fig. 6(a) can be found by enumerating all
possible choices of the node order list. Each stream coramaffers a feasible point (e.g.1, 1,2)), the union of

which constitutes the DoF region, which we plot in Fig. 6(b). O

6.2 Calculating frx(n)

Based on the MIMO network model, we now calcul#g(n).* Recall thatfxy(n) is an upper bound of the maxi-
mum number of successful transmissions whose receiver tire same interference square. In the case of MIMO,
this corresponds to the maximum number of successful degarst on all active links whose receivers are in the

same interference square.
Lemma5 For arandom MIMO ad hoc network, we have fr(n) = a.

Proof DenoteL the set of active links with their receivers being in the santerference square. Denoté| the
number of links inC, and let = {1,...,|£|}. Our goalis to find an upper bound for the sum of data streams on
these links, i.e.y ;.. 2.

If |£| = 1, i.e., only one active link with its receiver in the intesece square, then < « (since the number

of data streams on this link cannot exceed the number DoFaad@). We can sefkx(n) = « and the lemma holds

“For MIMO, the level of difficulty in calculatingfrx (n) is the same agrx (n) and either approach will yield the same result.
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trivially.

For the general scenario whed| > 2, Property 1 says that thes€| links interfere with each other and
interference cancellation is necessary. Based on the MIM@einwe discussed earlier, we need to follow an
ordered list for the nodes (both transmitters and recei@rshese L| links for DoF allocation at each node. We
have two cases, depending on whether the last node in the distansmitter or a receiver.

Case (i). The last node in the ordered list is a receiver. Without Idggeaerality, denoten as the link of which this
node is the receiver. To hawg, data streams on linka, based on (5), we have the following constraint on receiver
Rx(m).

TI(Re(m)) >TT(Tx(k))

Zm+ Z Zk§a7 (6)

k€EQm

where the sum fory, is taken over all interfering links whose transmitters agéobe receiver Rin) in the node
list. Since linkm is being interfered by all other links ifi in the same interference square, we hayge = £\{m}.
Further, since Rn) is the last node in this list, we hat®&Rx(m)) > II(Tx(k)), for all k € £L\{m}. Therefore,

(6) can be re-written as

Zm + Z 2z < a,
keL\{m}

which is

szgoz.

Thus, we have shown that the sum of data streams that candiee@ by nodes in the interference square over all

links is upper bounded by, i.e., frx(n) = .
Case (ii). The last node in the ordered list is a transmitter. In thi:gcag employ (4) and follow the same token as

the above discussion. We again hgug(n) = «a.

Combining the two cases, we conclude tiigi(n) = a. O

6.3 Scaling Law

Following Fig. 4, with frx(n) = «, we can now apply Theorem 1 and obtain capacity scaling lae @ndom

MIMO ad hoc network as follows.

Proposition 3 For arandom MIMO ad hoc network, we have A(n) = O (\JIW) almost surely when n — oo.

This result is the same as that in [7]. Itis also interestgete that, despite MIMO's ability to increase capacity
in a finite-sized network, the scaling order for its asymiptoapacity remains the same as that for the classical single

omnidirectional antenna network as in [4].
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7 Case Study I11: Multi-Channel and Multi-Radio

7.1 Multi-Channd Multi-Radio M odél

Multi-channel multi-radio (MC-MR) refers that there are ltijple channels in the network and there are multiple
radio interfaces at each node in the network [8, 9]. By equogpeach node with multiple radio interfaces, each
node has more flexibility in accessing the multiple chanielte network. Following [8], we assume that there
arec channels in the network and each node in the network is egdipfithm radio interfaces, whereandm are

constants, and < m < c¢. A radio interface is capable of transmitting or receiviragadon only one channel at any

given time, i.e., half-duplex.

7.2 Calculating fax(n)

Based on the MC-MR model, we now calculafg(n).> Assuming each band has the same bandwidth in the
MC-MR network, thenfzx(n) corresponds to the maximum number of successful transmissiver all available

channels on all radio interfaces whose receivers are indime snterference square. We have the following lemma.
Lemma6 For arandom MC-MR network, we have fr(n) = c.

Proof Let’s focus on one channel at a time. Since the links withivecs in the interference square interfere with
each other (Property 1), there can be at most one radio ateanegdiving on this channel. Summing up all such

radios (or successful transmissions) ovehannels, we havgx(n) = c. O

7.3 Scaling Law

Following Fig. 4, with fex(n) = ¢, we can now apply Theorem 1 and obtain capacity scaling laandfiIC-MR ad

hoc network as follows.

Proposition 4 For arandom MC-MR ad hoc network, we have \(n) = O (\/nllm) almost surely when n — oo.

Note that this result is the same as the result in [8] for tise eeghen’ = O(Inn).

8 Case Study I'V: Cognitive Radio Ad Hoc Networks

8.1 Cognitive Radio Network M odel

Cognitive radio (CR) is another new physical layer techgglthat enables more efficient utilization of radio spec-

trum [19]. A CR is able to constantly sense the radio spectadhexplore any available spectrum bands for data

SFor an MC-MR network, the level of difficulty in calculatingx(n) is the same agrx (n) and either approach will yield the same result.
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communication. Consider a random ad hoc network where eadé 13 equipped with a CR. Consider a specific
time instance where each nodsenses a set of available frequency baBigshat it can usé. Note that due to
differences in locations, the set of available frequenayds#; at a node; may not be identical to that of another
node in the network. Denot8;; = B; () B; the set of common bands that are available at both noded;. Then

node: can communicate to nodeon bandm only if m € B;;.

8.2 Calculating frx(n)

Based on the CR network model, we now calculftgn).” Assuming each band has the same bandwidth in the
CR network, thenfzx(n) corresponds to the maximum number of successful transmssiver all available bands
whose receivers are in the same interference square. Défote | J;, B;|, i.e., M is the number of distinct

frequency bands in the network. Then we have the followingnha.
Lemma 7 For arandom CR ad hoc network, we have fx(n) = M.

Proof Consider one band at a time. Within each band, by Propertyellinks with receivers in the interference
square interfere with each other. So the maximum numbertafeainks (or successful transmissions) is at most

one. Summing up all active links (or successful transmisgiover)M bands, we havégx(n) = M. a

8.3 Scaling Law

Following Fig. 4, with fzx(n) = M, we can now apply Theorem 1 and obtain capacity scaling laavrahdom CR

ad hoc network as follows.

Proposition 5 For a random CR ad hoc network, we have A\(n) = O (\/nllm) almost surely when n — oo.

This result is consistent to those found in [5, 14]. It is ietding to see that, despite that CR can utilize spectrum
bands more efficiently (and thus higher capacity for a fisizd network), the scaling order of its asymptotic

capacity remains the same as that for the classical singhedi@ctional antenna network in [4].

9 Case Study V: Ad Hoc Networ ks with M ulti-Packet Reception

Multi-packet reception (MPR) is a conceptual abstractiba physical layer capability that a receiver can correctly
decode multiple packets from different transmitters stamgously [17]. As described in [12], such capability may

be implemented by a variety of advanced physical layer t&olgies, such as multiuser detection [18], directional

5These bands may be those that are currently unused by thargrirsers.
"For a CR network, the level of difficulty in calculatinfx(n) is the same agrx (n) and either approach will yield the same result.
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antennas [11, 20], and MIMO. In other words, MPR refers tocgpéion capability of a node at the physical layer,
rather than referring to a specific physical layer technpldg this section, we employ our criteria in Section 4 to
explore capacity scaling law of MPR-based ad hoc networks.

9.1 TheMPR Model

In the MPR model, a transmitter can transmit packet to only kteiver at a time, but a receiver is capable of
receiving multiple packets simultaneously from multiplenismitters within its transmission range. For unintended
transmissions whose interference range covers a recéieereceiver will consider them as interference. Such
interference may be cancelled by the receiver. Specificallyhe MPR model, we assume a receiver has finite
resource available for multi-packet reception and interiee cancellation. Denots the number of simultaneous
packets from intended transmitters whose transmissiogeranvers the receiver aritd the number of unintended

transmitters that produce interference on the same racéiieehave

51+52§57

wheref is a constant and represents the total available resouecesativer. For example, if MIMO is employed to
implement MPR, then the number of DoFs at a MIMO node may spoed toS.
Note that this MPR model is a generalization of the idealiZd®R model in [12] which assumegg < 8 = oo

andpgs = 0, i.e., a receiver can successfully decode arbitrary nurobgimultaneous packet transmissions and no

interference is allowed on the receiver.

9.2 Calculating frx(n)

We choose to calculaté:«(n), which is more convenient than calculatifigi(n). Recall thatfzx(n) is an upper
bound of the maximum number of successful transmissions&heceivers are in the same interference square. In
the case of MPR ad hoc networkfx(n) corresponds to an upper bound of the maximum number of pathat
are successfully received simultaneously by all the reesiin the same interference square. We have the following

lemma for fex(n).
Lemma 8 For arandom MPR ad hoc network, we have fx(n) = S.

Proof Denote £ the set of successful links with their receivers residinghi@ same interference square. By a
“successful” link, we mean the receiver of this link can sssfully decode the packet on this link. Denpf¢the
number of links inC, and letC = {1,...,|L|}. Then fex(n) is an upper bound diZ|.

Note that for two successful links, their transmitters daffeknt but their receivers may be the same. Consider

one receivey in the interference square. From receiysrperspective, we divid€ into two subsetsZ; — the set
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Table 2: Summary of capacity scaling laws obtained via aup criteria for different physical layer technologies.
“—" sign indicates new result not yet available in the litere.

| Physical Layer Technology | fax(n) or fix(n) | Upper Bound | Reference]

o | Single beam| fx(n) =6 (nrs(n O(r(n [11]
Directional antenng— o Xgng — Oinzrg(n))) E ( )() ) ]
MIMO frx(n) = « O(1/v/nInn) [7]
MC-MR frx(n) = ¢ O(1/v/nInn) [8]

CR fax(n) =M O(1/v/nInn) | [5, 14]
MPR Idealized fax(n) = O(nr?(n)) | O(r(n)) [12]
General Jax(n) = O(1/v/nInn) —

of links whose receivers arg and£; — the set of links whose receivers are rioBased on Property 1, we know
that the transmitters of the links in subg&t are all in the interference range of receiyelSince packets o, are

successfully received hj; then based on the MPR model, we have
L] =[La| +|Lo| =B1+ P2 <B.

Therefore, we havgqy(n) = 3. O

9.3 Scaling Law

Following Fig. 4, with fzx(n) = /3, we can now apply Theorem 1 and directly obtain the follongagacity scaling
law for an MPR-based ad hoc network.

Proposition 6 For a random MPR ad hoc network, we have A(n) = O (1/\/nlnn) almost surely when n — oo.

Remark 1 For the idealized MPR model described in [12], whére< 8 = oo and 3, = 0, one can still apply our

simple scaling order criteria. In particular, it can be shahat for this idealized MPR modefgzy(n) = O(nr?(n))

(see the appendix for details). By Theorem 1, we heve) = O (fRX(")) =0 <nr2(n) : L)) = O (r(n)). This

nr(n) nr(n

is exactly the result developed in [12]. O

10 Discussions

Summary of Results. Table 2 summarizes capacity scaling laws (upper bounds)whaxplored in Sections 5
to 9 by applying our simple scaling order criteria. Theseardmunds are the same as those studied in previous
work (last column in Table 2), which were developed by vasioustom-designed approaches. For the MPR general

model, there is no prior result available in the literature.
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Limitation. Although Table 2 demonstrates the potential capabilityusfsimple scaling order criteria, we caution
that the success of our simple criteria hinges upon our ss@decalculation offzx(n) or frx(n). For other physical
layer technologies, there is no guarantee that one can slvedgulatefz(n) or fix(n) as we have done in this paper.
Further, one needs to calculafg(n) or fix(n) as tight as possible since loogg(n) or fix(n) (e.g., infinity) will
yield trivial upper bounds. But one thing that we can guaaris that should one be able to fifig(n) or fix(n)
for the underlying physical layer technology, then she silg apply our simple scaling order criteria to quickly

obtain asymptotic upper bound.

Lower Bounds. Note that so far the simple scaling order criteria that weetigped in Section 4 can only offer
asymptotic capacity upper bounds for different physicgétaechnologies. A natural question to ask is whether
one can develop a set of simple criteria to quickly obtaimgstptic capacity lower bounds for any physical layer
technologies. Our efforts to this question have not beeitfdiu The main difficulty in deriving a capacity lower
bound for a specific physical layer technology is to finfikasible solution, which includes resource allocation at
physical layer, scheduling at MAC layer, and routing at reetwlayer. A feasible solution to variables at all these
layers is much harder to obtain than just developing inétyuadlationships that are needed to derive asymptotic
upper bounds. Given such feasible solution is hard to optanether or not it is possible to develop a unifying

approach that yields a set of simple criteria for asymptodigacity lower bounds remains an open problem.

Despite the absence of a simple criteria for the lower bowvdsmay usé(1/v/n1nn) (capacity lower bound
for single omnidirectional antenna ad hoc networks by G&RK B a lower bound in many cases. This is be-
cause single omnidirectional antenna can usually be cergidas a special case of these advanced physical layer
technologies. In particular, for MIMO, MC-MR, CR, MPR geakmodel in Table 2, we have lower bounds of
Q(1/v/nInn) and upper bounds @(1/v/n1Inn). In these cases, since the upper bound and lower bound have th
same scaling order, we conclude thé&b) = ©(1/v/nInn) for these advanced physical layer technologies. In other
cases wher@(1/v/n1nn) may appear loose (e.g., single beam and multi-beam diredtemtenna, idealized MPR),
one would need to develop a tighter lower bound by exploitirgunique properties of the underlying physical layer

technology.

11 Conclusions

In this paper, we presented a set of simple yet powerful géngteria that one can easily apply to quickly determine
the capacity scaling laws for ad hoc networks under the pobtmodel for various physical layer technologies. Such
approach offers a unifying methodology to determine cdapacialing law, which is in contrast to traditional custom-
designed approaches. We proved the correctness of ourggpmiteria and demonstrate their usage through
a number of case studies, such as ad hoc networks with dinettantenna, MIMO, MC-MR, cognitive radio,

and multiple packet reception. These simple criteria offeyet of powerful tools to networking researchers to
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understand throughput scaling behavior of ad hoc netwankledifferent physical layer technologies, particularly

new technologies that will appear in the future.
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Appendix

Proof of Theorem 1 Recall that we divide the unit square into small interfeeesquares with each having a side
length ofl/(%} (see Fig. 2). Denoté:x(n) an upper bound of the maximum number of successful tranemsss

whose receivers are in the same interference square. Teaotal data rate that each interference square can support
is at mostfrx(n)W. Now, we can compute the maximum data rate that can be segploytthe network in the unit

square by taking the sum of the data rates among all smatfénéeice squares. Since the side length of each small

interference square HS/[A}{?H)L the total number of small interference squares in the ue# ts(Afn)P. So the

maximum data rate that can be supported in the network is alt[rge%Pfo(n)W.

‘r(n

Let D be the average distance between a source node and its tiestinade. Since multi-hop routing is

employed, we have that the average number of hops for eacbesdastination pair is at Iea;sg?). Note that there

aren source-destination pairs. Thus, the required transnmgsite over the entire network is at Ie@%n)\(n).
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Since the maximum data transmission that can be supporti inetwork at a time i$%12fm(n)w, we

have £ynA(n) < [A}{(in)12fo(n)W < (A}{(in) + 1)2 fax(n) W, which gives us

2fo(n)W Qﬁfo(n)W fo(n)WT(n) . fo(n)
Aln) < A2Dnr(n) T Tapn T Dn =0 nr(n) ) 0
This proves the first part of Theorem 1.
Now, we show the special case whgn(n) is a constant. In this case, based on (7), we have
A(n) =0 1 (8)
= nr(n))
Note that based on (1), we havgr) > (/22 By substitutingr(n) = /2 into (8), we have
1 1
An)=0| —| =0 —.
() (n hm) <\/nlnn>

O

Calculating frx(n) for idealized MPR model. We obtainfzx(n) as follows.

Lemma9 For arandom ad hoc network under the idealized MPR model, we have fe(n) = ©(nr?(n)).

Proof First, we show that there can be only one receiver (3ag the interference square receiving packets. This
can be shown by contradiction. Suppose there is anotheveeég: #~ j, in the same interference square receiving
packets. Then, based on Property 1, a transmitter to receigewithin the interference range of noge This
transmitter of receivei will bring interference at nodg, which contradicts with3; = 0 under the idealized MPR

model.

Although there is only one receivgmreceiving packets, it may receive packets from multiplegraitters. Note

that all nodes that can transmit to receiyenust fall within the larger square with a side IengthgﬁfA}?n) 1+2r(n)

(see Fig. 5). Based on Lemma 3, we know that the number of dés\nside the larger squaredgnr2(n)). Since
each transmitter transmits one packet to receiara time, the number of simultaneous packets received leywerc
j cannot exceed the number of nodes in the larger square) {:er?(n)). Therefore, we havg(n) = ©(nr?(n)).
O
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