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Abstract

Conserving network-wide energy consumption is becoming anincreasingly important con-
cern for network operators. In this work, we study network-wide energy conservation problem
which we hope will offer insights to both network operators and users. In the first part of this
work, we study how to maximize throughput under a network-wide energy constraint. We
formulate this problem as a mixed-integer nonlinear program (MINLP). We propose a novel
piece-wise linear approximation to transform the nonlinear constraints into linear constraints.
We prove that the solution developed under this approach is near-optimal with guaranteed per-
formance bound. In the second part, we generalize the problem in the first part by exploring
throughput and network-wide energy optimization via a multicriteria optimization framework.
We show that the weakly Pareto-optimal points in the solution can characterize an optimal
throughput-energy curve. We offer some interesting properties of the optimal throughput-
energy curve which are useful to both network operators and end users.
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1 Introduction

With the proliferation of wireless networks, the concern ofenergy consumption is becoming in-

creasingly important for network operators. Conserving network-wide energy consumption not

only can help reducing CO2 emissions and protect the environment, but also can significantly re-

duce the operating cost for network providers. Since energy-related operating cost is directly tied

to network-wideenergy consumption, it is critical to study network optimization problems with an

eye on total network-wide energy consumption.
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In this paper, we study network-wide energy conservation problem in a multi-hop wireless

network which we hope will offer insights to both network operators and end users. Specifically,

in the first part of this work, we will show how to maximize network throughput under a given

network-wide total energy consumption budget. This may correspond to a scenario where a net-

work operator has a budget on total energy consumption. In the second part, we generalize the

problem in the first part by studying how to optimize both network throughput and network-wide

energy consumption through a multicriteria optimization framework. This allows us to characterize

the trend of throughput when the total energy consumption budget changes.

We recognize that there is a wealth of literature on optimizing network throughput with energy

considerations. A major branch of these prior efforts followed various heuristic approaches in

developing physical, link, and network layer schemes and algorithms (see, e.g., [20, 22]). This is

in contrast to our work in this paper, which follows a formal optimization framework with the goal

of offering performance guarantee of the final solution.

Within the branch of related work that followed formal optimization framework in studying

network throughput maximization with energy consideration (see, e.g., [8, 19]), we find that most

of these works only considered per-link power constraint orper-node power constraint. Although

these constraints are important to characterize local energy consumption, it is not clear how to

extend results for local link/node energy conservation tonetwork-wideenergy conservation, due

to the complex inter-dependencies among the layers. Therefore, these prior results cannot directly

benefit network operators, who are more concerned with totalnetwork-wide energy consumption.

Our work is complementary to a branch of previous work that addressed how to minimize

network-wide energy consumption while satisfying some traffic demands (see, e.g., [14, 17]).

These works are orthogonal to the problem that we shall studyin the first part of this paper. It

will soon be clear that our mathematical formulation and proposed solution differ from all these

seemingly similar efforts. Further, in the second part of this paper, we consider joint optimization

of throughput and network-wide energy, which explores the domain of multi-criteria optimization

that is not well studied in the wireless networking community. In our recent work in [11], we ex-

plored multicriteria optimization of network energy and throughput. However, power control was

not considered in [11]. In this work, we shall consider powercontrol at each node, which is more
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interesting.

The main contributions of this paper are the following:

• First, we study how to maximize network throughput under a total network-wide energy

consumption constraint. We show that this problem involvesboth network and physical layer

variables and can be formulated as a mixed-integer nonlinear program (MINLP). To solve

this problem efficiently, we propose a novel piece-wise linear approximation to transform

the nonlinear constraints into linear constraints. We prove that the solution developed under

this linear approximation is near-optimal in the sense thatthe performance gap between our

solution and the optimal solution (despite unknown) can be made arbitrary narrow depending

on required accuracy.

• Second, we generalize the problem in the first part by exploring joint optimization of both

network throughput and network energy consumption via a multicriteria optimization frame-

work, i.e.,maximizingnetwork throughput whileminimizingnetwork-wide energy consump-

tion. We find that all the weakly Pareto-optimal points characterize an optimal throughput-

energy curve. This curve shows how the maximum network throughput changes as total

network-wide energy budget changes. We offer some interesting properties of this optimal

throughput-energy curve that are useful to both network operators and end users.

The remainder of this paper is organized as follows. In Section 2, we describe our network

model. In Section 3, we study how to maximize network throughput under a given total network-

wide energy budget. In Section 4, we study how to optimize both network throughout and energy

under a multicriteria framework. Section 5 presents some numerical results that illustrate our

theoretical findings. Section 6 concludes this paper.

2 Network Model

Consider a multi-hop wireless ad hoc network, represented by a directed graphG = {N ,L}, where

N andL are the sets of nodes and directional links, respectively. Alink between two nodes exists

if and only if the distance between the two is within a certaintransmission range. If two nodes

are not within one-hop of each other, then a node has to resortto multi-hop to relay messages. We
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Table 1: Notation.

Symbol Definition
Bl Channel bandwidth on linkl
cl Capacity of linkl
dl Distance between linkl’s transmitting node and receiving node

d(f) Destination node of sessionf ∈ F
F The set of user sessions in the network
hl Channel gain on linkl
L The set of links in the network
LIn
i

The set of incoming links at nodei
LOut
i

The set of outgoing links at nodei
N The set of nodes in the network
pl Transmission power of linkl
Pd The circuits power consumption of an active link
P =

∑

l∈L
(pl + ylPd), network-wide energy consumption rate

Pnet Network-wide energy budget
r(f) Data rate of sessionf ∈ F
rl(f) Data rate on linkl that is attributed to sessionf
s(f) Source node of sessionf
U =

∑

m∈M
w(f)r(f), the network throughput

w(f) A weight assigned to sessionf ∈ F
yl A binary variable indicating whether or not linkl is active
η Ambient Gaussian noise density

assume orthogonal channels on all links (similar to that in [2, 13, 15]). This can be done by some

interference avoidance mechanism (e.g., OFDMA). Note thatorthogonal channels do not require

as many channels as the number of active links in the network since one can reuse channels on

links that are spatially far away from each other. This is called spatial reuse and is commonly used

in wireless networks to improve channel efficiency. Note that designing a channel assignment

algorithm to achieve orthogonality has been well studied inthe literature and its discussion is

beyond the scope of this paper.

We assume there is a set ofF active (unicast) communication sessions in the network. Denote

s(f) andd(f) the source and destination nodes of sessionf ∈ F , respectively. To differentiate the

importance of these user sessions, each sessionf is assigned a weightw(f). Denoter(f) the data

rate of sessionf . The network throughputU in this paper is represented by the sum of weighted

session rates, which is
∑

f∈F w(f) · r(f). Table 1 lists all the notation in this paper.
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2.1 Energy Consumption and Power Control

When a wireless link is active for communications, its energy consumption includes transmission

power and device power [4, 16], where transmission power is for data transmission over a distance

and device power is consumed by device electronics for encoding, modulation, decoding, demod-

ulation, etc. DenotePd as device power, which we assume is a constant if link is active. Denotepl

the transmission power on linkl, which is a tunable (variable) system parameter.

Denoteyl a binary variable indicating whether or not linkl is active, i.e.,

yl =

{

1 if link l is active;
0 otherwise.

The energy consumption rate of linkl, including transmission power and device power, ispl+ylPd.

Assume that the maximum transmission power of a node isPmax. Then, we have the following

relationship betweenpl andyl:

pl ≤ yl · Pmax (l ∈ L) . (1)

For all active links at a node, we have the following node-level transmission power constraint:

∑

l∈LOut
i

pl ≤ Pmax (i ∈ N ) , (2)

whereLOut
i is the set of potential outgoing links at nodei.

DenoteP as the total energy consumption rate on all active links in the network. Then, the

network-wide energy consumption rateP can be written asP =
∑

l∈L(pl + ylPd) .

2.2 Routing and Link Capacity

To transport data from a source node to its destination node that is more than one-hop away, multi-

hop relaying is necessary. Since single-path flow routing isoverly restrictive and is unlikely to

offer optimal solution, we allow flow splitting so that data can be delivered on multi-path routes.

We model multi-path flow routing as follows. Denoterl(f) the amount of flow rate on linkl that

is attributed to sessionf ∈ F . DenoteLIn
i the set of potential incoming links at nodei. If nodei
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is the source node of sessionf , i.e.,i = s(f), then

∑

l∈LOut
i

rl(f) = r(f) . (3)

If nodei is an intermediate relay node of sessionf , i.e.,i 6= s(f) andi 6= d(f), then

l 6=(i,s(f))
∑

l∈LOut
i

rl(f) =

m6=(d(f),i)
∑

m∈LIn
i

rm(f) . (4)

If nodei is the destination node of sessionf , i.e.,i = d(f), then

∑

l∈LIn
i

rl(f) = r(f) . (5)

It can be easily verified that if (3) and (4) are satisfied, then(5) must be satisfied. As a result, it is

sufficient to list only (3) and (4) in the formulation.

Under the above flow routing scheme, the aggregate flow rate atlink l is
∑

f∈F rl(f). Since

aggregate flow rate on any link cannot exceed the link’s capacity, we have the following link

capacity constraint:

∑

f∈F

rl(f) ≤ cl (l ∈ L) , (6)

wherecl is the capacity on linkl. Given that we are employing orthogonal channels among the

links in the network, we have:

cl = Bl log2(1 +
pl · hl

ηBl

) , (7)

whereBl is the bandwidth of linkl under a given channel assignment,hl is channel gain between

the transmitter and receiver of linkl andη is the ambient Gaussian noise density. Combining (6)

and (7), we have:

∑

f∈F

rl(f) ≤ Bl log2(1 +
pl · hl

ηBl

) (l ∈ L) . (8)

Note that constraint (8) couples network flow variables (i.e., rl(f)) and physical layer power vari-

ablepl.
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3 Throughput Maximization Under Network-wide Energy Con-

straint

In this section, we study how to maximize network throughputunder a given network-wide energy

budget. This problem is motivated by the scenario where we have a strict total energy consumption

limit in the network (e.g., due to a given operating budget onenergy). The question that we pose

is: Given the network-wide energy operating budgetPnet, i.e.,

P =
∑

l∈L

(pl + ylPd) ≤ Pnet, (9)

how to adjust the power on each link and multi-path routing for each session so that the maximum

network throughput is achieved?

Mathematically, this problem can be formulated as follows:

OPT: max U =
∑

f∈F

w(f)r(f)

s.t. Constraints(1), (2), (3), (4), (8), (9)

Variablesyl ∈ {0, 1}, pl, rl(f), r(f) ≥ 0 (l ∈ L, f ∈ F) ,

whereyl is a binary variable,pl, r(f) and rl(f) are continuous variables and all the other pa-

rameters are constants. OPT is a mixed-integer nonlinear program (MINLP), which in general is

NP-hard [9]. Note that the network-wide energy constraint complicates overall problem by bring-

ing in integer variables.

MINLP problems are known to be difficult due to the combinatorial nature of mixed integer

programs and the difficulty in solving nonlinear programs. Note that there exist some techniques

to addressgeneralMINLP problems (e.g., outer approximation methods [6], branch-and-bound

[7], extended cutting plane methods [21], and generalized Benders’ decomposition [10]). But

these techniques do not exploit our problem-specific structures and properties, and hence can only

handle small-size problems.

In this paper, we exploit the structure of our MINLP problem and develop a novel near-optimal

solution with performance guarantee. Note that in OPT’s formulation, the only set of nonlinear
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Figure 1: A flow chart to develop a near-optimal solution to OPT.

constraints are the link capacity constraints in (8), whichinvolve thelog function. To address this

problem, we propose a piece-wise linear approximation technique to transform the nonlinear con-

straints to linear constraints. Our main idea is as follows.We first use a set of linear segments

to approximate thelog term in (8) and guarantee the linear approximation error will not exceed

a thresholdǫ. Subsequently, the nonlinear constraints in OPT are replaced by a set of linear con-

straints. Denote the linearized optimization problem as OPT-R, which is a MILP problem. Since

MILP problems are much easier than MINLP problems, we can apply a solver such as CPLEX [3]

to obtain a solution efficiently.

We will show that solving OPT-R can give us a near-optimal solution to the original problem

OPT. Denoteγ as desired performance gap of our near-optimal solution, i.e., the difference in the

objective values between the optimal solution and the near-optimal solution to OPT. We analyze

the relationship between performance gapγ and the linear approximation errorǫ (see details in

Section 3.2). Specifically, for a desired performance gapγ, we compute the maximum allowed lin-

ear approximation errorǫ. After obtainingǫ, we can compute the linear approximation constraints

and construct OPT-R (see details in Section 3.1). Solving the OPT-R will give us a near-optimal

solution with performance guaranteeγ. We summarize the above steps in Fig. 1. In the rest of this

section, we fill in the details of these steps.
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Figure 2: An illustration of piece-wise linear approximation with four linear segments.

3.1 Piece-wise Linear Approximation

The nonlinear constraint in (8) can be written as

∑

f∈F

rl(f) ≤
Bl

ln 2
ln(1 +

pl · hl

ηBl

). (10)

To simplify notation, denote

sl =
plhl

ηBl

. (11)

Then, the nonlinear term in (10) can be written asln(1 + sl). The range ofsl is [0, smax
l ], with

smax
l = (Pmaxhl)/(ηBl). Our piece-wise linear approximation is to use a set of consecutive linear

segments to approximateln(1 + sl) for sl ∈ [0, smax
l ] (see Fig. 2). Denoteǫ the maximum allowed

error of this linear approximation. DenoteKl the number of linear segments that is needed to meet

this error requirement. (Kl will be determined later.) Denotesl,0, sl,1, . . . , sl,Kl
theX-axis values

of the endpoints of theseK segments, withsl,0 = 0 andsl,Kl
= smax

l .

A naive approach to generate a linear approximation is making s
(k)
l , k = 0, . . . , Kl, evenly

distributed between[0, smax
l ]. When settingKl sufficiently large, the linear approximation error

requirement will be satisfied. Although this approach is straightforward and easy to implement,

it will generate too many linear segments to approximateln(1 + sl). Note that the derivative of

curve ln(1 + sl) decreases assl increases. This motivates us to enlarge the size of an interval
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as sl increases. Thus, we want to pursue an algorithm that optimally divides theKl intervals

within [0, smax
l ]. By “optimally”, we refer to finding theminimumKl such that the maximum

approximation error of each line segment is no more thanǫ.

Denotem(k)
l as the slope of thek-th linear segment, i.e.,

m
(k)
l =

ln(1 + s
(k)
l )− ln(1 + s

(k−1)
l )

s
(k)
l − s

(k−1)
l

. (12)

Denoteg(k)l (sl) as thek-th linear approximation segment (see Fig. 3), which can be represented as

follows:

g
(k)
l (sl) = m

(k)
l ·

(

sl − s
(k−1)
l

)

+ ln
(

1 + s
(k−1)
l

)

, for s(k−1)
l ≤ sl ≤ s

(k)
l . (13)

Our algorithm computes the values ofs
(0)
l , . . . , s

(Kl)
l sequentially (for a givenǫ) based on Al-

gorithm 1 as follows.

Algorithm 1 Initialization: k := 0 ands(0)l := 0.

1. k := k + 1.

2. Computem(k)
l satisfying

− ln(m
(k)
l ) +m

(k)
l (1 + s

(k−1)
l )− 1− ln(1 + s

(k−1)
l ) = ǫ. (14)

3. After obtainingm(k)
l , computes(k)l satisfying (12).

4. If s(k)l < smax
l , go back to Step 1.

5. Kl := k; s(Kl)
l := smax

l .

6. Updatem(Kl)
l using (12).

The values ofm(k)
l in (14) ands(k)l in (12) can be solved by numerical methods such as bisection

method or Newton’s method [18, Chapter 2].

Our linear approximation method (Algorithm 1) satisfies thelinear approximation error re-

quirement with the minimum number of linear segments to approximateln(1+sl) for sl ∈ [0, smax
l ].

We formalize these two claims in the following two lemmas.
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Lemma 1 For the piece-wise linear approximation generated by Algorithm 1, the maximum ap-

proximation error of each linear segment is at mostǫ.

Proof Denoteǫ(k)l the maximum linear approximation error for thek-th linear segment, i.e.,

ǫ
(k)
l = max

s
(k−1)
l

≤sl≤s
(k)
l

∣

∣

∣
ln(1 + sl)− g

(k)
l (sl)

∣

∣

∣
= max

s
(k−1)
l

≤sl≤s
(k)
l

{

ln(1 + sl)− g
(k)
l (sl)

}

,

where the equality holds sinceln(1 + sl) is a convex function ofsl and all linear segments lie

beneath theln(1 + sl) curve.

Consider thek-th linear segment. Referring to Fig. 3, we can moveg
(k)
l (sl) upward until it is

tangential to theln(1 + sl) curve. It is easy to see that the tangential point achieves the maximum

approximation errorǫ(k)l . Denotês(k)l theX-axis value of that tangential point. Since the derivative

of ln(1 + sl) is 1
1+sl

, we have 1

1+ŝ
(k)
l

= m
(k)
l , i.e,

ŝ
(k)
l =

1

m
(k)
l

− 1, (15)

wherem(k)
l is slope of linear segmentg(k)l (sl). Therefore, the maximum approximation errorǫ

(k)
l

can be written as

ǫ
(k)
l = ln(1 + ŝ

(k)
l )− g

(k)
l (ŝ

(k)
l ) = ln(1 + ŝ

(k)
l )− [m

(k)
l · (ŝ(k)l − s

(k−1)
l ) + ln(1 + s

(k−1)
l )]

= ln

(

1 +
1

m
(k)
l

− 1

)

−

{

m
(k)
l ·

[

1

m
(k)
l

− 1− s
(k−1)
l

]

+ ln(1 + s
(k−1)
l )

}

=− ln(m
(k)
l ) +m

(k)
l (1 + s

(k−1)
l )− 1− ln(1 + s

(k−1)
l ),

where the second equality holds due to (13) and the third equality holds due to (15).

In Algorithm 1, we set− ln(m
(k)
l ) + m

(k)
l (1 + s

(k−1)
l ) − 1 − ln(1 + s

(k−1)
l ) = ǫ. Thus, the

maximum linear approximation error for thek-th linear segment isǫ. This result holds for all

k = 1, · · · , Kl. This completes the proof. �
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Figure 3: An illustration of the maximum approximation error for thek-th linear segment.

Lemma 2 For a given approximation error boundǫ for each linear segment, the number of linear

segments to approximateln(1 + sl) for sl ∈ [0, smax
l ] is minimized by Algorithm 1.

The proof of Lemma 2 is given in the appendix.

With the proposed piece-wise linear approximation ofln(1+sl), constraint (8) can be replaced

by the following set of constraints:

∑

f∈F

rl(f) ≤
Bl

ln 2
g
(k)
l (sl) (k = 1, . . . , Kl, l ∈ L) ,

wheresl andg(k)l (sl) are given in (11) and (13), respectively. Substituting (11)and (13) into the

above equation, we have

∑

f∈F

rl(f) ≤
Bl

ln 2

{

m
(k)
l

[

plhl

ηBl

− s
(k−1)
l

]

+ ln
[

1 + s
(k−1)
l

]

}

(k = 1, . . . , Kl, l ∈ L) . (16)

By replacing the nonlinear constraints in (8) with the set oflinear constraints in (16), we have a
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revised formulation for OPT, which we denote as OPT-R.

OPT-R: max
∑

f∈F

w(f)r(f)

s.t. Constraints(1), (2), (3), (4), (9), (16)

Variablesyl ∈ {0, 1}, pl, rl(f), r(f) ≥ 0 (l ∈ L, f ∈ F) .

We have the following lemma on the relationship between OPT-R and OPT. Its proof is given

in the appendix.

Lemma 3 A feasible solution to OPT-R is a feasible solution to OPT.

3.2 A Near-Optimal Solution

OPT-R is a mixed-integer linear program (MILP) and can be solved efficiently by CPLEX solver

[3]. Now we give a bound for the gap between the optimal objective values of OPT and OPT-R,

despite that the optimal objective value of OPT is unknown.

To proceed, we need the following notation. For a given powerassignment(yl, pl) to OPT (i.e.,

satisfying constraints (1), (2), (9)), definēx = (r̄(f), r̄l(f), yl, pl) as a feasible solution to OPT,

where(r̄(f), r̄l(f)) is the optimal solution to the following linear program (LP).

OPT(yl, pl): max
∑

f∈F

w(f)r(f)

s.t.
∑

l∈LOut
i

rl(f) = r(f) (f ∈ F , i ∈ N , i = s(f))

l 6=(i,s(f))
∑

l∈LOut
i

rl(f) =

l 6=(d(f),i)
∑

l∈LIn
i

rl(f) (f ∈ F , i ∈ N , i 6= s(f), d(f))

∑

f∈F

rl(f) ≤ c̄l (l ∈ L) ,

wherec̄l = Bl log2(1 +
pl·hl

ηBl
). Note that OPT(yl, pl) is an LP once we set the power variables in

OPT to values(yl, pl).
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For a feasible solution̄x = (r̄(f), r̄l(f), yl, pl) to OPT, we define a feasible solutionx† =

(r†(f), r†l (f), yl, pl) to OPT-R as follows. Inx† = (r†(f), r†l (f), yl, pl), we let (r†(f), r†l (f)) be

the optimal flow routing solution to OPT-R with given(yl, pl). That is,(r†(f), r†l (f)) is the optimal

solution to the following LP, in which the power variables inOPT-R are set to given values(yl, pl).

OPT-R(yl, pl): max
∑

f∈F

w(f)r(f)

s.t.
∑

l∈LOut
i

rl(f) = r(f) (f ∈ F , i ∈ N , i = s(f))

l 6=(i,s(f))
∑

l∈LOut
i

rl(f) =

l 6=(d(f),i)
∑

l∈LIn
i

rl(f) (f ∈ F , i ∈ N , i 6= s(f), d(f))

∑

f∈F

rl(f) ≤ c†l (l ∈ L) ,

wherec†l is a linear approximation of linkl’s capacity under transmission powerpl.

Remark 1 Recall that we use constraints (16) to replace constraints (8) in OPT-R. When linkl’s

power is fixed atpl, we can determine which line segment is involved in our linear approximation

of ln(1 + sl). Suppose thek-th linear segment is used, i.e.,s(k−1)
l ≤ pl·hl

ηBl
≤ s

(k)
l . Then, linkl’s

approximated capacity can be written asc†l =
Bl

ln 2
· g(k)l (pl·hl

ηBl
). �

To quantify the performance gap between our solution to OPT-R and the optimal solution to

OPT, we will first show that for any feasible power assignment(pl, yl), the objective value gap

between̄x andx† is at mostǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f). Then, we will show that the gap between

the optimal objective values of OPT and OPT-R is also boundedby ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f).

Lemma 4 For given (yl, pl), denotez̄ and z† the objective values of solution̄x (to OPT) and

solutionx† (to OPT-R), respectively. Then we havez̄ − z† ≤ ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f).

We find that it is not easy to characterize the gap betweenz̄ andz† directly. Sincez̄ is the

optimal value of OPT(yl, pl) andz† is the optimal objective value of OPT-R(yl, pl), we study the

dual problems of OPT(yl, pl) and OPT-R(yl, pl) and quantifȳz − z† in the dual domain.
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Proof Note thatz̄ is the optimal objective value of OPT(yl, pl) and z† is the optimal objective

value of OPT-R(yl, pl). Consider the dual problems of OPT(yl, pl) and OPT-R(yl, pl). Denote

D(yl, pl) and D-R(yl, pl) as the dual problems of OPT(yl, pl) and OPT-R(yl, pl), respectively. Note

that D(yl, pl) and D-R(yl, pl) will have the same constraints, but different objective functions.

Denote the dual variables corresponding to the first group ofconstraints in OPT(yl, pl) and

OPT-R(yl, pl) asu(f), f ∈ F . Denote the dual variables corresponding to the second group of

constraints in OPT(yl, pl) and OPT-R(yl, pl) asvi(f), f ∈ F , i ∈ N , i 6= s(f), d(f). Denote the

dual variables corresponding to the third group of constraints in OPT(yl, pl) and OPT-R(yl, pl) as

ql, l ∈ L. Then, D(yl, pl) can be written as

D(yl, pl): min
∑

l∈L

c̄lql

s.t.− u(f) ≥ w(f) (f ∈ F) (17)

vi(f) + ql ≥ 0 (f ∈ F , l ∈ LOut(i), i 6= s(f), d(f))

− vi(f) + ql ≥ 0 (f ∈ F , l ∈ LIn(i), i 6= s(f), d(f))

u(f) + ql ≥ 0 (f ∈ F , l ∈ LOut(s(f))) (18)

u(f), vi(f) unrestricted, ql ≥ 0.

Dual problem D-R(yl, pl) can be written as

D-R(yl, pl): min
∑

l∈L

c†l ql

s.t. All constraints in D(yl, pl).

Combining (17) and (18) gives usql ≥ w(f), l ∈ LOut(s(f)), f ∈ F . Since these two dual

problems are both minimization problems, it is easy to see that the solution withq∗l = w(f), (l ∈

LOut(s(f)), f ∈ F) and all the other variables equal to zero is the optimal solution to both D(yl, pl)

and D-R(yl, pl). That is

q∗l =

{

w(f) if link l is an outgoing link froms(f);
0 otherwise.

(19)
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Then, we have

z̄ − z† =
∑

l∈L

c̄lq
∗
l −

∑

l∈L

c†l q
∗
l =

∑

l∈L

(c̄l − c†l )q
∗
l =

∑

f∈F

∑

l∈LOut(s(f))

(c̄l − c†l )w(f) , (20)

where the first equality holds due to the strong duality property [1, Chapter 6] and the third equality

holds due to (19). Note that the gap betweenc̄l andc†l is

c̄l − c†l ≤
Bl

ln 2
ǫ, (21)

since the maximum error of our linear approximation isǫ. Combining (20) and (21) gives us

z̄ − z† ≤ǫ ·
∑

f∈F

∑

l∈LOut(s(f))

Bl

ln 2
w(f) .

This completes the proof. �

Now we are ready to characterize the performance gap betweenthe optimal objective values of

OPT-R and OPT as follows.

Theorem 1 The gap between the optimal objective values of OPT and OPT-Ris no more than

ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f).

Proof Denotex∗ andz∗ the optimal solution and the optimal objective value of OPT,respectively.

From Lemma 4, sincex∗ is a particular case of̄x, we know that there exists a feasible solution

of OPT-RxR corresponding tox∗ such that the performance gap betweenx
∗ andxR is at most

ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f). DenotezR the objective value of solutionxR to OPT-R. Then, we have

z∗ − zR ≤ ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f). (22)

Denotez∗R the optimal objective value of OPT-R. SincezR is the objective value of a feasible

solution to OPT-R whilez∗R is the optimal objective value of OPT-R, we have

z∗R ≥ zR. (23)

Combining (22) and (23), we havez∗ − z∗R ≤ ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f).
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Based on Theorem 1, we are able to give an algorithm to obtain anear-optimal solution to OPT

with performance guarantee as follows.

Algorithm 2 Input: Given a desired performance gapγ for the solution.

1. Computeǫ based on

ǫ ·
∑

f∈F

∑

l∈LOut
s(f)

Bl

ln 2
w(f) = γ. (24)

2. Computem(k)
l ands(k)l by Algorithm 1.

3. Construct OPT-R based onm(k)
l ands(k)l .

4. Solve OPT-R optimally with CPLEX.

Upon the completion of Algorithm 2, we will have a near-optimal solution to OPT with a guaran-

teed performance bound (no more thanγ from the optimal objective value).

4 Maximizing Throughput and Minimizing Network-wide En-

ergy Consumption

In the previous section, we have shown how to maximize network throughput while satisfying a

given total network-wide energy budget. The problem was formulated as asingle objectiveopti-

mization problem OPT. In this section, we take one step further. We are interested in maximizing

network throughput while minimizing energy consumption. We cast this problem into amulticri-

teria optimization problem with two objectives. Mathematically, this problem can be written as

follows:

MP: max
∑

f∈F

w(f)r(f)

min
∑

l∈L

(pl + ylPd)

s.t. Constraints(1), (2), (3), (4), (8)

Variablesyl ∈ {0, 1}, pl, rl(f), r(f) ≥ 0 (l ∈ L, f ∈ F).

As we can see, minimizing network-wide energy consumption and maximizing network through-

put are two conflicting objectives. For such a problem, it is in general not possible to find a single

17



feasible solution that is optimal for both objectives at thesame time. For example, whenP is

minimized (i.e., 0),U is also 0 but is not maximized. Therefore, it is important to clarify what we

mean by optimal solutions.

In this paper, we are interested in finding the so-called weakly Pareto-optimal solutions [5].

Weakly Pareto-optimal solutions are optimal in the sense that it is impossible to improve the per-

formance of both objectives simultaneously. Specifically,we say that(P ∗, U∗) is a weakly Pareto-

optimal point to problem MP if there does not exist another solution to problem MP with(P, U)

such thatP < P ∗ andU > U∗.

To find weakly Pareto-optimal points, we transform the multicriteria optimization problem into

a single objective optimization problem. This can be done bymoving the second objective (i.e.,
∑

l∈L(pl + ylPd) ) into the constraints as follows.

SP(Pnet): max
∑

f∈F

w(f)r(f)

s.t.
∑

l∈L

(pl + ylPd) ≤ Pnet

Constraints(1), (2), (3), (4), (8)

Variablesyl ∈ {0, 1}, pl, rl(f), r(f) ≥ 0 (l ∈ L, f ∈ F).

We see that this single objective optimization problem is precisely the same as OPT that we studied

earlier. For a fixed value ofPnet, solving SP(Pnet) will give usoneweakly Pareto-optimal point of

problem MP [5]. By varyingPnet from 0 toPmax
net = |L| · (Pmax+Pd), we can obtain all the weakly

Pareto-optimal points. These points provide a mapping fromthe network-wide energy budgetPnet

to the maximum network throughputU , which we denote asπ : Pnet → U . This mappingU =

π(Pnet) is an optimal throughput-energy curve, which characterizes how the maximum network

throughput changes as the total network-wide energy consumption rate varies. This curve is useful

for network operators to have a holistic view of the entire optimal trade-off curve and decide which

point to choose so as to meet their needs.

We have several interesting properties about this optimal throughput-energy curveU = π(Pnet),

which are shown in Property 1.

Property 1 The optimal throughput-energy curveU = π(Pnet) has the following properties.

18



1. π(Pnet) is a nondecreasing function ofPnet.

2. π(Pnet) has a starting point(Pstart, 0), i.e.,π(Pnet) = 0 for Pnet ≤ Pstart andπ(Pnet) > 0

for Pnet > Pstart.

3. π(Pnet) has a saturation point(Psat, Usat), i.e.,π(Pnet) = Usat for Pnet ≥ Psat andπ(Pnet) <

Usat for Pnet < Psat.

Proof We prove each property as follows.

1. AssumeP (1)
net < P

(2)
net . We need to show thatU(P

(1)
net ) ≤ U(P

(2)
net). Note thatU(P

(1)
net) and

U(P
(2)
net) are the optimal objectives of SP(P (1)

net) and SP(P (2)
net ), respectively. SinceP (1)

net <

P
(2)
net , the feasible region of SP(P (1)

net) falls inside the feasible region of SP(P (2)
net ). Thus, we

haveU(P
(1)
net ) ≤ (P

(2)
net).

2. Such starting point exists because when a link is active, it must consume a constant power

Pd. For a session to have positive throughput, it must activateall the links along the path that

are used by this session for transporting data. Thus,Pstart can be determined by the session

that uses the minimum number of hops from its source to its destination. Denotemf the

minimum hops of sessionf . Then,Pstart can be written asPstart = Pd ·min{mf : f ∈ F}.

3. The saturation point(Psat, Usat) can be determined as follows. We can first compute the

maximum network throughput without network-wide energy constraint, i.e., solving the fol-

lowing optimization problem.

max
∑

f∈F

w(f)r(f)

s.t. Constraints(1), (2), (3), (4), (8).

The optimal objective value of the above problem isUsat. Then, we determine the minimum
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Figure 4: An illustration of optimal throughput-energy curve.

energy that can achieves this throughput by solving the following optimization problem.

min
∑

l∈L

(pl + ylPc)

s.t. w(f)r(f) = Usat

Constraints(1), (2), (3), (4), (8).

Based on Property 1, Fig. 4 illustrates a typical optimal throughput-energy curve for a multi-hop

wireless network.

5 Numerical Results

In this section, we present some numerical results to illustrate our theoretical findings in Section 3

and 4.

5.1 Simulation Settings

We consider a 50-node network deployed in a 1000× 1000 square area and a 100-node network

deployed in a 1500× 1500 square area. The topologies of the 50-node network and 100-node

network are shown in Fig. 5 and Fig. 6, respectively. We assume that all units are normalized with

appropriate dimensions. We assume the maximum transmission range is200 and the maximum

transmission power isPmax = 2. We assume node device power consumption isPd = 0.2. The
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Figure 5: The topology for a 50-node network.

Table 2: Each session’s source node, destination node, and weight for the 50-node network.

Sessionf Source nodes(f) Dest. noded(f) Weightw(f)
1 10 35 0.5
2 35 21 0.9
3 5 23 0.7
4 43 14 0.6
5 29 7 0.8

channel bandwidth isBl = 1 for all links and channel gain ishl = d−4
l , wheredl is the distance

between linkl’s transmitting node and receiving node.

5.2 Results for the 50-node Network

Within this network, we assume there are|F| = 5 user sessions, with source node and destination

node of each session chosen randomly. Table 2 lists the source node, destination node, and weight

for each session in the network.

5.2.1 Near-Optimal Solution for OPT

In this case study, we assume the maximum network-wide energy consumption ratePnet = 40.

We set the maximum acceptable performance gap between the optimal objectives of OPT and
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Figure 6: The topology for a 100-node network.

linear approximation OPT-R asγ = 0.1. We apply Algorithm 2 here. Based on (24), we compute

ǫ = γ·ln 2
∑

f∈F

∑
l∈LOut

s(f)

Bl
ln 2

w(f)
= 0.0046. Based onǫ, we compute the piece-wise linear approximation

according to Algorithm 1.

Then we can use CPLEX to solve OPT-R. We obtain that the maximum network throughput is

U = 22.12. The achieved session data rates arer1 = 4.41, r2 = 6.39, r3 = 9.37, r4 = 3.89, and

r5 = 6.62. Our algorithm gives power control and flow routing solutions for the network. We list

the power assignment for each active link in Table 3, and the flow routing results in Table 4.

5.2.2 The Optimal Throughput-Energy Curve

For the same 50-node network instance, we characterize its optimal throughput-energy curve based

on our theoretical results in Section 4. We show the optimal throughput-energy curve in Fig. 7.

From the figure, we can see all three properties as stated in Property 1. As shown in the fig-

ure, the curve is nondecreasing. The network throughput keeps at zero when the network en-

ergy consumption rate is no greater thanPstart. For the starting point(Pstart, 0), since session 1

needs at least 5 hops , we havePstart = 5 · Pd = 1. For the saturation point(Psat, Usat), we get

(Psat, Usat) = (106.20, 36.14). The network throughput stops increasing and keeps as36.14 when
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Table 3: Power assignment on each active link in the final solution for the 50-node network.

Link Power Link Power Link Power
1 → 27 0.1819 1 → 23 0.4317 1 → 17 0.4658
2 → 45 0.1958 2 → 24 0.0370 3 → 44 0.2050
3 → 13 0.1805 3 → 6 0.0350 4 → 45 0.2083
4 → 22 0.1692 4 → 13 0.2441 5 → 44 0.2652
5 → 8 0.1775 5 → 7 0.0313 6 → 4 0.6487
7 → 15 0.4290 7 → 8 0.1534 8 → 44 0.0707
8 → 15 0.2924 8 → 7 0.1209 8 → 3 0.5524
9 → 43 0.1794 9 → 10 0.2835 10 → 47 0.5756
10 → 42 0.0952 10 → 27 0.3033 10 → 26 0.0101
10 → 9 0.2166 10 → 1 0.2355 11 → 34 0.2547
11 → 32 0.1617 13 → 4 0.4853 13 → 3 0.0908
14 → 22 0.2196 15 → 47 0.2544 15 → 8 0.4918
15 → 7 0.5515 17 → 45 0.1424 17 → 23 0.0151
17 → 14 0.1431 22 → 45 0.0628 22 → 17 0.3000
22 → 14 0.2092 24 → 47 0.3587 24 → 2 0.0575
25 → 37 0.1283 26 → 32 0.3506 27 → 39 0.4733
27 → 10 0.3033 27 → 1 0.1177 29 → 39 0.5181
29 → 34 0.1950 29 → 32 0.0776 29 → 1 0.6365
30 → 25 0.0791 32 → 36 0.0774 32 → 11 0.2840
33 → 43 0.5081 34 → 35 0.4009 34 → 29 0.3055
34 → 11 0.1450 35 → 41 0.3099 35 → 34 0.4009
36 → 30 0.3999 37 → 33 0.1787 39 → 29 0.0787
39 → 27 0.3061 39 → 23 0.1054 39 → 17 0.5299
41 → 14 0.2310 42 → 15 0.4273 42 → 10 0.2433
43 → 47 0.3793 43 → 21 0.4274 43 → 9 0.2347
44 → 5 0.3408 44 → 3 0.6235 45 → 23 0.1872
45 → 22 0.0306 45 → 17 0.2270 45 → 4 0.1253
45 → 2 0.1260 47 → 43 0.3982 47 → 42 0.0315
47 → 24 0.5573 47 → 15 0.1061
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Table 4: Flow routing results for the 50-node network.

Session
f

Flow rate on each link attributed to sessionf

1
r10→27(1) = 2.48, r10→26(1) = 1.93, r11→34(1) = 1.93
r26→32(1) = 1.93, r27→39(1) = 2.48, r29→34(1) = 2.48
r32→11(1) = 1.93, r34→35(1) = 4.41, r39→29(1) = 2.48

2

r1→27(2) = 1.65, r2→24(2) = 1.98, r9→43(2) = 1.65
r10→9(2) = 1.65, r11→32(2) = 1.38, r14→22(2) = 1.98
r22→45(2) = 1.98, r24→47(2) = 1.98, r25→37(2) = 2.76
r27→10(2) = 1.65, r29→32(2) = 1.38,r29→1(2) = 1.65,
r30→25(2) = 2.76, r32→36(2) = 2.76, r33→43(2) = 2.76
r34→29(2) = 3.03, r34→11(2) = 1.38, r35→41(2) = 1.98
r35→34(2) = 4.41, r36→30(2) = 2.76, r37→33(2) = 2.76
r41→14(2) = 1.98, r43→21(2) = 6.39, r45→2(2) = 1.98
r47→43(2) = 1.98

3

r1→23(3) = 1.93, r1→17(3) = 0.28, r2→45(3) = 0.55
r3→13(3) = 3.03, r3→6(3) = 2.76, r4→45(3) = 2.80
r4→22(3) = 2.98, r5→44(3) = 1.93, r5→8(3) = 3.03
r5→7(3) = 4.41, r6→4(3) = 2.76, r7→15(3) = 1.93
r7→8(3) = 2.48, r8→44(3) = 1.65, r8→15(3) = 1.65
r8→3(3) = 2.21, r10→27(3) = 1.65, r10→1(3) = 1.38
r13→4(3) = 3.03, r15→47(3) = 3.58, r17→23(3) = 5.24
r22→45(3) = 0.78, r22→17(3) = 2.21, r24→2(3) = 0.55
r27→39(3) = 0.83, r27→1(3) = 0.83, r39→23(3) = 0.83
r42→10(3) = 3.03, r44→3(3) = 3.58, r45→23(3) = 1.38
r45→17(3) = 2.76, r47→42(3) = 3.03, r47→24(3) = 0.55

4

r1→17(4) = 1.93, r2→45(4) = 1.93, r9→10(4) = 1.93
r10→27(4) = 1.93, r17→14(4) = 1.93, r22→14(4) = 1.93
r24→2(4) = 1.93, r27→1(4) = 1.93, r43→47(4) = 1.93
r43→9(4) = 1.93, r45→22(4) = 1.93, r47→24(4) = 1.93

5

r1→27(5) = 1.65, r3→44(5) = 2.21, r4→13(5) = 2.21
r5→7(5) = 2.21, r8→7(5) = 2.21, r10→47(5) = 2.48
r10→42(5) = 1.93, r13→3(5) = 2.21, r15→8(5) = 2.21
r15→7(5) = 2.21, r17→45(5) = 2.21, r27→10(5) = 4.41
r29→39(5) = 4.96, r29→1(5) = 1.65, r39→27(5) = 2.76
r39→17(5) = 2.21, r42→15(5) = 1.93, r44→5(5) = 2.21
r45→4(5) = 2.21, r47→15(5) = 2.48
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Figure 7: The optimal throughput-energy curve for the 50-node network, where the “\\” sign in

the figure indicates nonlinear scale forPnet ∈ [106.20, 431.20].

the network energy consumption rate exceedsPsat = 106.20.

5.3 Results for the 100-node Network

For the 100-node network, we assume that there are|F| = 10 active sessions in the network, with

each session’s source node, destination node, and weight given in Table 5.

We assume that maximum network-wide energy consumption ratePnet = 100. By employing

our method, we obtain that the maximum network throughput isU = 42.00. The achieved session

data rates arer1 = 10.86, r2 = 1.63, r3 = 7.09, r4 = 4.03, r5 = 9.71, r6 = 4.00, r7 = 9.90, r8 =

4.91, andr9 = 8.08, andr10 = 7.19. The detailed results for power assignment and flow routing

are given in Table 6 Table 7. The optimal throughput-energy curve for the 100-node network is

shown in Fig. 8.

6 Conclusion

Network-wide energy consumption has become an important concern for network operators. In

this paper, we studied two tightly coupled problems for network-wide energy conservation. In

the first problem, we studied how to maximize network throughput under a network-wide energy

constraint. We formulated this problem into a mixed-integer nonlinear program (MINLP) and
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Table 5: Each session’s source node, destination node, and weight for the 100-node network.

Sessionf Source nodes(f) Dest. noded(f) Weightw(f)
1 40 26 0.9
2 27 17 0.8
3 4 55 0.7
4 31 41 0.6
5 78 100 0.8
6 7 83 0.6
7 73 91 0.3
8 12 10 0.4
9 64 38 0.6
10 51 56 0.5
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proposed a near-optimal solution with guaranteed performance bound. In the second problem, we

explored joint optimization of both network throughput andenergy consumption via a multicriteria

optimization framework. We showed that the weakly Pareto-optimal points in the solution can

characterize an optimal throughput-energy curve. The results in this paper offer both solutions and

insights to network operators when total energy consumption for the entire network is of greater

concern than local energy consumption.
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Table 6: Power assignment on each active link in the final solution for the 100-node network.

Link Power Link Power Link Power
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8 → 83 0.1445 42 → 36 0.9435 71 → 14 0.2603
8 → 11 0.2208 43 → 86 0.0492 72 → 2 0.2990
9 → 91 0.2227 43 → 85 0.3158 73 → 77 0.5455
10 → 80 0.3385 45 → 72 2.0000 73 → 71 0.2047
10 → 25 0.4205 46 → 94 0.3406 73 → 41 0.8028
11 → 52 0.0571 46 → 42 0.0634 73 → 14 0.4035
11 → 23 0.9333 47 → 86 0.2463 74 → 100 0.3717
12 → 71 2.0000 47 → 43 0.2360 74 → 36 0.0181
13 → 56 1.8806 47 → 17 0.1470 76 → 56 0.0249
13 → 54 0.0581 48 → 54 0.6765 77 → 65 0.3229
13 → 19 0.0613 48 → 19 0.6538 77 → 55 0.6875
14 → 77 0.1055 48 → 13 0.3289 77 → 41 0.2516
14 → 55 0.1035 50 → 52 0.0788 77 → 14 0.2097
14 → 3 1.7910 51 → 99 0.8556 78 → 45 1.2430
15 → 90 0.9260 51 → 35 0.1607 78 → 15 0.1874
15 → 1 1.0740 51 → 20 0.3715 79 → 40 0.2861
18 → 89 0.1069 52 → 65 1.2163 80 → 25 0.0982
19 → 57 0.9917 52 → 28 0.0143 82 → 91 0.1406
19 → 10 1.0083 52 → 23 0.7694 83 → 11 0.0557
20 → 99 0.0729 54 → 57 1.0144 84 → 87 0.2759
20 → 38 1.9271 54 → 19 0.0057 85 → 26 2.0000
23 → 65 0.4337 54 → 10 0.9799 86 → 95 0.0103
23 → 52 0.2177 55 → 68 1.8836 86 → 66 0.2518
23 → 41 0.8404 57 → 91 0.4561 87 → 28 0.1607
25 → 62 0.1981 57 → 82 0.2743 89 → 79 0.1058
27 → 18 0.0430 57 → 10 0.0381 90 → 94 0.1749
28 → 52 0.0117 60 → 50 0.2361 94 → 83 1.8668
28 → 39 0.8018 60 → 28 0.2986 94 → 46 0.1332
29 → 38 2.0000 62 → 33 1.9127 95 → 66 0.2907
30 → 85 0.4852 64 → 67 0.2590 99 → 34 0.2677
30 → 43 0.2821 64 → 48 0.5956 99 → 20 0.3143
31 → 60 0.3863 64 → 13 0.8886 99 → 6 0.0444
33 → 29 0.2502 65 → 77 0.6673
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Table 7: Flow routing results for the 100-node network.

Session
f

Flow rate on each link attributed to sessionf

1

r14→77(1) = 1.36, r30→85(1) = 2.96, r30→43(1) = 4.09, r40→47(1) = 3.82, r40→30(1) = 7.04, r41→26(1) = 4.09
r43→86(1) = 2.27, r43→85(1) = 3.82, r47→86(1) = 1.82, r47→43(1) = 2.00, r66→73(1) = 2.72, r66→71(1) = 1.36
r71→14(1) = 1.36, r73→41(1) = 2.72, r77→41(1) = 1.36, r85→26(1) = 6.77, r86→95(1) = 2.50, r86→66(1) = 1.59
r95→66(1) = 2.50

2 r18→89(2) = 1.63, r27→18(2) = 1.63, r40→47(2) = 1.63, r47→17(2) = 1.63, r79→40(2) = 1.63, r89→79(2) = 1.63

3
r4→83(3) = 3.18, r4→8(3) = 3.89, r8→83(3) = 1.62, r8→11(3) = 2.27, r11→52(3) = 2.96, r11→23(3) = 4.11
r14→55(3) = 2.04, r23→65(3) = 3.86, r23→41(3) = 2.35, r41→77(3) = 2.35, r52→65(3) = 0.86, r52→23(3) = 2.10
r65→77(3) = 4.72, r77→55(3) = 5.03, r77→14(3) = 2.04, r83→11(3) = 4.80

4
r23→41(4) = 1.76, r28→52(4) = 2.04, r31→60(4) = 4.03, r50→52(4) = 1.99, r52→65(4) = 2.27, r52→23(4) = 1.76
r60→50(4) = 1.99, r60→28(4) = 2.04, r65→41(4) = 2.27

5

r1→46(5) = 0.05, r1→42(5) = 2.95, r2→7(5) = 3.93, r7→74(5) = 3.55, r7→46(5) = 0.38, r15→90(5) = 2.78
r15→1(5) = 3.00, r36→100(5) = 6.31, r42→74(5) = 3.18, r42→36(5) = 2.98, r45→72(5) = 3.93, r46→42(5) = 3.21
r72→2(5) = 3.93, r74→100(5) = 3.41, r74→36(5) = 3.33, r78→45(5) = 3.93, r78→15(5) = 5.78, r90→94(5) = 2.78
r94→46(5) = 2.78

6 r1→46(6) = 3.24, r7→46(6) = 0.76, r7→1(6) = 3.24, r46→94(6) = 4.00, r94→83(6) = 4.00

7

r3→91(7) = 1.82, r3→9(7) = 1.99, r9→91(7) = 1.99, r14→3(7) = 3.81, r19→57(7) = 2.95, r23→52(7) = 2.27
r28→39(7) = 2.27, r39→68(7) = 2.81, r39→64(7) = 3.19, r41→23(7) = 2.27, r48→54(7) = 3.14, r48→19(7) = 2.95
r52→28(7) = 2.27, r54→57(7) = 3.14, r55→68(7) = 0.10, r57→91(7) = 3.60, r57→82(7) = 2.50, r64→48(7) = 3.19
r65→39(7) = 3.72, r68→48(7) = 2.91, r71→55(7) = 0.10, r71→14(7) = 1.77, r73→77(7) = 4.54, r73→71(7) = 1.87
r73→41(7) = 1.45, r73→14(7) = 2.04, r77→65(7) = 3.72, r77→41(7) = 0.82, r82→91(7) = 2.50

8
r12→71(8) = 4.92, r13→54(8) = 1.02, r14→55(8) = 2.06, r19→57(8) = 1.14, r19→10(8) = 1.80, r48→54(8) = 0.94
r54→57(8) = 0.51, r54→19(8) = 2.93, r54→10(8) = 1.48, r55→68(8) = 4.92, r57→10(8) = 1.64
r64→13(8) = 1.02, r68→64(8) = 1.02, r68→54(8) = 2.95, r68→48(8) = 0.94, r71→55(8) = 2.85, r71→14(8) = 2.06

9

r6→99(9) = 4.04, r10→80(9) = 2.04, r10→25(9) = 1.99, r13→54(9) = 1.48, r13→19(9) = 2.56, r19→10(9) = 2.56
r20→38(9) = 4.04, r25→62(9) = 4.03, r29→38(9) = 4.03, r33→29(9) = 4.03, r34→6(9) = 4.04, r48→13(9) = 3.47
r54→10(9) = 1.48, r62→33(9) = 4.03, r64→67(9) = 4.04, r64→48(9) = 3.47, r64→13(9) = 0.57, r67→34(9) = 4.04
r80→25(9) = 2.04, r99→20(9) = 4.04

10

r6→34(10) = 3.56, r13→56(10) = 3.73, r20→99(10) = 2.20, r28→39(10) = 1.59, r34→67(10) = 5.60, r35→84(10) = 1.59
r39→68(10) = 1.02, r39→64(10) = 0.57, r48→13(10) = 1.59, r51→99(10) = 3.41, r51→35(10) = 1.59, r51→20(10) = 2.20
r64→13(10) = 1.59, r67→76(10) = 3.46, r67→48(10) = 1.59, r67→13(10) = 0.56, r68→64(10) = 1.02, r76→56(10) = 3.46
r84→87(10) = 1.59, r87→28(10) = 1.59, r99→34(10) = 2.04, r99→6(10) = 3.56
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Appendix

Proof of Lemma 2 Our proof is based on contradiction. Assume that the number of linear seg-

ments that Algorithm 1 generates isKl, ands(k)l , k = 0, . . . , Kl, are the correspondingX-axis

values of the endpoints. Suppose that there is another piece-wise linear approximation that needs
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K ′
l < Kl linear segments andt(k)l s (with k = 0, . . . , Kl, t

(0)
l = 0 and t

(K ′
l
)

l = smax
l ) are the

correspondingX-axis values of the endpoints.

Sinces(1)l is the largestX-axis value of the second endpoint, we havet
(1)
l ≤ s

(1)
l . By induction,

we can show thatt(k)l ≤ s
(k)
l , k = 1, . . . , K ′

l . For k = K ′
l , we havet

(K ′
l
)

l ≤ s
(K ′

l
)

l . Further, since

K ′
l < Kl, we also haves

(K ′
l
)

l < smax
l . Therefore, we conclude thatt

(K ′
l
)

l ≤ s
(K ′

l
)

l < smax
l , which is

a contradiction tot
(K ′

l
)

l = smax
l . This completes our proof. �

Proof of Lemma 3 Note that the only difference between OPT and OPT-R is the link capacity

constraints. Each link capacity constraint for linkl in OPT is replaced by a set of linear constraints

in OPT-R. Since these linear constraints are generated by the piece-wise linear segments lying

beneath thelog curve, the feasible region of OPT-R falls inside in the feasible region of OPT.

Thus, a feasible solution to OPT-R is also a feasible solution to OPT. �
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