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Abstract

Conserving network-wide energy consumption is becomingeneasingly important con-
cern for network operators. In this work, we study netwotklenenergy conservation problem
which we hope will offer insights to both network operatorglaisers. In the first part of this
work, we study how to maximize throughput under a networdemenergy constraint. We
formulate this problem as a mixed-integer nonlinear pnog(®INLP). We propose a novel
piece-wise linear approximation to transform the nonlirgstraints into linear constraints.
We prove that the solution developed under this approackasoptimal with guaranteed per-
formance bound. In the second part, we generalize the proisighe first part by exploring
throughput and network-wide energy optimization via a mtteria optimization framework.
We show that the weakly Pareto-optimal points in the satutian characterize an optimal
throughput-energy curve. We offer some interesting progeeiof the optimal throughput-
energy curve which are useful to both network operators addisers.
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1 Introduction

With the proliferation of wireless networks, the concerneakrgy consumption is becoming in-
creasingly important for network operators. Conservinywek-wide energy consumption not
only can help reducing CQemissions and protect the environment, but also can signtficre-
duce the operating cost for network providers. Since ensztated operating cost is directly tied
to network-wideenergy consumption, it is critical to study network optiatinn problems with an

eye on total network-wide energy consumption.



In this paper, we study network-wide energy conservatia@blem in a multi-hop wireless
network which we hope will offer insights to both network ogers and end users. Specifically,
in the first part of this work, we will show how to maximize netsk throughput under a given
network-wide total energy consumption budget. This mayespond to a scenario where a net-
work operator has a budget on total energy consumption. drséitond part, we generalize the
problem in the first part by studying how to optimize both natvthroughput and network-wide
energy consumption through a multicriteria optimizaticaniework. This allows us to characterize
the trend of throughput when the total energy consumptialybtichanges.

We recognize that there is a wealth of literature on optingnetwork throughput with energy
considerations. A major branch of these prior efforts fold various heuristic approaches in
developing physical, link, and network layer schemes agdrédhms (see, e.g., [20, 22]). This is
in contrast to our work in this paper, which follows a formatimization framework with the goal
of offering performance guarantee of the final solution.

Within the branch of related work that followed formal opization framework in studying
network throughput maximization with energy considemaisee, e.g., [8, 19]), we find that most
of these works only considered per-link power constrairgexnode power constraint. Although
these constraints are important to characterize localggnewnsumption, it is not clear how to
extend results for local link/node energy conservationgtwork-wideenergy conservation, due
to the complex inter-dependencies among the layers. Tdrerghese prior results cannot directly
benefit network operators, who are more concerned with netavork-wide energy consumption.

Our work is complementary to a branch of previous work thatraslsed how to minimize
network-wide energy consumption while satisfying somdfiralemands (see, e.g., [14, 17]).
These works are orthogonal to the problem that we shall situdlye first part of this paper. It
will soon be clear that our mathematical formulation andppsed solution differ from all these
seemingly similar efforts. Further, in the second part & gaper, we consider joint optimization
of throughput and network-wide energy, which explores thimadin of multi-criteria optimization
that is not well studied in the wireless networking commyniibh our recent work in [11], we ex-
plored multicriteria optimization of network energy anddhghput. However, power control was

not considered in [11]. In this work, we shall consider poa@ntrol at each node, which is more



interesting.

The main contributions of this paper are the following:

e First, we study how to maximize network throughput under taltnetwork-wide energy
consumption constraint. We show that this problem invoba network and physical layer
variables and can be formulated as a mixed-integer nomljp@gram (MINLP). To solve
this problem efficiently, we propose a novel piece-wisedmapproximation to transform
the nonlinear constraints into linear constraints. We etbzat the solution developed under
this linear approximation is near-optimal in the sense tiaperformance gap between our
solution and the optimal solution (despite unknown) can bderarbitrary narrow depending

on required accuracy.

e Second, we generalize the problem in the first part by expdgnint optimization of both
network throughput and network energy consumption via diamitéria optimization frame-
work, i.e.,maximizingnetwork throughput whileninimizingnetwork-wide energy consump-
tion. We find that all the weakly Pareto-optimal points cletegize an optimal throughput-
energy curve. This curve shows how the maximum network tjinput changes as total
network-wide energy budget changes. We offer some intageptoperties of this optimal

throughput-energy curve that are useful to both networkaipes and end users.

The remainder of this paper is organized as follows. In $ac®, we describe our network
model. In Section 3, we study how to maximize network thrqughunder a given total network-
wide energy budget. In Section 4, we study how to optimizé Imetwork throughout and energy
under a multicriteria framework. Section 5 presents sonteatical results that illustrate our

theoretical findings. Section 6 concludes this paper.

2 Network Mode

Consider a multi-hop wireless ad hoc network, representeddirected grapty = {N, L}, where
N and/. are the sets of nodes and directional links, respectivelinkdbetween two nodes exists
if and only if the distance between the two is within a certaansmission range. If two nodes

are not within one-hop of each other, then a node has to resortilti-hop to relay messages. We
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Table 1: Notation.

Symbol | Definition
B Channel bandwidth on link
@] Capacity of linkl

d; Distance between links transmitting node and receiving node
d(f) | Destination node of sessighe F

F The set of user sessions in the network

hy Channel gain on link

L The set of links in the network

Lin The set of incoming links at node
£9ut | The set of outgoing links at node
N The set of nodes in the network

D Transmission power of link

Py The circuits power consumption of an active link

P = > e (ot + yiPa), network-wide energy consumption ratej
Pe Network-wide energy budget

t
) | Datarate of sessiofi e F
f) | Datarate on linK that is attributed to sessigh

s(f) | Source node of sessigh
U = mem w(f)r(f), the network throughput

w(f) | Aweight assigned to sessighc F
i A binary variable indicating whether or not liriks active
n Ambient Gaussian noise density

assume orthogonal channels on all links (similar to thairlB, 15]). This can be done by some
interference avoidance mechanism (e.g., OFDMA). Notedhibgonal channels do not require
as many channels as the number of active links in the netwode ©ne can reuse channels on
links that are spatially far away from each other. This isethfpatial reuse and is commonly used
in wireless networks to improve channel efficiency. Notet thesigning a channel assignment
algorithm to achieve orthogonality has been well studiethmn literature and its discussion is
beyond the scope of this paper.

We assume there is a setBfactive (unicast) communication sessions in the networkobe
s(f) andd( f) the source and destination nodes of sesgien’, respectively. To differentiate the
importance of these user sessions, each segs®assigned a weight( f). Denoter(f) the data
rate of sessiotf. The network throughput in this paper is represented by the sum of weighted

session rates, which s, - w(f) - r(f). Table 1 lists all the notation in this paper.



2.1 Energy Consumption and Power Control

When a wireless link is active for communications, its egergnsumption includes transmission
power and device power [4, 16], where transmission poweriddta transmission over a distance
and device power is consumed by device electronics for engpchodulation, decoding, demod-
ulation, etc. Denoté’; as device power, which we assume is a constant if link is acbenotey,
the transmission power on lirlkwhich is a tunable (variable) system parameter.

Denotey, a binary variable indicating whether or not lihks active, i.e.,

| 1 iflink [ is active
279 0 otherwise

The energy consumption rate of libhkincluding transmission power and device powep, isy; P;.
Assume that the maximum transmission power of a nod&,is. Then, we have the following

relationship betweep, andy;:
plgyl'Pmax (leﬁ) (l)

For all active links at a node, we have the following nodeslgkansmission power constraint:

> < P (€N, (2)

leLPut

where£{" is the set of potential outgoing links at node
DenoteP as the total energy consumption rate on all active links enrtetwork. Then, the

network-wide energy consumption raffecan be written a® = >, _.(p; + yiFa) -

2.2 Routing and Link Capacity

To transport data from a source node to its destination ruates more than one-hop away, multi-
hop relaying is necessary. Since single-path flow routingvesly restrictive and is unlikely to
offer optimal solution, we allow flow splitting so that datarcbe delivered on multi-path routes.
We model multi-path flow routing as follows. Denotg /) the amount of flow rate on linkthat

is attributed to sessiofi € F. Denote£!® the set of potential incoming links at nodelf node:



is the source node of sessigni.e.,i = s(f), then

S onlf) =r(f). 3

leLPut

If nodei is an intermediate relay node of sessjan.e.,i # s(f) andi # d(f), then

1#(i,5(f)) m#(d(f),1)
dYoonlh)= D> rmlf). (4)
leLPut meLn

If node: is the destination node of sessifni.e.,i = d(f), then

Sonlh) =r(f) . (5)

lechn

It can be easily verified that if (3) and (4) are satisfied, tfErmust be satisfied. As a result, it is
sufficient to list only (3) and (4) in the formulation.

Under the above flow routing scheme, the aggregate flow rdiekat is Zfef ri(f). Since
aggregate flow rate on any link cannot exceed the link’'s dgpage have the following link
capacity constraint:

Yonf)<a (L), (6)

feF

wherec, is the capacity on link. Given that we are employing orthogonal channels among the

links in the network, we have:

-y
= Bl 1 7
a 1 logy (1 + B, ) (7)

whereB; is the bandwidth of link under a given channel assignméhtis channel gain between
the transmitter and receiver of lirikandn is the ambient Gaussian noise density. Combining (6)

and (7), we have:

S rlf) < Brloea(1+ ) (e o). ®

Note that constraint (8) couples network flow variables (i€ f)) and physical layer power vari-

ablep;,.



3 Throughput Maximization Under Networ k-wide Ener gy Con-
straint

In this section, we study how to maximize network throughmder a given network-wide energy
budget. This problem is motivated by the scenario where we aatrict total energy consumption
limit in the network (e.g., due to a given operating budgetanrgy). The question that we pose

is: Given the network-wide energy operating budget, i.e.,

P = Z(pl + ylPd) S Pneta (9)
lel
how to adjust the power on each link and multi-path routingsfach session so that the maximum
network throughput is achieved?

Mathematically, this problem can be formulated as follows:

OPT: max U=> w(f)r(f)

feF
s.t. Constraint$l), (2), (3), (4), (8), (9)

Variablesy, € {0, 1}, p,,m(f),r(f) >0 € L, feF),

wherey, is a binary variablep;, r(f) andr,(f) are continuous variables and all the other pa-
rameters are constants. OPT is a mixed-integer nonlinegrgm (MINLP), which in general is
NP-hard [9]. Note that the network-wide energy constraimhplicates overall problem by bring-
ing in integer variables.

MINLP problems are known to be difficult due to the combingtionature of mixed integer
programs and the difficulty in solving nonlinear programte\that there exist some techniques
to addresgieneralMINLP problems (e.g., outer approximation methods [6],netaand-bound
[7], extended cutting plane methods [21], and generalizedd@rs’ decomposition [10]). But
these techniques do not exploit our problem-specific sirastand properties, and hence can only
handle small-size problems.

In this paper, we exploit the structure of our MINLP problendaevelop a novel near-optimal

solution with performance guarantee. Note that in OPT’snfdation, the only set of nonlinear



Given a desired performance
gap y between the near-
optimal solution and the
optimal solution to OPT

|

Compute the maximum
allowed piecewise linear
approximation error €

| |

Compute linear
approximation constraints
and construct OPT-R

|

Solve OPT-R via CPLEX

Figure 1: A flow chart to develop a near-optimal solution toTOP

constraints are the link capacity constraints in (8), whinstolve thelog function. To address this
problem, we propose a piece-wise linear approximationriegte to transform the nonlinear con-
straints to linear constraints. Our main idea is as folloWe first use a set of linear segments
to approximate théog term in (8) and guarantee the linear approximation errok mat exceed

a threshold:. Subsequently, the nonlinear constraints in OPT are regdlay a set of linear con-
straints. Denote the linearized optimization problem a3-B@Pwhich is a MILP problem. Since
MILP problems are much easier than MINLP problems, we catyappolver such as CPLEX [3]
to obtain a solution efficiently.

We will show that solving OPT-R can give us a near-optimaligoh to the original problem
OPT. Denotey as desired performance gap of our near-optimal solutien,the difference in the
objective values between the optimal solution and the npaimal solution to OPT. We analyze
the relationship between performance gapnd the linear approximation errer(see details in
Section 3.2). Specifically, for a desired performance-gape compute the maximum allowed lin-
ear approximation errat. After obtaininge, we can compute the linear approximation constraints
and construct OPT-R (see details in Section 3.1). SolviegQRT-R will give us a near-optimal
solution with performance guaranteeWe summarize the above steps in Fig. 1. In the rest of this

section, we fill in the details of these steps.



In(1 + s7)

0 Sl(l) 8[(2) S;S) 5 Sinax

Figure 2: An illustration of piece-wise linear approxinaatiwith four linear segments.

3.1 Piece-wiseLinear Approximation

The nonlinear constraint in (8) can be written as

B - h
S n(f) < (1 2T, (10)
In2 nB,
feF
To simplify notation, denote
pihy
=—. 11
S 1B, (11)

Then, the nonlinear term in (10) can be writtenladl + s;). The range of; is [0, s;*], with

s = (Ppaxhi)/(nBy). Our piece-wise linear approximation is to use a set of atutses linear
segments to approximake(1 + s;) for s; € [0, s)***] (see Fig. 2). Denotethe maximum allowed
error of this linear approximation. Denokg§ the number of linear segments that is needed to meet
this error requirement.X; will be determined later.) Denotg, s;1, . . ., sk, the X-axis values

of the endpoints of thesE segments, witl; o = 0 ands; x, = s***.

A naive approach to generate a linear approximation is ng;akfi’ﬁ, k =0,...,K;, evenly
distributed betweer, s)***]. When settingk; sufficiently large, the linear approximation error
requirement will be satisfied. Although this approach isigtitforward and easy to implement,
it will generate too many linear segments to approxinmateé + s;). Note that the derivative of

curveln(1 + s;) decreases a§ increases. This motivates us to enlarge the size of an alterv



ass; increases. Thus, we want to pursue an algorithm that od{indalides the K intervals
within [0, s**]. By “optimally”, we refer to finding theminimum K, such that the maximum

approximation error of each line segment is no more than

Denoteml(k) as the slope of the-th linear segment, i.e.,

w _ (1 +s) —In(1+ 57"

m
l Sl(k) . 8l(k-1)

(12)

Denotegl("”)(sl) as thek-th linear approximation segment (see Fig. 3), which carepeasented as

follows:
gl(k)(sl) = ml(k) . <sl — sl(k_l)> +In <1 + sl(k_l)) , for sl(k_l) <5 < sl(k). (13)

Our algorithm computes the values 4P, .. ., 5" sequentially (for a givem) based on Al-

gorithm 1 as follows.
Algorithm 1 Initialization: & := 0 andsl(o) = 0.
1. k:=k+1.

2. Computenl(k) satisfying

- ln(ml(k)) + ml(k)(l + sl(k_l)) —1—In(1+ sl(k_l)) =e. (14)
3. After obtainingvnl(k), computesl(k) satisfying (12).
4. If sl(k) < 5", go back to Step 1.

5. K; :=k; sl(Kl) = s,

(o2}

. Updatem"" using (12).

The values ofml(k) in (14) andsl(k) in (12) can be solved by numerical methods such as bisection
method or Newton’s method [18, Chapter 2].

Our linear approximation method (Algorithm 1) satisfies limear approximation error re-
quirement with the minimum number of linear segments toaxiprateln(1+s;) for s; € [0, sj**].

We formalize these two claims in the following two lemmas.
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Lemmal For the piece-wise linear approximation generated by Aigpon 1, the maximum ap-

proximation error of each linear segment is at mast

Proof Denoteel('“) the maximum linear approximation error for theh linear segment, i.e.,

(k) _ _ 4,k — ()
R e A S {In(t+5) = g0}
where the equality holds sinde(1 + s;) is a convex function of; and all linear segments lie

beneath thén(1 + s;) curve.

Consider the:-th linear segment. Referring to Fig. 3, we can mgffé(sl) upward until it is

tangential to thén(1 + s;) curve. It is easy to see that the tangential point achievesximum

approximation erroq(’“). Denote.§l(k) the X -axis value of that tangential point. Since the derivative

o1 1 _ (R
of In(1 + ) is -, we havem =m,", e,

(k 1
s§>zm_1, (15)
my

Whereml('“) is slope of linear segme@ﬁk)(sl). Therefore, the maximum approximation ert&?

can be written as

o) =tn(1+57) —g”(57) = (1 +§7) = [ - (5 = 5"+ 1+ 5"

1 k 1 k-1 (k—1)
:ln<1+w—1>—{ml()- W_l_sz( ) +In(l1+s; )
my my
= — ln(ml(k)) + ml(k)(l + sl(k_l)) —1—In(1+ sl(k_l)),

where the second equality holds due to (13) and the thirdliégbalds due to (15).
In Algorithm 1, we set—In(m{") + m®¥ (1 + s* V) =1 —In(1 + s* V) = ¢. Thus, the
maximum linear approximation error for theth linear segment is. This result holds for all

k=1,---,K; This completes the proof. U

11



Figure 3: An illustration of the maximum approximation erfor the k-th linear segment.
Lemma 2 For a given approximation error boundfor each linear segment, the number of linear
segments to approximalte(1 + s;) for s; € [0, s}***] is minimized by Algorithm 1.

The proof of Lemma 2 is given in the appendix.
With the proposed piece-wise linear approximatioinot + s;), constraint (8) can be replaced

by the following set of constraints:

B
Zm(f)ﬁﬁgl(k)(&) (k=1,...,K,le L),
feF I

wheres; andgl(k)(sl) are given in (11) and (13), respectively. Substituting (@dgl (13) into the

above equation, we have

B h _ _
> nlf) < — {m}’“ [Zﬂ _— ”} +1In [1+s§’“ 1’]} (k=1,...,K,l€L). (16)
= In 2 nB;

By replacing the nonlinear constraints in (8) with the seliméar constraints in (16), we have a

12



revised formulation for OPT, which we denote as OPT-R.

OPT-R: max Y w(f)r(f)

jeF
s.t. Constraint$l), (2), (3), (4), (9), (16)

Variablesy, € {0,1}, pi, mi(f),r(f) >0( e L, f € F).

We have the following lemma on the relationship between @RaiRd OPT. Its proof is given

in the appendix.

Lemma 3 A feasible solution to OPT-R is a feasible solution to OPT.

3.2 A Near-Optimal Solution

OPT-R is a mixed-integer linear program (MILP) and can beekfficiently by CPLEX solver
[3]. Now we give a bound for the gap between the optimal objectalues of OPT and OPT-R,
despite that the optimal objective value of OPT is unknown.

To proceed, we need the following notation. For a given pagsignmenty;, p;) to OPT (i.e.,
satisfying constraints (1), (2), (9)), defike= (7(f), 7(f), v, ;) as a feasible solution to OPT,

where(7(f), 7(f)) is the optimal solution to the following linear program (LP)

OPT (y, p1): maxy _w(f)r(f)

fer

st. > n(f)=r(f) (f € Fiie Nyi=s(f))

leLPut

1#(i,5(f)) I#(d(f),1)

dYoonlh= >, nlf)  (FeFieNi#s(f),df)

leLdut lectn

> onlf)<a (leL),

feFr

wherec¢;, = B;log,(1 + ’j;gll). Note that OPTy,, p;) is an LP once we set the power variables in

OPT to valuesy;, p;).
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For a feasible solutio = (7(f),7(f), v, ) to OPT, we define a feasible solutieii =

(rt(f), 7] (f), . m1) to OPT-R as follows. In<! = (+(f),7{(f). g0, 1), we let(ri(f),](f)) be
the optimal flow routing solution to OPT-R with givém, p;). Thatis,(r1(f),r(f)) is the optimal

solution to the following LP, in which the power variable<O®T-R are set to given valuég, p;).

OPT-R(y;,pi): max»_ w(f)r(f)

fer
st. Y n(f)=r(f) (feFieNi=s(f)
leLout
1#(i,5(f)) 1#(d(f)1)
Y. )= Y nlf) (FeFieNi#s(f)df)
leLPut lecln
S on(f) < (ler).
fer

WhereclT is a linear approximation of links capacity under transmission powser

Remark 1 Recall that we use constraints (16) to replace constrai@}sr( OPT-R. When linKs

power is fixed ap;, we can determine which line segment is involved in our lirkggoroximation

of In(1 + ;). Suppose thé-th linear segment is used, i.e " < BEb < s"). Then, linki's

approximated capacity can be written gs= 2 - ") (2:21). O

To quantify the performance gap between our solution to @RiRd the optimal solution to
OPT, we will first show that for any feasible power assignmenty,), the objective value gap

betweerk andx' is at most - Do fer Zleﬁg(% 1’%w(f). Then, we will show that the gap between

the optimal objective values of OPT and OPT-R is also bouthyed 3~ . » Zleﬁo&g DLw(f).

Lemma4 For given (y;, p;), denotez and ' the objective values of solutiga (to OPT) and

solutionx' (to OPT-R), respectively. Then we have zf <e- 37, - Zleﬁo(% DLw(f).

We find that it is not easy to characterize the gap betweand z' directly. Sincez is the
optimal value of OPTy;, p;) andz' is the optimal objective value of OPT(R, p;), we study the
dual problems of OP{ly;, p;) and OPT-Ry;, p;) and quantifyz — z' in the dual domain.
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Proof Note thatz is the optimal objective value of ORF;, p;) and ' is the optimal objective
value of OPT-Ry;, p;). Consider the dual problems of OBJ, p;) and OPT-Ry;, p;). Denote
D(y;, p;) and D-Ry,, p;) as the dual problems of ORY;, p;) and OPT-Ry;, p;), respectively. Note
that D(y;, p;) and D-Ry;, p;) will have the same constraints, but different objectivections.

Denote the dual variables corresponding to the first groupoaftraints in OP{y;, p;) and
OPT-Ry;,p) asu(f), f € F. Denote the dual variables corresponding to the secondgrbu
constraints in OPTy;, p;) and OPT-Ry;, p;) asv;(f), f € F,i € N,i # s(f),d(f). Denote the
dual variables corresponding to the third group of constsan OPTy,, p;) and OPT-Ry;, p;) as
q,, ! € L. Then, Oy, p;) can be written as

D(y, p): min Z aq
leL

st.—u(f) = w(f) (f € F) (17)
vi(f) +a =20 (f € F.le L), # s(f), d(f))
—ui(f) + @ >0 (f € F.le Lm0),i# s(f),d(f))
u(f)+a >0 (f € F,l€ LO(s(f))) (18)

u(f),v;i(f) unrestrictedg > 0.

Dual problem D-Ry;, p;) can be written as

D-R(yi,p): min > dlg
lec

s.t. All constraints in Dy, p;).

Combining (17) and (18) gives ug > w(f),l € LO%(s(f)),f € F. Since these two dual
problems are both minimization problems, it is easy to seaettte solution withy = w(f), (I €
LO%(s(f)), f € F) and all the other variables equal to zero is the optimal &oidb both Oy, p;)
and D-Ry;, p;). That is

. { w(f) iflink [ is an outgoing link froms( f);
0

@ = otherwise (19)
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Then, we have

z-2=>ag =) dg =Y (@a-dHg=> > (@-duwl). (0

leL leL lel fEF leLOut(s(f))

where the first equality holds due to the strong duality priydé, Chapter 6] and the third equality
holds due to (19). Note that the gap betwaeanndclT is

_ B

C — clT < o l2 (21)
since the maximum error of our linear approximation.i€ombining (20) and (21) gives us

z— 2 <e- Z Z 1?2 (f) .

FEF 1eLom(s(f))
This completes the proof. O

Now we are ready to characterize the performance gap betilve@ptimal objective values of

OPT-R and OPT as follows.

Theorem 1 The gap between the optimal objective values of OPT and ORTAR more than

€ Zfe]—' Zzecg&g 1%“)(]‘?)'

Proof Denotex* andz* the optimal solution and the optimal objective value of Of@§pectively.
From Lemma 4, sinc&™ is a particular case at, we know that there exists a feasible solution
of OPT-Rxp corresponding tox* such that the performance gap betwegrandxy is at most

€D ter Zleﬁo(m) —5w(f). Denotezg the objective value of solutiox; to OPT-R. Then, we have

z*—zRSG-Z Z %w(f). (22)

Out
feFiecL OB

Denotez}, the optimal objective value of OPT-R. Sineg is the objective value of a feasible

solution to OPT-R whiles}, is the optimal objective value of OPT-R, we have

Combining (22) and (23), we havwg — 2 <e- >, » Zleﬁo(% ln2w(f)'
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Based on Theorem 1, we are able to give an algorithm to obtagaeaoptimal solution to OPT
with performance guarantee as follows.
Algorithm 2 Input: Given a desired performance gggdor the solution.

1. Compute based on

XY Pu = (24)

Out
JeF LELSY

2. Computenl(k) and sl(k) by Algorithm 1.

3. Construct OPT-R based @ml(k) and sl(k).
4. Solve OPT-R optimally with CPLEX.

Upon the completion of Algorithm 2, we will have a near-opirsolution to OPT with a guaran-

teed performance bound (no more thafitom the optimal objective value).

4 Maximizing Throughput and Minimizing Networ k-wide En-
ergy Consumption

In the previous section, we have shown how to maximize nétwmoughput while satisfying a
given total network-wide energy budget. The problem wamfdated as &ingle objectiveopti-
mization problem OPT. In this section, we take one step &urttVe are interested in maximizing
network throughput while minimizing energy consumptione ¢ést this problem into lulticri-
teria optimization problem with two objectives. Mathematicallyis problem can be written as

follows:

MP: max > w(f)r(f)

min Z(pz + yiPa)
leL

s.t. Constraintsl), (2), (3), (4), (8)
Variablesy, € {0,1},p,,7(f),r(f) >0( €L, f e F).

As we can see, minimizing network-wide energy consumptiwhraaximizing network through-

put are two conflicting objectives. For such a problem, ihigéneral not possible to find a single
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feasible solution that is optimal for both objectives at Hane time. For example, when is
minimized (i.e., 0)U is also 0 but is not maximized. Therefore, it is importantlarify what we
mean by optimal solutions.

In this paper, we are interested in finding the so-called WeBkreto-optimal solutions [5].
Weakly Pareto-optimal solutions are optimal in the senagiths impossible to improve the per-
formance of both objectives simultaneously. Specifically,say that P*, U*) is a weakly Pareto-
optimal point to problem MP if there does not exist anothéutsan to problem MP with( P, U)
such thatP < P* andU > U*.

To find weakly Pareto-optimal points, we transform the neuligria optimization problem into
a single objective optimization problem. This can be donenmying the second objective (i.e.,
> o (o + i Py) ) into the constraints as follows.

SP(Pot): max > w(f)r(f)

feF

S.t. Z(pl + ylPd) < Pnet
lel

Constraintél), (2), (3), (4), (8)

Variablesy, € {0,1},p;,7(f),r(f) >0( €L, f e F).

We see that this single objective optimization problem ecely the same as OPT that we studied
earlier. For a fixed value af,., solving SRP,.) will give us oneweakly Pareto-optimal point of
problem MP [5]. By varyingP,.; from 0 to P* = | L|- (Puax + Ps), We can obtain all the weakly
Pareto-optimal points. These points provide a mapping fftemetwork-wide energy budgét,..:

to the maximum network throughptt, which we denote as : P, — U. This mapping/ =
(Pt ) is @an optimal throughput-energy curve, which characterfzaw the maximum network
throughput changes as the total network-wide energy copsanrate varies. This curve is useful
for network operators to have a holistic view of the entirgropl trade-off curve and decide which
point to choose so as to meet their needs.

We have several interesting properties about this optinmalighput-energy curnié = m(P,),

which are shown in Property 1.
Property 1 The optimal throughput-energy curle= 7 (P, ) has the following properties.
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1. m(P,e) is @ nondecreasing function &f,.

2. w(Pyet) has a starting point Psiar, 0), i.€., m(Ppet) = 0 fOr Py < Pagart @NAT(Phet) > 0

for Pnet > Pstart-

3. m(P,et) has a saturation pointPuag, Usat)s 1-€.,T(Paet) = Usat TOr Py > Paay @ndm(Pet) <
Usat for Pnct < Psat-

Proof We prove each property as follows.

1. AssumeP!) < P® . we need to show thdt(P.)) < U(P). Note thatU(P ) and

net * net

U (P( )) are the optimal objectives of &P, not) and SRP, not) respectively. Since?'!) <

net

not, the feasible region of § not) falls inside the feasible region of $Pn0t) Thus, we

haveU (P'Y)) < (P)).

net

2. Such starting point exists because when a link is activeust consume a constant power
P,. For a session to have positive throughput, it must actathtbe links along the path that
are used by this session for transporting data. TRus, can be determined by the session
that uses the minimum number of hops from its source to itrdd®on. Denoten; the

minimum hops of sessiofi. Then, Py, can be written a$s,,y = Py - min{m; : f € F}.

3. The saturation pointP.., Us.:) can be determined as follows. We can first compute the
maximum network throughput without network-wide energpstoaint, i.e., solving the fol-

lowing optimization problem.

max Zw
s.t. Constraint$l), (2), (3), (4), (8).

The optimal objective value of the above problenvjs.. Then, we determine the minimum
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energy that can achieves this throughput by solving thevieilg optimization problem.

min Z(pl + yFe)
lel

st. w(f)r(f) = Usat

Constraintg1), (2), (3), (4), (8).

Based on Property 1, Fig. 4 illustrates a typical optimabtighput-energy curve for a multi-hop

wireless network.

5 Numerical Results

In this section, we present some numerical results to ihbstour theoretical findings in Section 3

and 4.

5.1 Simulation Settings

We consider a 50-node network deployed in a 1800000 square area and a 100-node network
deployed in a 1500« 1500 square area. The topologies of the 50-node network @@ahdde
network are shown in Fig. 5 and Fig. 6, respectively. We asstinat all units are normalized with
appropriate dimensions. We assume the maximum transmissige is200 and the maximum

transmission power i#,.. = 2. We assume node device power consumptiof,is 0.2. The
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Figure 5: The topology for a 50-node network.

Table 2: Each session’s source node, destination node, eigthtdor the 50-node network.

Sessionf | Source node(f) | Dest. nodel(f) | Weightw(f)
1 10 35 0.5
2 35 21 0.9
3 5 23 0.7
4 43 14 0.6
5 29 7 0.8

channel bandwidth i3, = 1 for all links and channel gain i5;, = dl‘4, whered, is the distance

between link’s transmitting node and receiving node.

5.2 Resaultsfor the 50-node Networ k

Within this network, we assume there & = 5 user sessions, with source node and destination
node of each session chosen randomly. Table 2 lists theesaode, destination node, and weight

for each session in the network.

5.2.1 Near-Optimal Solution for OPT

In this case study, we assume the maximum network-wide gregsumption raté’,.; = 40.

We set the maximum acceptable performance gap between tmeabpbjectives of OPT and
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linear approximation OPT-R as= 0.1. We apply Algorithm 2 here. Based on (24), we compute

€= iz o = 0.0046. Based or¥, we compute the piece-wise linear approximation
djer Zzeco(l}t) mzw(f)

according to Algorithm 1.

Then we can use CPLEX to solve OPT-R. We obtain that the maximetwork throughput is
U = 22.12. The achieved session data ratesiare- 4.41, r, = 6.39, r3 = 9.37, r4, = 3.89, and
r5 = 6.62. Our algorithm gives power control and flow routing solugdar the network. We list

the power assignment for each active link in Table 3, and tve fbuting results in Table 4.

5.2.2 The Optimal Throughput-Energy Curve

For the same 50-node network instance, we characterizptitaa throughput-energy curve based
on our theoretical results in Section 4. We show the optimadughput-energy curve in Fig. 7.
From the figure, we can see all three properties as statedopeRy 1. As shown in the fig-
ure, the curve is nondecreasing. The network throughpytkee zero when the network en-
ergy consumption rate is no greater thag,.. For the starting pointFs..t, 0), Since session 1
needs at least 5 hops , we hakg,,; = 5 - P; = 1. For the saturation pointP..;, Us.;), We get

(Paat, Usat) = (106.20, 36.14). The network throughput stops increasing and kee@36 44 when
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Table 3: Power assignment on each active link in the finaltewidor the 50-node network.

Link Power Link Power Link Power
1—27 0.1819 1—23 0.4317 1—17 0.4658
2 — 45 0.1958 224 0.0370 3 — 44 0.2050
3—13 0.1805 3—6 0.0350 4 — 45 0.2083
4 — 22 0.1692 4 — 13 0.2441 5— 44 0.2652
5—8 0.1775 5—>7 0.0313 6—4 0.6487
7— 15 0.4290 7—8 0.1534 8 — 44 0.0707
8 — 15 0.2924 8—17 0.1209 8 —3 0.5524
9 — 43 0.1794 9—10 0.2835 10 — 47 | 0.5756
10 — 42 | 0.0952 10 — 27 | 0.3033 10 — 26 | 0.0101
10— 9 0.2166 10 —>1 0.2355 11 — 34 | 0.2547
11 — 32 | 0.1617 13-4 0.4853 13— 3 0.0908
14 — 22 | 0.2196 15 — 47 | 0.2544 15— 8 0.4918
157 0.5515 17 — 45 | 0.1424 17 — 23 | 0.0151
17 — 14 | 0.1431 22 — 45 | 0.0628 22 — 17 | 0.3000

22 — 14 | 0.2092 24 — 47 | 0.3587 24 — 2 0.0575
25 — 37 | 0.1283 26 — 32 | 0.3506 27 — 39 | 0.4733
27 — 10 | 0.3033 27 — 1 0.1177 29 — 39 | 0.5181
29 — 34 | 0.1950 29 — 32 | 0.0776 29 —> 1 0.6365
30 — 25 | 0.0791 32 — 36 | 0.0774 32 — 11 | 0.2840
33 — 43 | 0.5081 34 — 35 | 0.4009 34 — 29 | 0.3055
34 — 11 | 0.1450 35 — 41 | 0.3099 35 — 34 | 0.4009
36 — 30 | 0.3999 37— 33 | 0.1787 39 — 29 | 0.0787
39 — 27 | 0.3061 39 — 23 | 0.1054 39 — 17 | 0.5299
41 — 14 | 0.2310 42 — 15 | 0.4273 42 — 10 | 0.2433
43 — 47 | 0.3793 43 — 21 | 0.4274 43 — 9 0.2347
44 — 5 0.3408 44 — 3 0.6235 45 — 23 | 0.1872
45 — 22 | 0.0306 45 — 17 | 0.2270 45 — 4 0.1253
45 — 2 0.1260 47 — 43 | 0.3982 47 — 42 | 0.0315
47 — 24 | 0.5573 47 — 15 | 0.1061
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Table 4: Flow routing results for the 50-node network.

Sej[smn Flow rate on each link attributed to sessipn
r10—27(1) = 2.48, r1p—26(1) = 1.93, r11-34(1) = 1.93
1 r26532(1) = 1.93, 727 539(1) = 2.48, 729 +34(1) = 2.48

r32511(1) = 1.93,734535(1) = 4.41, 139 529(1) = 2.48
T1527(2) = 1.65, 72524(2) = 1.98, 7943(2) = 1.65
10-0(2) = 1.65, 71132(2) = 1.38, 11422(2) = 1.98
r22-545(2) = 1.98, roga—47(2) = 1.98, r2537(2) = 2.76
7‘274,10(2) = 1.65, r29_— 32 (2) = 1.38,’!‘294,1(2) = 1.65,
2 r30—25(2) = 2.76, r32536(2) = 2.76, r33543(2) = 2.76
r34—29(2) = 3.03, r34—11(2) = 1.38, r3541(2) = 1.98
) ) 2
) ) )=
)

(

(
r35534(2) = 4.41, 736 530(2) = 2.76, r3733(2) = 2 76
r41514(2) = 1.98, 143521 (2) = 6.39, 74552(2
r4743(2) = 1.98

r1—23(3) = 1.93, r1517(3) = 0.28, r2545(3) = 0.55
r3—13(3) = 3.03, r356(3) = 2.76, r4a—45(3) = 2.80
r4—22(3) = 2.98, r5544(3) = 1.93, r558(3) = 3.03
r5—7(3) = 4.41, r6-4(3) = 2.76, r7—15(3) = 1.93
r78(3) = 2.48, r8—44(3) = 1.65, rg_15(3) = 1.65

3 rg—3(3) = 2.21, r10-27(3) = 1.65, r10-»1(3) = 1.38
r13—-4(3) = 3.03, r1547(3) = 3.58, r1723(3) = 5.24
r22545(3) = 0.78, r2217(3) = 2.21, 72452(3) = 0.55
ro7—39(3) = 0.83, ro7—1(3) = 0.83, r39_523(3) = 0.83
r42-510(3) = 3.03, r44—3(3) = 3.58, r45523(3) = 1.38
r45517(3) = 2.76, 747 542(3) = 3.03, 747 524(3) = 0.55

ri—17(4) = 1.93, ra545(4) = 1.93, r9510(4) = 1.93
4 r10-27(4) = 1.93, 7117 514(4) = 1.93, 722 514(4) = 1.93
roa—2(4) = 1.93, ra71(4) = 1.93, ra3—a7(4) = 1.93
r43—9(4) = 1.93, r45522(4) = 1.93, r47524(4) = 1.93
7‘1%27(5) = 1.65, 7‘34,44(5) = 2.21, 7‘4*>13(5) =2.21
rs—7(5) = 2.21, rg—7(5) = 2.21, r10—47(5) = 2.48
7‘10%42(5) =1.93, 7‘134,3(5) = 2.21, T15~>8(5) =221
5 ris—7(5) = 2.21, r17-45(5) = 2.21, ra710(5) = 4.41
r20-539(5) = 4.96, 7"29%1(?) 1.65, r39527(5) = 2.76
5
5 =

(
739517(5) = 2.21, 742415 (5) = 1 93 T44-5(5) = 2.21
r45—4(5) = 2.21, rar15(
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Figure 7: The optimal throughput-energy curve for the 58ennetwork, where the\'\” sign in

the figure indicates nonlinear scale f@y.; € [106.20, 431.20].

the network energy consumption rate exceBgs = 106.20.

5.3 Resultsfor the 100-node Networ k

For the 100-node network, we assume that theréJare= 10 active sessions in the network, with
each session’s source node, destination node, and weigin igi Table 5.

We assume that maximum network-wide energy consumptieat = 100. By employing
our method, we obtain that the maximum network throughpuUt is 42.00. The achieved session
data rates are;, = 10.86, ro = 1.63, r3 = 7.09, 4, = 4.03, r5 = 9.71, r¢ = 4.00, r7 = 9.90, rg =
4.91, andrg = 8.08, andr;y = 7.19. The detailed results for power assignment and flow routing
are given in Table 6 Table 7. The optimal throughput-energye for the 100-node network is

shown in Fig. 8.

6 Conclusion

Network-wide energy consumption has become an importamteza for network operators. In
this paper, we studied two tightly coupled problems for rekawide energy conservation. In
the first problem, we studied how to maximize network thrqughunder a network-wide energy

constraint. We formulated this problem into a mixed-integenlinear program (MINLP) and
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Table 5: Each session’s source node, destination node, aigthtifor the 100-node network.

Sessionf | Source node(f) | Dest. nodel(f) | Weightw(f)
1 40 26 0.9
2 27 17 0.8
3 4 55 0.7
4 31 41 0.6
5 78 100 0.8
6 7 83 0.6
7 73 91 0.3
8 12 10 0.4
9 64 38 0.6
10 51 56 0.5
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Figure 8: The optimal throughput-energy curve for the 188ennetwork, where the\X” sign in

the figure indicates nonlinear scale f8y.; € [102.64, 708.40].
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proposed a near-optimal solution with guaranteed perfoo@éound. In the second problem, we

explored joint optimization of both network throughput arergy consumption via a multicriteria

optimization framework. We showed that the weakly Pargittreal points in the solution can

characterize an optimal throughput-energy curve. ThdtesLthis paper offer both solutions and

insights to network operators when total energy consumgtio the entire network is of greater

concern than local energy consumption.
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Table 6: Power assignment on each active link in the finaltesidor the 100-node network.

Link Power Link Power Link Power

1 — 46 0.1610 || 34 — 67 1.5375 || 65 — 41 0.3069
1— 42 0.2142 34 —6 0.4389 || 65 — 39 1.0259
27 0.2847 || 35—84 | 0.2735| 66 — 73 0.5698

3—91 0.3482 || 36 — 100 | 0.3999 66071 0.2038
3—=9 0.1693 | 39 —+ 68 | 0.6296 | 67 — 76 1.3448

4 — 83 0.9835| 39 —64 | 0.9111| 67 — 48 0.0920
48 1.0165 || 40 — 47 | 1.0196 || 67 — 34 | 0.4997

6 — 99 0.0637 || 40 —30 | 0.9804 | 67 — 13 0.0635
6 —34 | 03062 41 — 77 | 0.2932| 68 — 64 | 0.2041
7T— 74 1.7122 || 41 — 26 1.2846 || 68 — 54 1.0492
7 — 46 0.1229 || 41 —23 | 0.1969 | 68 — 48 0.7467
7T—1 0.1649 || 42 — 74 1.0565 || 71 — 55 0.6433

8 — 83 0.1445| 42— 36 | 09435 71 — 14 | 0.2603
8 — 11 0.2208 || 43 — 86 | 0.0492 72— 2 0.2990
9 — 91 0.2227 || 43 — 85 0.3158 || 73 — 77 | 0.5455
10 -+ 80 | 0.3385 || 45 — 72 2.0000( 73 —T1 0.2047
10 -+ 25 | 0.4205|| 46 — 94 | 0.3406 || 73 — 41 0.8028
11 — 52 | 0.0571 || 46 — 42 0.0634 || 73 — 14 | 0.4035
11 — 23 | 0.9333 || 47 — 86 | 0.2463 || 74 — 100 | 0.3717
12— 71 | 2.0000 || 47 — 43 | 0.2360 | 74 — 36 0.0181
13— 56 | 1.8806 || 47 — 17 | 0.1470 | 76 — 56 0.0249
13— 54 | 0.0581 | 48 —+54 | 0.6765| 77 — 65 0.3229
13— 19 | 0.0613 | 48 —+19 | 0.6538 | 77 — 55 0.6875
14 — 77 | 0.1055 | 48 — 13 | 0.3289 | 77 — 41 0.2516
14 — 55 | 0.1035 || 50 — 52 0.0788 | 77 — 14 | 0.2097
14— 3 1.7910 (| 51 —99 | 0.8556| 78 — 45 1.2430
15—90 | 0.9260 || 51 — 35 0.1607 || 78 — 15 0.1874
15— 1 1.0740 || 51 — 20 | 0.3715| 79 — 40 0.2861
18 —+89 | 0.1069 || 52 — 65 1.2163 || 80 — 25 0.0982
19 — 57 | 0.9917 || 52 —28 | 0.0143 | 82 — 91 0.1406
19 — 10 | 1.0083 || 52 —23 | 0.7694 || 83 — 11 0.0557
20 — 99 | 0.0729 || 54 — 57 1.0144 || 84 — 87 | 0.2759
20 —+ 38 | 1.9271 || 54 — 19 | 0.0057 || 85 — 26 2.0000
23 — 65 | 04337 || 54 — 10 | 0.9799 || 86 — 95 0.0103
23 — 52 | 0.2177 || 55 — 68 1.8836 || 86 — 66 0.2518
23 — 41 | 0.8404 || 57 — 91 0.4561 || 87 — 28 0.1607
25 — 62 | 0.1981 (| 57 — 82 0.2743 || 89 — 79 0.1058
27 — 18 | 0.0430 || 57 — 10 | 0.0381 || 90 — 94 | 0.1749
28 — 52 | 0.0117 || 60 — 50 | 0.2361| 94 — 83 1.8668
28 — 39 | 0.8018 || 60 — 28 | 0.2986 | 94 — 46 0.1332
29 — 38 | 2.0000 || 62 — 33 1.9127 || 95 — 66 0.2907
30 —+85 | 0.4852 || 64 — 67 | 0.2590|| 99 — 34 | 0.2677
30 —+43 | 0.2821 || 64 —48 | 0.5956 || 99 — 20 0.3143
31 —+60 | 0.3863|| 64 — 13 | 0.8886 99 —» 6 0.0444
33 —+29 | 0.2502 || 65— 77 | 0.6673

28



Table 7: Flow routing results for the 100-node network.

Sejcswn Flow rate on each link attributed to sessipn

7‘144,77(1) =1.36, 7304»85(1) = 2.96, 7‘304,43(1) = 4.09, 7‘4()%47(1) = 3.82, 7‘4()%30(1) = 7.04, 7‘41%26(1) =4.09

1 r43-86(1) = 2.27, 74385(1) = 3.82, ra7—s86(1) = 1.82, r4743(1) = 2.00, r66—73(1) = 2.72, r66—71(1) = 1.36
7‘714,14(1) =1.36, 7‘734,41(1) =2.72, 7‘774,41(1) = 1.36, 7‘85~>26(1) =6.77, 7‘86~>95(1) = 2.50, 7864»66(1) =1.59
r95566(1) = 2.50

2 r18—89(2) = 1.63, ra7—18(2) = 1.63, 740—47(2) = 1.63, r47—17(2) = 1.63, r79—40(2) = 1.63, rgo—79(2) = 1.63
r4—83(3) = 3.18, r4,5(3) = 3.89, rg_83(3) = 1.62, 78511 (3) = 2.27, r11552(3) = 2.96, r11-23(3) = 4.11

3 r14—55(3) = 2.04, r23—65(3) = 3.86, 723541 (3) = 2.35, r4177(3) = 2.35, r52565(3) = 0.86, r52523(3) = 2.10
re5—77(3) = 4.72, r7755(3) = 5.03, r7714(3) = 2.04, 183511 (3) = 4.80

4 7‘234,41(4) 1.76, rog—y52 (4) 2.04, 7‘31%60(4) =4.03, r50—52 (4) = 1.99, r52565 (4) = 2.27, 152523 (4) =1.76
760—50(4) = 1.99, r60—28(4) = 2.04, r6541(4) = 2.27
r1—46(5) = 0.05, r1-42(5) = 2.95, r2—7(5) = 3.93, r7—74(5) = 3.55, 77— 46(5) = 0.38, r1590(5) = 2.78

5 r15—-1(5) = 3.00, r36—100(5) = 6.31, T42574(5) = 3.18, r42536(5) = 2.98, ra5_72(5) = 3.93, ra6—42(5) = 3.21
r722(5) = 3.93, r7a—100(5) = 3.41, r74—36(5) = 3.33, r78—45(5) = 3.93, r78—15(5) = 5.78, r9o—94(5) = 2.78
r94_s46(5) = 2.78

6 r1—46(6) = 3.24, r7—46(6) = 0.76, r7—1(6) = 3.24, r46—94(6) = 4.00, ros—53(6) = 4.00
r3-91(7) = 1.82,r3,9(7) = 1.99, ro_91(7) = 1.99, r14—-3(7) = 3.81, r19-57(7) = 2.95, ra3—52(7) = 2.27
12839 (7) = 2.27, 73968 (7) = 2.81, r39564(7) = 3.19, 14123(7) = 2.27, 748 54(7) = 3.14, r48519(7) = 2.95

7 r5228(7) = 2.27, r54—57(7) = 3.14, r55568(7) = 0.10, 75791 (7) = 3.60, r57—82(7) = 2.50, rea—4s(7) = 3.19
16539 (7) = 3.72, 176848 (7) = 2.91, r7155(7) = 0.10, r71514(7) = 1.77, r73577(7) = 4.54, 173571 (7) = 1.87
r73—41(7) = 1.45, 173514 (7) = 2.04, r77565(7) = 3.72, 177541 (7) = 0.82, rg2_91(7) = 2.50
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Appendix

Proof of Lemma 2 Our proof is based on contradiction. Assume that the numbknear seg-

ments that Algorithm 1 generates i§, and sl('“),k; = 0,..., K, are the corresponding -axis

values of the endpoints. Suppose that there is another-pisecinear approximation that needs
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K] < K, linear segments antj'“)s (withk = 0,..., K, tl(o) = 0 and tl(K{) = 5"*) are the
correspondingX -axis values of the endpoints.

Sincesl(l) is the largesfX -axis value of the second endpoint, we ha,%g sl(l). By induction,

we can show thadl(k) < sl('“),k; =1,...,K]. Fork = K], we havetl(Kl/) < sl(Kl/). Further, since

K/ 12 K/ . ;
K| < K, we also havel( < sp***. Therefore, we conclude thtaf D)< s, )< s, which is

a contradiction totl(K{) = 5"**. This completes our proof. O
Proof of Lemma 3 Note that the only difference between OPT and OPT-R is tHedapacity
constraints. Each link capacity constraint for link OPT is replaced by a set of linear constraints
in OPT-R. Since these linear constraints are generated épitte-wise linear segments lying
beneath théog curve, the feasible region of OPT-R falls inside in the felesregion of OPT.
Thus, a feasible solution to OPT-R is also a feasible saliubdOPT. O
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