Decoupling QoS Control from Core Routers: A Novel Bandwidth Broker Architecture for Scalable Support of Guaranteed Services

Zhi-Li Zhang, Zhenhai Duan, Lixin Gao, and YiWei Thomas Hou

Virtual Time Reference System: A Unifying Scheduling Framework for Scalable Support of Guaranteed Services

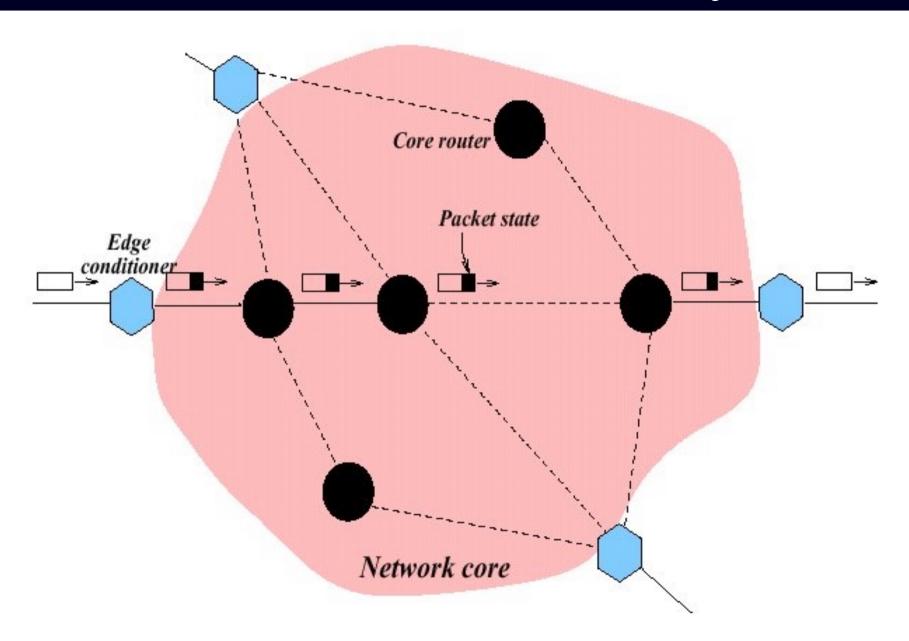
Zhi-Li Zhang, Zhenhai Duan, and YiWei Thomas Hou

Speaker: Wei-Ming Yin Instructor: Ying-Dar Lin

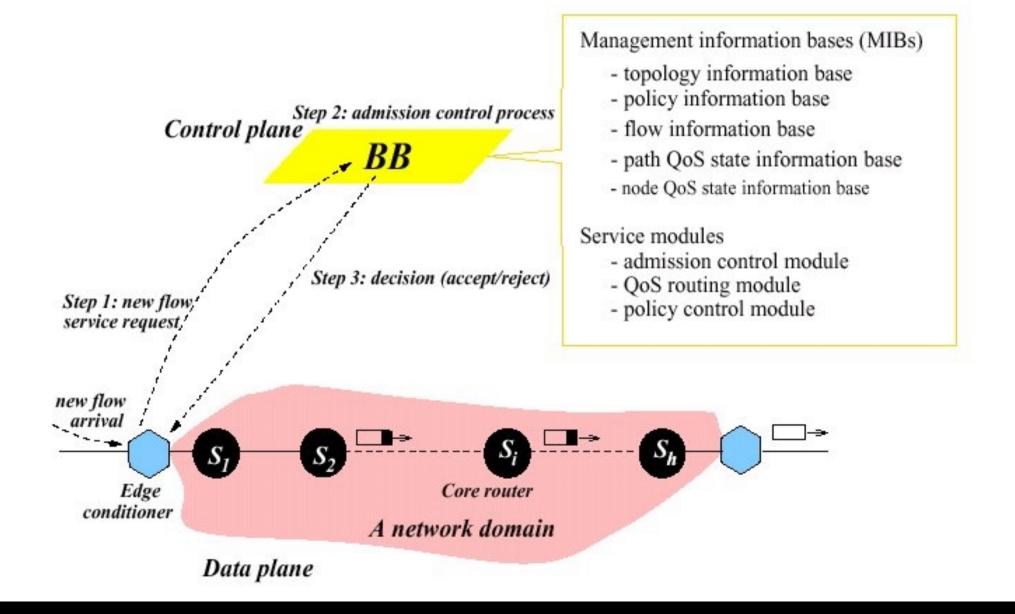
Nov. 24th, 2000

Agenda

- Motivation
- Virtual Time Reference System
 - Core stateless framework
 - End-to-end delay bound
- Bandwidth Broker Architecture
- Admission Control for Per-Flow Guaranteed Services
 - All rate-based vs. Mixed rate- and delay-based schedulers
- Admission Control for Class-Based Guaranteed Services
 - Dynamic flow aggregation under all rate-based schedulers
- Simulation Investigation
- Conclusion and Future works


Motivation

- Hop-by-hop admission control approach
 - Maintain per-flow or class-based QoS states at core routers
 - Perform local admission control and resource reservation
 - Maintain consistency of soft QoS states among all core routers
 - High communication overhead, less scalability, complicated design of core routers
- Path-oriented admission control approach
 - Relive core routers of QoS functions
 - Scale to both per-flow and class-based guaranteed services
 - Enable sophisticated QoS provisioning and admission control
 - No or minimal configuration of core routers


Virtual Time Reference System

- A core stateless framework
- A unifying scheduling framework
 - Core routers only perform forwarding and scheduling
- Three logic components
 - Packet state (on packet)
 - Edge traffic conditioning (edge)
 - Virtual time reference/update mechanism (core)
- Characterize per-hop behavior and end-to-end delay bound

Virtual Time Reference System

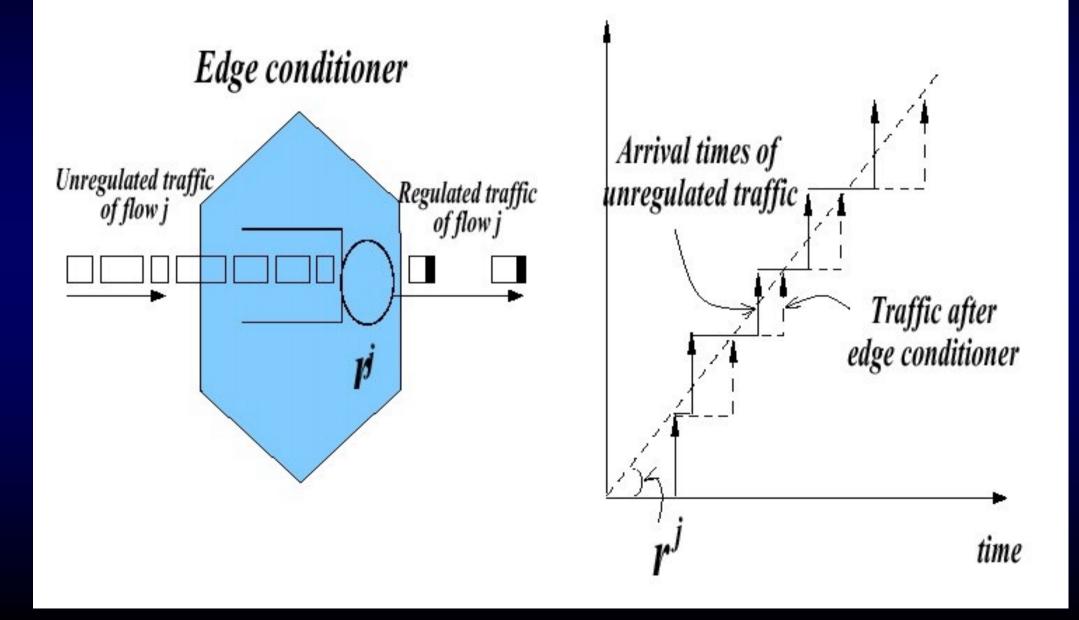
System Overview

Dynamic packet state

• State types:

The *k*th packet of flow *j* at core router *i*. The rate - delay parameter pair (r^{j}, d^{j}) . \leftarrow admission control The virtual time stamp $w_{i}^{j,k}$. \leftarrow edge The virtual time adjustment term $\delta^{j,k}$. \leftarrow edge

• Carried in packet header, initialized and inserted at edge, referenced (scheduling module) and updated (forwarding module) at core.

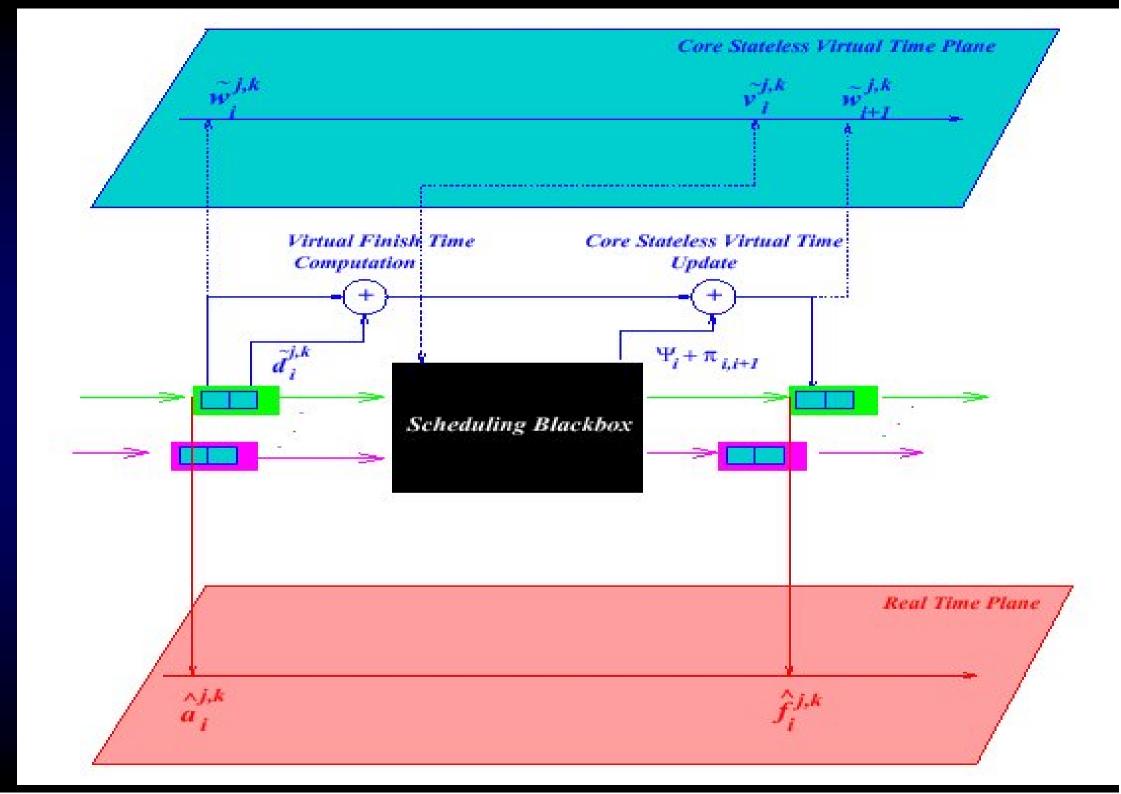

Edge Traffic Conditioning

• Regulate packets injection rate not exceeding reserved rate

$$a_1^{j,k+1} - a_1^{j,k} \ge \frac{L^{j,k+1}}{r^j},$$

where $a_1^{j,k}$ denotes the arrival time of *k*th packet of flow *j*, and $L^{j,k}$ denotes the size of that packet.

Edge Traffic Conditioning



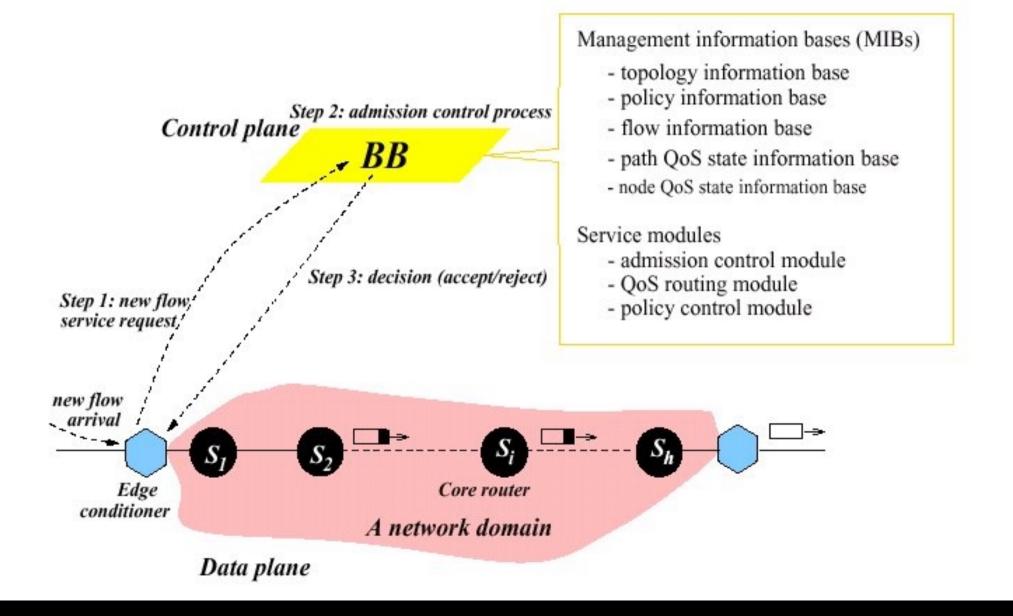
Virtual Time Reference/Update

• Per-hop behavior

virtual delay : $d_i^{j,k} = \begin{cases} \frac{L^{j,k}}{r^j} + \delta^{j,k}, & \text{rate - based scheduler} \\ d^j, & \text{delay - based scheduler} \end{cases}$ virtual finish time: $v_i^{j,k} = w_i^{j,k} + d_i^{j,k} \leftarrow$ referenced error term of core ronter $i: \Psi_i$ actual finish time : $f_i^{j,k} \le v_i^{j,k} + \Psi_i \leftarrow \text{per - hop behavior}$ propagation delay to next hop of core ruter $i:\pi_i$ • 1

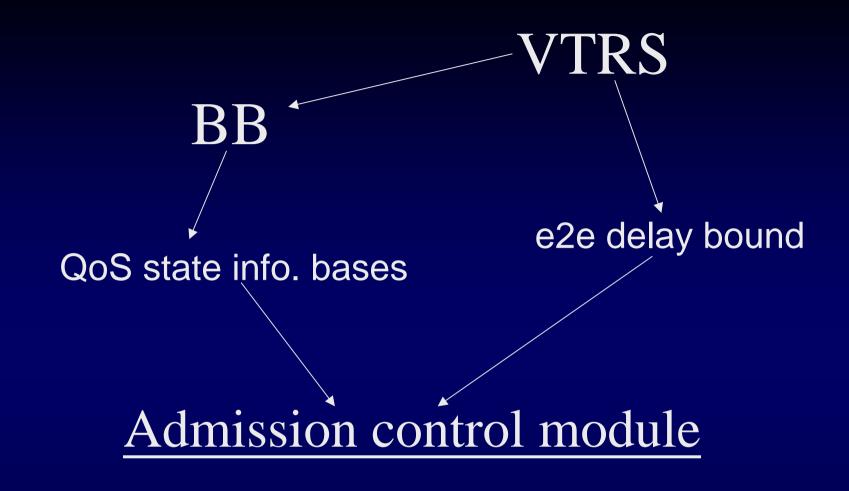
$$w_{i+1}^{j,k} = v_i^{j,k} + \Psi_i + \pi_i \quad \leftarrow \text{ updated}$$

Virtual Time Reference System


Suppose total *h* hops, of which *q* hop are rate-based scheduler, and *h-q* hops are delay-based schedulers. The traffic profile of flow *j* is (*s^j*, *r^j*, *P^j*, *L^{j,max}*).

$$f_{h}^{j,k} - a_{1}^{j,k} \leq d_{core}^{j} = q \frac{L^{j,\max}}{r^{j}} + (h-q)d^{j} + \sum_{i \in P} (\Psi_{i} + \pi_{i})$$
$$d_{edge}^{j} = \frac{\sigma^{j} - L^{j,\max}}{P^{j} - \rho^{j}} \frac{P^{j} - r^{j}}{r^{j}} + \frac{L^{j,\max}}{r^{j}} = T_{on}^{j} \frac{P^{j} - r^{j}}{r^{j}} + \frac{L^{j,\max}}{r^{j}}$$

end - to - end delay bound


$$\Rightarrow d_{e2e}^{j} = d_{edge}^{j} + d_{core}^{j}$$
$$= T_{on}^{j} \frac{P^{j} - r^{j}}{r^{j}} + (q+1) \frac{L^{j,\max}}{r^{j}} + (h-q)d^{j} + \sum_{i \in P} (\Psi_{i} + \pi_{i})$$

Bandwidth Broker Architecture

QoS State Information Bases

- Flow information base
 - Flow id
 - Traffic profile: (σ^{i} , ρ^{j} , P^{j} , $L^{j,max}$)
 - Service profile: *D*^{*j*,*req*}
 - QoS reservation: (*r*,*d*)
- Node QoS state information base
 - Bandwidth, buffer capacity, scheduler type, error term
- Path QoS state information base
 - Hop number, sum of error terms and propagation delays, minimal residual bandwidth along the path

Whether there is a feasible rate or not, with which delay requirement is less than or equals to e2e delay bound

Admission Control

- For per-flow guaranteed services
 - Pure rate-based schedulers
 - Mixed rate- and delay-based schedulers
 - Scalability?
- Dynamic flow aggregation
- For class-based guaranteed services
 - Pure rate-based schedulers
 - Mixed rate- and delay-based schedulers

Per-flow: Path with Only Rate-based Schedulers

• Parameters

- P: path
- v: flow
- r^{v} : reserved rate of flow v
- d^{v} : delay parameter of flow v
- S_i : core router i
- F_i : set of flows currently traversing S_i
- C_i : total bandwidth of S_i
- $C_{res}^{S_i}$: residual bandwidth at S_i

 C_{res}^{P} : minimal residual bandwidth, i.e. $C_{res}^{P} = \min_{i \in P} C_{res}^{S_i}$

 $(\sigma^{v}, \rho^{v}, P^{v}, L^{v, \max})$: traffic profile of flow v

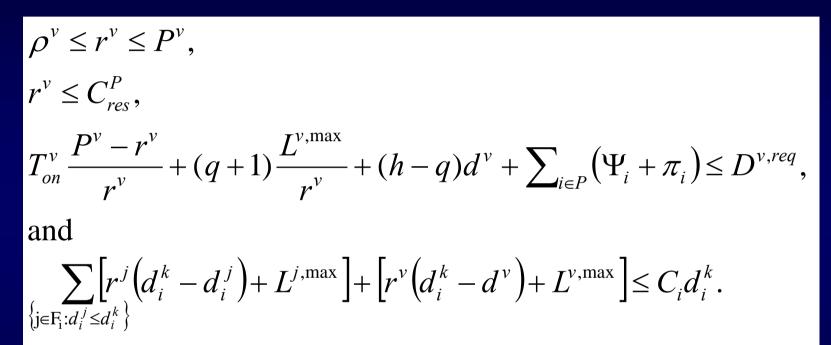
 $D^{v,req}$: end - to - end delay requirement

Per-flow: Path with Only Rate-based Schedulers

• Fundamental inequalities

$$\rho^{v} \le r^{v} \le P^{v} \text{ and } r^{v} \le C_{res}^{P}$$

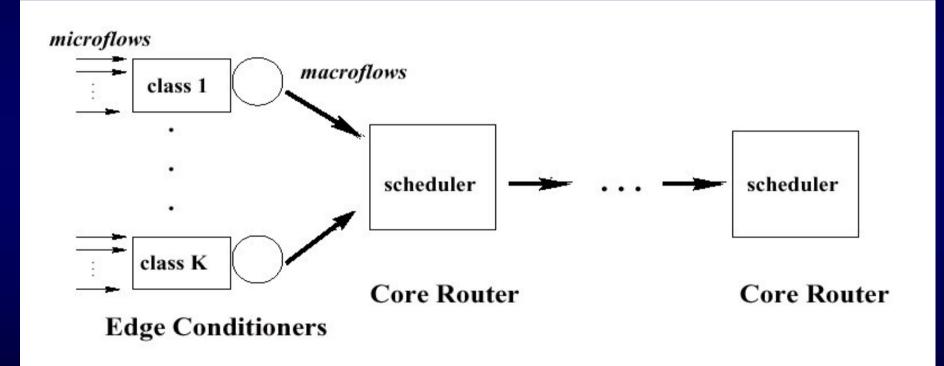
$$T_{on}^{v} \frac{P^{v} - r^{v}}{r^{v}} + (h+1) \frac{L^{v, \max}}{r^{v}} + \sum_{i \in P} (\Psi_{i} + \pi_{i}) \le D^{v, req}$$


• Feasible rate range derivation

Let r_{\min}^{v} be the smallest r^{v} $\Rightarrow r_{\min}^{v} = [T_{on}^{v}P^{v} + (h+1)L^{v,\max}]/[D^{v,req} - \sum_{i \in P} (\Psi_{i} + \pi_{i}) + T_{on}^{v}]$ Therefore, feasible rate range, R_{fea}^{*} , is defined as $[r_{fea}^{low}, r_{fea}^{up}] = [\max\{\rho^{v}, r_{\min}^{v}\}, \min\{P^{v}, C_{res}^{P}\}]$

- The flow is admissible if the feasible rate range is non-empty, *d^v* is not necessary to be determined.
 - The admissibility test can be done in O(1)

Per-flow: Path with Mixed Rate- and Delay-based Schedulers


• Fundamental inequalities

Per-flow: Path with Mixed Rate- and Delay-based SchedulersEfficient algorithm :

Class-based Guaranteed Service Model

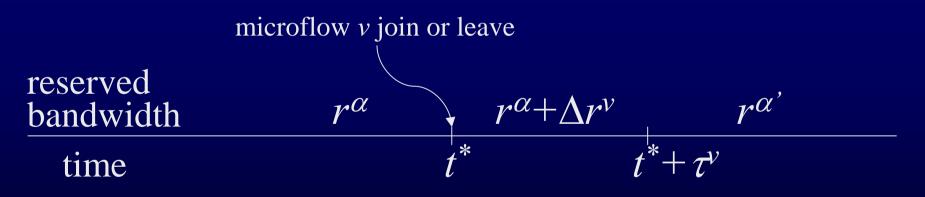
- Enhance the scalability of proposed BB architecture
- Service Model

 Dynamic flow aggregation has not been identified nor addressed Dynamic Flow Aggregation (1/5)

- Impact on e2e delay (macroflow $\alpha \rightarrow \alpha'$)
 - All rate-based schedulers

worse - case delay at edge conditioner is larger than

$$d_{edge}^{\alpha'} = T_{on}^{\alpha'} \frac{P^{\alpha'} - r^{\alpha'}}{r^{\alpha'}} + \frac{L^{\alpha', \max}}{r^{\alpha'}}$$


some packets from new macroflow may experience a worst - case delay in the network core

by
$$d_{core}^{\alpha} = h \frac{L^{P, \max}}{r^{\alpha}} + \sum_{i \in P} (\Psi_i + \pi_i)$$

instead of
$$d_{core}^{\alpha'} = h \frac{L^{r, \max}}{r^{\alpha'}} + \sum_{i \in P} (\Psi_i + \pi_i)$$

Dynamic Flow Aggregation (2/5)

- Edge delay bound
 - Contingency bandwidth : to eliminate the lingering delay effect of the backlog packets
 - A new microflow v aggregates or de-aggregates, the contingency bandwidth is Δr^{v} , and the contingency period is τ^{v} .

• Δr^{ν} and τ^{ν} are chosen to bound the edge delay as $d_{edge}^{new} \leq \max \left\{ d_{edge}^{\alpha}, d_{edge}^{\alpha'} \right\}$

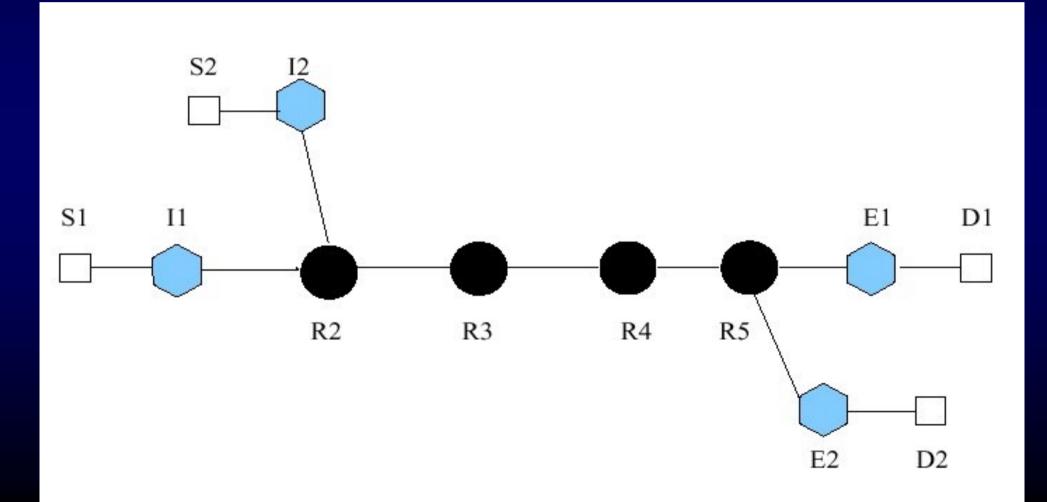
Dynamic Flow Aggregation (3/5)

- Edge delay bound
 - The microflow v is with (σ^v , ρ^v , P^v , $L^{v,max}$).
 - Sufficient conditions on Δr^{ν} and τ^{ν} :

 $\begin{cases} \Delta r^{\nu} \ge P^{\nu} - r^{\nu} & (\text{ microflow join }) \\ \Delta r^{\nu} \ge r^{\nu} & (\text{ microflow leave}) \end{cases}$ and $\tau^{\nu} \geq \frac{Q(t^*)}{\Lambda n^{\nu}}$, where $Q(t^*) \leq d^{\alpha}_{edge}(r^{\alpha} + \Delta r^{\alpha}(t^*))$ is the backlog, where $\Delta r^{\alpha}(t^{*})$ is the total contingency bandwidth allocated to the macroflow α at time t^* . \rightarrow contingency period bounding

Dynamic Flow Aggregation (4/5)

• Core delay bound


$$d_{core}^{\alpha'} = q \max\left\{\frac{L^{P,\max}}{r^{\alpha}}, \frac{L^{P,\max}}{r^{\alpha'}}\right\} + (h-q)d^{\alpha} + \sum_{i \in P} (\Psi_i + \pi_i)$$

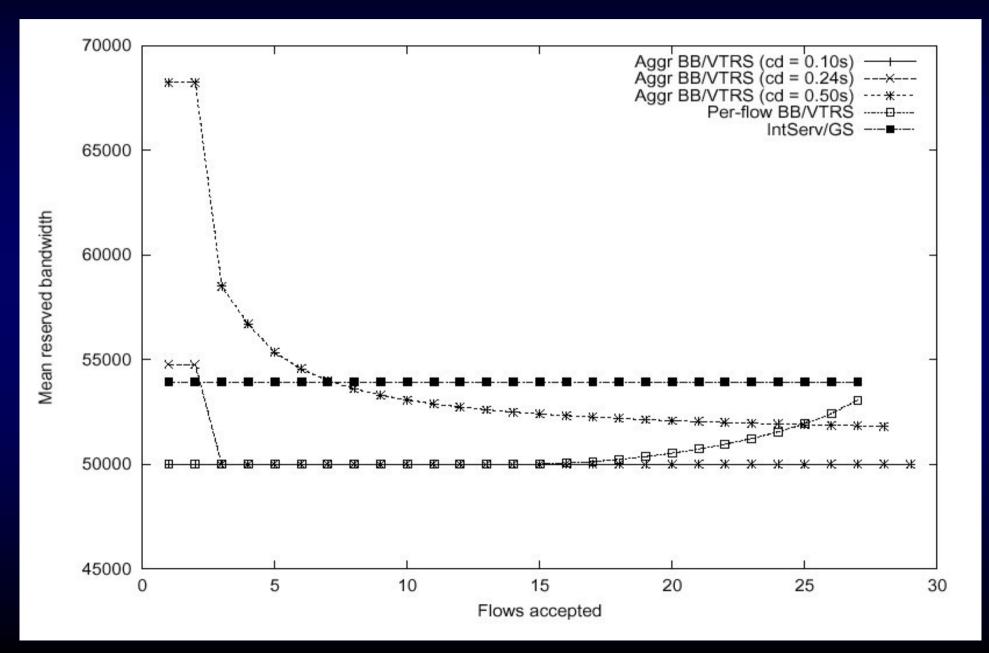
Dynamic Flow Aggregation (5/5)

• Admission control: Microflow join

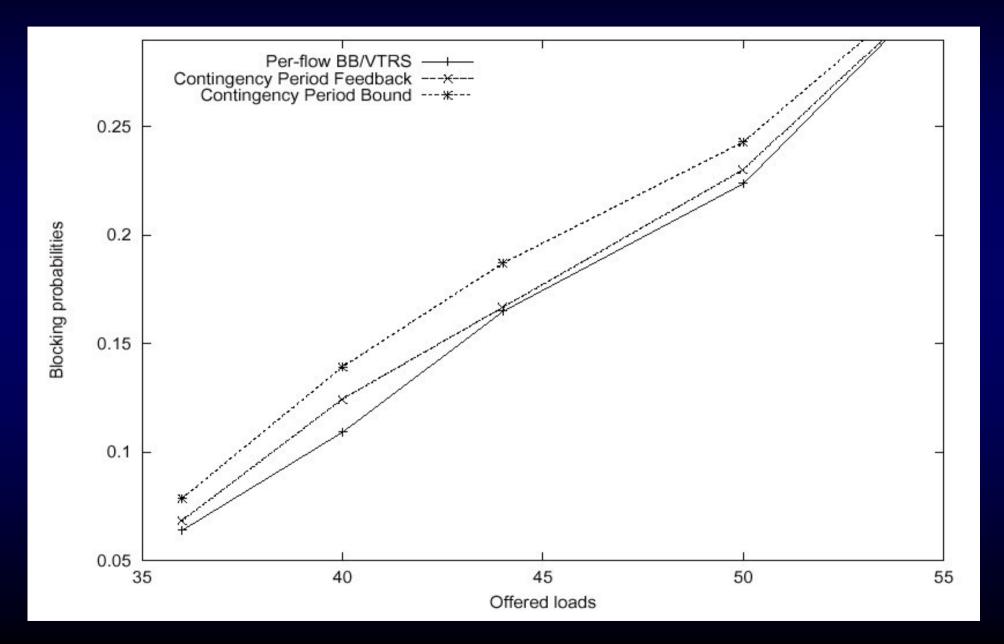
$$d_{e2e}^{\alpha'} = d_{edge}^{\alpha'} + \max\left\{d_{core}^{\alpha}, d_{core}^{\alpha'}\right\} \le D^{\alpha, req}$$

since $r^{\alpha'} \ge r^{\alpha}$, hence, $d_{core}^{\alpha} \le d_{core}^{\alpha'}$.
 $\Rightarrow d_{edge}^{\alpha'} \le D^{\alpha, req} - d_{core}^{\alpha}$(a)
also, $\rho^{v} \le r^{\alpha'} - r^{\alpha} \le P^{v}$(b)
 $\Rightarrow r^{\alpha'}$ can be derived from (a) (b)

Simulation Investigation



Comparison


Table 2: Comparison of IntServ/GS, per-flow BB/VTRS and aggregate BB/VTRS schemes.

	Number of Calls admitted				
		Rate-Based Only		Mixed Rate/Delay-Based	
Delay bounds		2.44	2.19	2.44	2.19
IntServ/GS		30	27	30	27
Per-flow BB/VTRS		30	27	30	27
Aggr BB/VTRS	cd = 0.10	29	29	29	29
	cd = 0.24			29	29
	cd = 0.50			29	28

Mean Reserved Bandwidth

Flow Blocking Rate

Conclusion

- Present a novel BB architecture based on VTRS
- Decouple the QoS control plane from data plane
- Propose path-oriented admission control approach
- Support per-flow and class-based guaranteed services
- No or minimal configuration of core routers

Future Works

- Distributed bandwidth broker architecture
- Inter-Domain QoS reservation and service level agreement