
Authorized Private Keyword Search over Encrypted
Data in Cloud Computing
Ming Li∗, Shucheng Yu†, Ning Cao∗ and Wenjing Lou∗

∗Dept. of ECE, Worcester Polytechnic Institute, email: {mingli,ncao,wjlou}@ece.wpi.edu
†Dept. of CS, University of Arkansas at Little Rock, email: sxyu1@ualr.edu

Abstract—In cloud computing, clients usually outsource their
data to the cloud storage servers to reduce the management costs.
While those data may contain sensitive personal information,
the cloud servers cannot be fully trusted in protecting them.
Encryption is a promising way to protect the confidentiality of
the outsourced data, but it also introduces much difficulty to
performing effective searches over encrypted information. Most
existing works do not support efficient searches with complex
query conditions, and care needs to be taken when using them
because of the potential privacy leakages about the data owners
to the data users or the cloud server. In this paper, using online
Personal Health Record (PHR) as a case study, we first show
the necessity of search capability authorization that reduces the
privacy exposure resulting from the search results, and establish
a scalable framework for Authorized Private Keyword Search
(APKS) over encrypted cloud data. We then propose two novel
solutions for APKS based on a recent cryptographic primitive,
Hierarchical Predicate Encryption (HPE). Our solutions enable
efficient multi-dimensional keyword searches with range query,
allow delegation and revocation of search capabilities. Moreover,
we enhance the query privacy which hides users’ query keywords
against the server. We implement our scheme on a modern
workstation, and experimental results demonstrate its suitability
for practical usage.

I. INTRODUCTION

In recent years, cloud computing is gaining much mo-
mentum in the IT industry. Especially, we have seen the
dramatic growth of public clouds, in which the computing
resources can be accessed by the general public. One of the
biggest advantages of a public cloud is its virtually unlimited
data storage capabilities and elastic resource provisioning [3].
Many IT enterprizes and individuals are outsourcing their
databases to the cloud servers, in order to enjoy the much
lower data management cost than maintaining their own data
centers. It has never been easier than now that a variety of
users/clients could access or share information stored in the
cloud, independent of their locations.

Despite enthusiasm around the cloud data service outsourc-
ing model, its promises cannot be fulfilled until we address the
serious security and privacy concerns that data owners have.
The outsourced data may contain very sensitive information,
such as Personal Health Records (PHRs), facebook photos,
and business documents. Many people remain dubious about
the levels of privacy protection of their data when stored
in a server owned by a third-party cloud service provider.
Given that there have been numerous reported data breaches
related to cloud servers [2], which could be due to malicious
attacks, theft or internal software bugs and errors, it can be
claimed that the servers are not fully trustworthy. This implies

that there is no absolute governance about how the owners’
information will be used and whether the owners actually
control access to their data. To cope with the tough trust
issues and to ensure owners’ control over their own privacy,
applying data encryption on the documents before outsourcing
has been proposed as a promising solution, which is already
adopted by many recent works [26], [7], [24]. In this paper,
we focus on the “multi-owner” setting, where the encrypted
data are contributed by multiple owners and can be searched
by multiple users.

With encrypted data, one of the key functionalities of a
database system —- keyword search becomes an especially
challenging issue. We will take PHR as the main moti-
vating example. First we need to support frequently used
complex query conditions efficiently. For example, a user
may want to find out other patients with the same dis-
ease and symptoms from an encrypted PHR database, by
submitting a query like “(20<age<30) AND (sex=“female”)
AND (illness=“diabetes”)”. Also, a medical researcher may
query the database using the following: (age>50) AND (re-
gion=“Massachusetts”) AND (illness=“cancer”). This class
of boolean formulas feature conjunctions among different
keyword fields and we will refer to them as multi-dimensional
keyword search in this paper. To hide the query keywords from
the server, it is apparently inefficient for a user to download
the whole database and try to decrypt the records one by
one. Searchable encryption (SE) has been proposed as a better
solution [35], [18], [10], [15], [36], [13]; informally speaking,
a user submits a “capability” encoding her query to the server,
who searches through the encrypted keyword indexes created
by the owners, and returns a subset of encrypted documents
that satisfy the underlying query without ever knowing the
keywords in the query and the index.

However, most existing solutions of SE lack the above query
flexibility or do not bear enough efficiency. Early works mostly
only support single-keyword search [18], [14], [15], [37].
Later, several multi-keyword search schemes were proposed
[19], [5], [11], [33], [21], [32], [22], [34], [13] that enable
conjunctive or disjunctive search formulas. It usually incurs
high computational complexity to realize multi-dimensional
range query over encrypted data due to the heavy reliance
on public-key cryptography (PKC). There are only a few
works that specifically tackle this challenging problem, such
as [33]. In this paper, we also aim at supporting efficient multi-
dimensional equality, subset and range queries.

On the other hand, in many existing SE schemes, the

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.55

383

legitimate users are often given a secret/private key that
endows her unlimited capability to generate any query of
her choice, which is essentially a “0” or “1” authorization.
However, we note that “fine-grained search authorization”
is an indispensable component for a secure data outsourcing
system. Although the accesses to actual documents can be
controlled by separate cryptographic enforced access control
techniques such as attribute-based encryption [9], [39], [26],
“0-1” search authorization may still lead to leakage of data
owners’ sensitive information. For example, if Alice is the
only patient with a rare disease in a PHR database, by
designing the query in a clever way (e.g., submitting two
queries with/without the name of that disease and with Alice’s
demographic info), from the results a user Bob will be certain
that Alice has that disease. Thus, we argue that a user should
only be allowed to search for some specific sets of keywords;
in particular, the authorization shall be based on a user’s
attributes. For instance, in a patient matching application in
health social networks [28], [23], a patient should only be
matched to patients having similar symptoms as her, while
shall not learn any information about those who do not.

Furthermore, system scalability is an important concern for
SE. For symmetric-key based SE schemes, the encryption and
search capabilities are not separable, so a multi-owner system
would require every owner to act as a capability distribution
center, which is not scalable. PKC-based schemes do not
have this problem, but if every user obtains restricted search
capabilities from a central trusted authority (TA) who assumes
the responsibility of authorization at the same time, it shall be
always online, dealing with large workload, and facing the
threat of single-point-of-failure. In addition, since the global
TA does not directly possess the necessary information to
check the attributes of users from different local domains,
additional infrastructure needs to be employed (such as using
a credential chain [27]). It is therefore desirable for the users
to be authorized locally.

In this paper, we systematically study the problem of
authorized private keyword searches (APKS) over encrypt-
ed data in cloud computing. We make the following main
contributions. First, we propose a fine-grained authorization
framework in which every user obtain search capabilities under
the authorization of local trusted authorities (LTAs), based on
checking for user’s attributes. Part of the authorization of a
higher level LTA is delegated to its lower-level LTAs. The
central TA’s task is reduced to minimum, and can remain semi-
offline after initialization. Thus, our framework enjoys a high
level of system scalability.

Under the above framework, we propose two solutions for
searching on encrypted data, namely APKS and APKS+. We
make novel use of a recent cryptographic primitive, hierar-
chical predicate encryption (HPE), which features delegation
of search capabilities. Both of our solutions enable efficient
multi-dimensional queries with equality, subset and a class
of simple range queries. Since the PKC-based SE schemes
suffers from a type of dictionary attack that reveals the
underlying keywords in a query to the server, in APKS+ we

Fig. 1. System model for multi-owner data outsourcing in cloud computing.

enhance the query privacy by preventing that kind of attack
with the help of additional proxy servers. To the best of
our knowledge, the APKS+ scheme is the first to achieve
efficient multi-dimensional range query, capability delegation
and query privacy simultaneously.

Finally, we implement our scheme on a modern workstation
and carry out extensive performance evaluation. Through ex-
perimental results we demonstrate that our scheme is suitable
for a wide range of delay-tolerant database search applications.

II. PROBLEM FORMULATION

A. System Model
We consider a cloud computing environment that hosts an

outsourced database, based on which data sharing applications
can be built. For illustration purposes, we will use an online
PHR service (e.g., GoogleHealth [1]) as case study in this
paper. The entities in the system are: data owners/users,
trusted authorities, and the cloud server. In this paper, data
owner refers someone who owns the information, e.g., a
patient who encrypts her PHR data and wants them to be
stored in the cloud server while preserving her privacy. The
cloud server stores the encrypted data contributed by multiple
owners in a database and performs search for the users. The
“users” generally refer to those who can perform searches
over the encrypted database. They could originate from various
avenues, and usually need to search and access the data due
to their professional responsibilities. We assume that the data
contents are protected using separate, existing data encryption
schemes [26], which is not the focus of this paper. The system
architecture is illustrated in Fig. 1.

B. Threat Model
We assume the cloud server to be “honest-but-curious”,

which is also adopted by many existing works on SE [15],
[36] and data security in cloud computing environments [7],
[39], [26], [13]. That is, the server is “curious” to learn and
infer the data contents or searchable index, but will honestly
follow the protocol run. The server could also collude with
any number of users to derive additional information about
other users’ queries and the encrypted data.

C. Design Goals
The system design of APKS over encrypted data in cloud

computing should achieve the following main security and
performance goals.

∙ Index and Query Privacy: The primary security goal
is to prevent the cloud server from learning any useful

384

Field notation: 𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

Field name: Age Sex Region Illness Provider
Alice: 25 Female Worcester Flu Hospital A
Bob: 61 Male Boston Diabetes Hospital B

TABLE I
ILLUSTRATION OF DATA STRUCTURE: (PLAINTEXT) KEYWORD INDEXES

FOR PHRS OF TWO OWNERS.

information about the encrypted documents, indexes, and
the users’ queries, except what can be derived from the
search results. Index privacy refers to confidentiality of
the index, while query privacy protects users’ queries.

∙ Fine-grained Search Authorization, and Revocation:
It is equally important to prevent curious users from
gaining additional information from the database than
what they need to know. To reduce the risk of privacy
exposure by unrestricted query capabilities, the users’
search requests should be authorized in a fine-grained
manner. In addition, there should exist a mechanism to
revoke the search capability of a user.

∙ Multi-dimensional Keyword Search: The system should
support multi-dimensional keyword search functionality,
namely, we want to support conjunctions among differ-
ent dimensions where in each dimension there can be
multiple keywords (including equality, subset and range
queries).

∙ Scalability and Efficiency: The system should allow
multiple owners to encrypt and contribute data, while
enabling a large number of users to search over multiple
owners’ data. In achieving this, the system should have
high scalability, i.e., low key management overhead. Also,
efficiency should be acceptable for per-search operation
from a user’s point of view.

In addition, other important system-level security require-
ments such as user authentication, access control and account-
ability can be realized by existing techniques [26], [39], [38],
thus are not the main focus in this paper.

D. Notations and Definitions
Without special notice, we will use upper-case letters to

denote variables and lower-case letters for values of variables.
Attributes and Keywords. An attribute generally refers to

a category of property of an owner and her data, such as “age”,
“illness”, and “provider”. These attributes are multi-valued
which can be either numerical or non-numerical, for example,
“age” can have values as the integers 0-100, while “illness”
has values as the names of every illness. Each attribute value
is mapped to an element in 𝔽𝑞 , a finite field using a hash
function ℋ : {0, 1}∗ → 𝔽𝑞 . In the following, an attribute is
also called as a “dimension” or “field” in the index, and each
attribute value is a “keyword”.

Data Structure. We assume each owner’s original data
consists of two parts: one is the actual file(s), 𝒟, which
may be encrypted using separate techniques (e.g., [7], [26]),
and another is a searchable index �⃗� for 𝒟 consisting of
𝑚 dimensions, and each dimension contains one keyword:
�⃗� := (𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑚). The collection of all owners’ indexes
can be regarded as a table of 𝑚 columns, and an example is

𝑚,𝑚′ Number of fields in original/converted index
𝑑, 𝑑𝑖 Maximum # of ORs in a query over each/𝑖-th dimension
𝑘 Height of attribute hierarchy/expansion factor
�⃗�, 𝑍𝑖, 𝑧𝑖 An index, the 𝑖-th index field and its value (keyword)
𝑄, ˆ𝑄,𝑤𝑖 A query, its CNF form and a query keyword
�⃗� Plaintext vector
�⃗� Predicate vector
𝑛 Length of plaintext/predicate vectors
𝜓, 𝜙 Mappings from �⃗� to �⃗�, and from ˆ𝑄 to �⃗�

TABLE II
MAIN NOTATIONS.

shown in Table I.
Query. There are three types of basic query terms defined

over a single dimension: equality (𝑍𝑖 = 𝑤𝑖), subset (𝑍𝑖 ∈ 𝒮𝑖),
and range query (𝑠 ≤ 𝑍𝑖 ≤ 𝑡). We consider multi-dimensional
keyword queries which are formulas connecting query terms
over different dimensions using AND (∧). For example,
𝑄 := (30 ≤ 𝑍1 ≤ 60) ∧ (𝑍2 = “*”) ∧ (𝑍3 ∈

{“Boston”, “Worcester”}) ∧ (𝑍4 = “Diabetes”).
The above can be converted into conjunctive normal form

(CNF), where the subset and range queries are expressed using
the equality and OR (∨) operators. We denote the CNF form
of a query 𝑄 as �̂�.

Predicates. We consider a class of predicates to be functions
ℱ := {𝑓�⃗�∣�⃗� ∈ 𝔽

𝑛
𝑞 }, where 𝑓�⃗�(�⃗�) = 1 iff. �⃗� ⋅ �⃗� = 0 [21]. We

define a mapping 𝜙 from a query �̂� to a predicate vector �⃗�,
and another, 𝜓 from an index �⃗� to a plaintext vector �⃗�.

Search Capabilities. In searchable encryption, the user
needs to submit a search capability (also called trapdoor)
𝑇𝑓�⃗� encoding the predicate 𝑓�⃗� , with which the server eval-
uates 𝑓�⃗�(⋅) against the encrypted indexes. To define search
delegation, we say that a capability 𝑇𝑓�⃗�1 is more restrictive

than another 𝑇𝑓�⃗�2 , if 𝒵1 ⊆ 𝒵2, where 𝒵1 := {�⃗� =

𝜓−1(�⃗�)∣𝑓�⃗�1
(�⃗�) = 1}, and 𝒵2 := {�⃗� = 𝜓−1(�⃗�)∣𝑓�⃗�2

(�⃗�) = 1},
and is denoted as 𝑇𝑓�⃗�1 ≺ 𝑇𝑓�⃗�2 . For convenience, a capability
is also denoted as 𝑇𝑄 for underlying query 𝑄.

In addition, we denote “choose a value 𝑟 uniformly at
random from 𝔽𝑞 by 𝑟 ∈𝑅 𝔽𝑞”. There are five algorithms:
Setup, GenIndex, GenCap, Search and DelegateCap;
their definitions are shown in our technical report [25] due
to space limitations. Table II shows other main notations.

III. FINE-GRAINED AUTHORIZATION FRAMEWORK FOR

APKS OVER ENCRYPTED DATA

The search authorization framework in this section adds
another layer of fine-grained privacy protection beyond the un-
derlying cryptographic mechanisms used for encrypted search
or data access control. It is complementary and compatible
with the “patient-centric” data access control framework in
our previous work [26].

Basically, since the data owners may do not directly interact
with the users, we delegate the owners’ trust to a trusted
authority (TA) and/or several local trusted authorities (LTAs)
who are in charge of determining users’ search privileges. We
define a hierarchical relationship between the TA and LTAs
(see Fig. 2). Define the “local domain” of an LTA to be the set
of lower-level LTAs and users directly governed by it. The TA

385

Fig. 2. Search authorization framework illustration.

runs Setup, and distributes some basic search capabilities via
GenCap to each 2nd level LTA, after this the TA can be offline
most of the time; while an 𝑖th level LTA runs DelegateCap
to delegate the capabilities of itself to members in its local
domain. A delegated capability must be more restrictive than
its original one.

When a user requests a capability for query �̂� from an
LTA, the LTA checks whether a user either actually possesses
the attribute value set W underlying the �̂�, or is “eligible” for
those values. One way to achieve this is to maintain a database
of attribute values for all users in the LTA’s local domain.
Alternatively, the LTA can issue to each user in its domain a
set of credentials certifying the user’s attribute values, and
verifies those credentials upon a request for capability. In
order to prove its authorization on a capability, a TA/LTA can
issue an identity-based signature [31] on each capability it
generated/delegated. The server has to verify that a received
capability has a valid signature from a registered LTA before
performing search for a user.

The rules of delegating search capabilities by the TA/LTAs
to their local domains can be predefined by the system.
The above captures the hierarchical relationship of access
privileges of personnel in the real-world, and since the autho-
rization tasks are distributed to each LTA, the system becomes
more scalable.

Example. Let the TA be the public health agency of Boston,
the 2nd level LTA be a hospital-A in Boston. TA gives
the basic capability (provider = “hospital-A”) to hospital-A
which indicates the basic restriction for searching on PHRs
of patients who are treated by that hospital. The LTA can
then delegate another capability like (age = “*”) ∧ (illness =
“diabetes”) to a patient who is actually diagnosed to have
diabetes by hospital-A, for patient matching. In contrast, a
doctor can request to search for the specific type of disease she
is treating on. Their capabilities should automatically inherit
the restrictions of the LTA’s.

IV. BASIC SOLUTION OF APKS
A. Overview

The key challenge in building an APKS scheme is how
to efficiently support multi-dimensional range queries and
capability delegation at the same time. In this section, we
exploit hierarchical predicate encryption (HPE) [30] to realize
these goals. Since directly applying HPE does not result in
acceptable efficiency due to the subset and range queries, we

use HPE in a novel way that expresses a class of simple range
queries using attribute hierarchy. The per-index search cost is
𝑂(𝑑 ⋅𝑚 ⋅ log 𝑁) in the worst case, where 𝑁 is the maximum
size of 𝒲𝑖, 𝑑 ≪ 𝑁 is the maximum allowed number of
OR terms over all dimensions. The basic APKS scheme also
supports efficient capability revocation.

B. Hierarchical Predicate Encryption
In HPE, given a ciphertext 𝐶 for plaintext vector �⃗� and

a secret key sk�⃗� for predicate vector �⃗�, the decryption will
succeed if �⃗� ⋅ �⃗� = 0. There are two schemes of HPE in
[30] —- for hierarchical and general delegation, respectively.
We use the general delegation scheme in this paper, in which
delegation is not limited to a specific hierarchical form defined
in [30]. The algorithm definitions are given in the Appendix.
In HPE, an ℓ + 1-th delegated secret key sk�⃗�ℓ,�⃗�ℓ+1

is more
restrictive than its original one sk�⃗�ℓ

, in that sk�⃗�ℓ,�⃗�ℓ+1
can

decrypt 𝐶 only if (�⃗�ℓ ⋅ �⃗� = 0) ∧ (�⃗�ℓ+1 ⋅ �⃗� = 0).
Complexity of HPE: for 𝑛 dimensional vectors, the lengths

of ciphertext and secret key are both 𝑛 + 3 group elements,
while decryption involves 𝑛+ 3 bilinear pairing operations.

C. Building APKS based on HPE
1) Basic Vector Representation for Indexes and Predicates
According to [21], one can represent the basic AND, OR

predicates by first converting them into polynomial forms and
then converting to vectors. In particular:

∙ For “(𝑍1 = 𝑤1)∧ (𝑍2 = 𝑤2)”: the polynomial is written
as 𝑝(𝑍1, 𝑍2) = 𝑟(𝑍1−𝑤1)+(𝑍2−𝑤2), where 𝑟 ∈𝑅 𝔽𝑞 .
Since 𝑝(𝑍1, 𝑍2) = 𝑟𝑍1 +𝑍2 − (𝑟𝑤1 +𝑤2), the attribute
vector is �⃗� = (𝑍1, 𝑍2, 1) where we should substitute 𝑍𝑖

by the actual keyword 𝑧𝑖, while the predicate vector is
�⃗� = (𝑟, 1,−(𝑟𝑤1+𝑤2)), and 𝑝(𝑍1, 𝑍2) = 0 iff. �⃗� ⋅ �⃗� = 0.

∙ For “(𝑍1 = 𝑤1) ∨ (𝑍2 = 𝑤2)”: 𝑝(𝑍1, 𝑥2) = (𝑍1 −
𝑤1)(𝑍2 − 𝑤2) = 𝑍1𝑍2 + 𝑤2𝑍1 + 𝑤1𝑍2 + 𝑤1𝑤2. Thus
�⃗� = (𝑍1𝑍2, 𝑍1, 𝑍2, 1) and �⃗� = (1, 𝑤2, 𝑤1, 𝑤1𝑤2).

Arbitrary CNF/DNF formulas can be represented by the
combinations of the above, however, with exponential com-
plexity [22]. The multi-dimensional keyword query considered
in this paper is a special type of CNF formula, where con-
junctions are across dimensions while disjunctions are within
each dimension. This yields a tradeoff in expressiveness and
complexity; however, it is versatile enough to support equality,
subset and simple range queries, which are popular types of
queries in reality.

In general, the polynomial corresponding to our choice of
formulas can be expressed as a summation of 𝑚 univariate
polynomials:

𝑝(𝑍1, ⋅ ⋅ ⋅ , 𝑍𝑚) = 𝑟1((𝑍1 − 𝑤1,1) ⋅ ⋅ ⋅ (𝑍1 − 𝑤1,𝑑1
)) + (1)

⋅ ⋅ ⋅+ 𝑟𝑚((𝑍𝑚 − 𝑤𝑚,1) ⋅ ⋅ ⋅ (𝑍𝑚 − 𝑤𝑚,𝑑𝑚
)),

where 𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑚 ∈𝑅 𝔽𝑞 . The plaintext vector is �⃗� = 𝜓(�⃗�) =
(𝑍𝑑1

1 , ⋅ ⋅ ⋅ , 𝑍1, 𝑍
𝑑2
2 , ⋅ ⋅ ⋅ , 𝑍2, ⋅ ⋅ ⋅ , 𝑍𝑑𝑚

𝑚 , ⋅ ⋅ ⋅ , 𝑍𝑚, 1),
where ∀1 ≤ 𝑖 ≤ 𝑚,𝑍𝑖 = 𝑧𝑖, and
the predicate vector is �⃗� = 𝜙(�̂�) =
(𝑐1,𝑑1

, ⋅ ⋅ ⋅ , 𝑐1,1, 𝑐2,𝑑2
, ⋅ ⋅ ⋅ , 𝑐2,1, ⋅ ⋅ ⋅ , 𝑐𝑚,𝑑𝑚

, ⋅ ⋅ ⋅ , 𝑐𝑚,1, 𝑐0),

386

Fig. 3. Attribute hierarchies over different types of fields. (a): numerical
attribute —- age. The path of leaf node “0-10” is (“0-100”, “0-30”, “0-10”),
and “0-30” is a level-2 simple range. (b): non-numerical attributes —-
residency region, which illustrates semantic containment.

where 𝑐𝑖,𝑗 is the coefficient of 𝑍𝑗
𝑖 and 𝑐0 =

∑𝑚
𝑖=1 𝑐𝑖,0.

Apparently, the lengths of the vectors are both
𝑛 =

∑𝑚
𝑖=1 𝑑𝑖 + 1. When each univariate polynomial’s

degree 𝑑𝑖 = 𝑑, 𝑛 = 𝑚𝑑 + 1. For simplicity, we assume
∀1 ≤ 𝑖 ≤ 𝑚, 𝑑𝑖 = 𝑑 in the following.

2) The Basic APKS Solution
A straightforward method that directly converts a multi-

dimensional query to its CNF form will yield an encryp-
tion/decryption complexity equal to 𝑂(𝑁𝑚), where 𝑁 is
the total number of possible attribute values in a field. The
inefficiency is due to the large polynomial degree incurred by
the many OR terms. To efficiently support these queries, it
is beneficial to define attributes in a hierarchical way. The
basic idea is similar to that of [33], however in order to
support delegation we need to build the encrypted index in
a specialized way. Note that, arbitrary range query is difficult
to achieve with high efficiency using HPE, instead our solution
supports a class of simple range queries.

Attribute Hierarchies.
Let 𝑍 be a numerical keyword field, an attribute hierarchy

over 𝑍 is a balanced tree 𝑇 (𝑍), where each internal node
represents a range that is the union of the ranges of its
children nodes. For numerical field, we denote the range of
a node 𝑖𝑑 as an interval: int(𝑖𝑑); for non-numerical ones, we
define semantical range using semantical containment: if 𝑤𝑖

is semantically contained by 𝑤, we say 𝑤𝑖 ⊏ 𝑤. For example,
the attribute value “MA” semantically contains all the cities
within the state MA and “flu” contains all kinds of illnesses
that are flu.

In addition, for an attribute hierarchy 𝑇 (𝑍), we denote the
node set in the 𝑙-th level as 𝑇𝑙(𝑍), called a “level-𝑙 attribute”.
A node in 𝑇𝑙(𝑍) is called a “level-𝑙 keyword”, a.k.a. level-
𝑙 simple range. For numerical attributes, multiple adjacent
level-𝑙 simple ranges consist of a level-𝑙 range, while for non-
numerical attributes each single node at level 𝑙 < 𝑘 represents
a level-𝑙 semantic range. The path from a leaf node 𝑧 to the
root is denoted as ℙ(𝑧), whereas for every node 𝑖𝑑 in ℙ(𝑧),
𝑧 ∈ int(𝑖𝑑) or 𝑧 ⊏ 𝑖𝑑.

Fig. 3 shows two examples. Intuitively, we can use the
hierarchies and simple ranges to make the range query more
efficient. For example, the level-2 simple range [0 − 30] rep-
resents all the integers from 0 to 30, so instead of converting
query “0 ≤ age ≤ 30” to 30 equality terms ORed together,
there will be one equality term. In addition, we allow at most

(a) Index conversion. Age and region are hierarchical fields.

(b) Query conversion. The rest of dimensions 𝑍1,1, 𝑍1,3, 𝑍1,4, 𝑍3,1, 𝑍3,3

are not shown since they are “don’t care”.

Fig. 4. Conversion of the index and query.

𝑑 OR combinations of multiple simple ranges of the same
level like: (region = “East MA” ∨ region = “West MA”).

Note that, in this paper, we are not aiming at representing an
arbitrary range [𝑠, 𝑡] ⊆ [1, 𝑁] for a numerical field. Although
it can be represented by a collection of nodes from different
levels [33], such combinations will incur high complexity.
Thus we only consider the class of range queries containing
simple ranges from one specific level over each dimension.

Nevertheless, this class of query is useful and flexible. On
the one hand, the hierarchy on a numerical field can be well-
designed to support semantic uses. For example, in Fig. 3
(a) the nodes are annotated with their semantic meanings for
different age groups, such as “0-10” stands for childhood and
“10-20” for teenager. On the other hand, a user can choose
which ranges she wants to query, with different choices of
granularity.

Generating the Encrypted Index and Capabilities. For a
field with hierarchy defined, the basic idea is to include the
path ℙ(𝑧) of its value 𝑧 in the index, and the query over this
dimension may consist of simple range query terms from one
level. We define the following pre-processing steps.

∙ Index conversion. For each hierarchical field 𝑍𝑖 in an
original index and whose maximum level is 𝑘, we ex-
pand it into 𝑘 subfields (𝑘 is called expansion factor):
𝑍𝑖,1, ⋅ ⋅ ⋅ , 𝑍𝑖,𝑘, where the value set of 𝑍𝑖,𝑙 is 𝑇𝑙(𝑍𝑖) and
the value of 𝑍𝑖,𝑙 is the 𝑙-th element in ℙ𝑙(𝑧𝑖). Fig. 4 (a)
shows that “age” is expanded into 4 subfields.

∙ Query conversion. An original query should be generated
based on system-defined simple ranges. A user can select
up to 𝑑 𝑙-level simple ranges or sematic ranges, either
to compose a continuous range or discontinuous ranges.
For example, if 𝑑 = 2, an original query may look like
𝑄 := (31 ≤ 𝑍1 ≤ 100). Then it is converted into a query
over 𝑍𝑖,𝑙 and expressed in CNF form: �̂� := (𝑍1,2 =
“31-60”∨𝑍1,2 = “61-100”). This is shown in Fig. 4 (b).
The number of dimensions of a query becomes 𝑚′.

The converted plaintext and query are fed into GenIndex
and GenCap algorithms to generate vectors �⃗� and �⃗�, respec-
tively. The formal definitions of the algorithms are in Fig. 5.

Example. The TA generates a capability 𝑇𝑓�⃗�1 for 𝑄1 :=

387

∙ Setup(1𝜅). Given 𝑛 =
∑𝑚′

𝑖=1 𝑑𝑖, 𝜙, 𝜓 as in Sec. IV-C.1,
run HPE-Setup(1𝜅), output 𝑃𝐾 = (pk, 𝜙, 𝜓), and 𝑀𝑆𝐾 =
msk.

∙ GenIndex(𝑃𝐾, �⃗�). First convert the index according to Sec.
IV-C.3. Set m = Msg∣∣0𝜆, where Msg ∈𝑅 {0, 1}𝜅−𝜆, and
compute �⃗� = 𝜓(�⃗�). Output 𝐸(�⃗�) =HPE-Enc(𝑃𝐾, �⃗�, m).

∙ GenCap(𝑃𝐾, 𝑀𝑆𝐾, 𝑄). First convert 𝑄 to its CNF form:
�̂� using the method above, and compute �⃗� = 𝜙(�̂�). Then run
HPE-GenKey(𝑃𝐾, 𝑀𝑆𝐾, �⃗�), and output 𝑇𝑄 = sk�⃗� .

∙ Search(𝑃𝐾, 𝑇𝑄, 𝐸(�⃗�)). Run HPE-Dec(𝑃𝐾, sk�⃗� = 𝑇𝑄,
𝐶 = 𝐸(�⃗�)), and returns true if HPE-Dec(𝑃𝐾, sk�⃗�, 𝐶) =
Msg∣∣0𝜆 for some Msg; Otherwise return false.

∙ DelegateCap(𝑃𝐾, 𝑇𝑄1 , 𝑄2). Convert 𝑄2 to �̂�2, and
set sk�⃗�1,⋅⋅⋅ ,�⃗�ℓ = 𝑇𝑄1 and �⃗�ℓ+1 = 𝜙(�̂�2), run
HPE-Delegate(sk�⃗�1,⋅⋅⋅ ,�⃗�ℓ , �⃗�ℓ+1), outputs 𝑇�⃗�1,⋅⋅⋅ ,�⃗�ℓ+1

=
sk�⃗�1,⋅⋅⋅ ,�⃗�ℓ+1

. Note that 𝑇�⃗�1,⋅⋅⋅ ,�⃗�ℓ+1
corresponds to query 𝑄1∧

𝑄2.

Fig. 5. The details of basic APKS solution.

(provider = “Hospital A”) ∧ (region = “East MA”) and
gives it to hospital A’s LTA. When a physician Peter in
Hospital A requests for a capability for 𝑄2 := ((age >
60)∧(illness = “Diabetes”)), Hospital A converts 𝑄2 to �⃗�2 and
generates a delegated capability 𝑇𝑓�⃗�1,�⃗�2

based on 𝑇𝑓�⃗�1 and �⃗�2,
which actually gives Peter the capability for restricted query
(𝑄1 AND 𝑄2). Hospital A can generate delegated capabilities
for any of the “don’t care” dimensions in 𝑄1; it can also
delegate a subset of her capabilities on existing dimensions,
such as (region = “Boston”) ∧ ⋅ ⋅ ⋅ to a user.

Revocation. Our solution efficiently supports revocation by
adding another time attribute in the indexes and capabilities,
in which the former indicates the create time of an owner’s
index, the latter specifies a user’s authorized search period.
The periods can be efficiently expressed by simple ranges. For
example, the hierarchy could be “year-month-week-day”, and
a capability will look like “(time = [Jan.2010 − Jun.2010]) ∧
⋅ ⋅ ⋅ ” which can search the PHRs created during Jan. 2010 and
Jun. 2010. When an owner updates her PHR and the index,
she may also change the time value. A capability with expired
time period cannot be used to search newer indexes, to do that
a user must obtain a new capability from an LTA.

Complexity. For our solution, there are at most 𝑘 = log 2𝑁
sub-fields for each hierarchical field, thus when every field
is hierarchical, 𝑚′ = 𝑚𝑘 and the length of plaintext and
predicate vectors is 𝑂(𝑚′ ⋅ 𝑑) = 𝑂(𝑚 ⋅ 𝑑 ⋅ log 𝑁).

V. ENHANCED SOLUTION: TOWARDS QUERY PRIVACY

The basic solution achieves index privacy due to the security
of the HPE scheme. However, it cannot not prevent the server
from knowing the underlying query within a capability by
launching the dictionary attack. This is because the HPE
is a public key based predicate encryption scheme; given a
capability 𝑇𝑄 for some query 𝑄 and an attribute universe
𝒲 , the server can try to encrypt all possible indexes �⃗� by
brute-force through all combinations of keywords in each field.
It tests each of those encrypted indexes against 𝑇𝑄; if 𝑇𝑄
matches with a ciphertext 𝐸(�⃗�), the server can deduce 𝑄
from 𝑄(�⃗�) = 1. For example, if 𝑄 := (𝑍1 = 𝑧1 ∧ 𝑍2 = 𝑧2)

Fig. 6. The enhanced framework for APKS+ that preserves query privacy:
single proxy case.

the complexity of such attack is only ∣𝒲1∣ × ∣𝒲2∣. From 𝑄,
it can also learn about the plaintext index corresponding to
the returned records. The above attack compromises query
privacy, or predicate privacy [32]. It is claimed that it is
inherently impossible to achieve predicate privacy under the
pure public-key setting [32]. In this section, we propose
APKS+, which prevents the dictionary attack with the help
of auxiliary infrastructure.

A. Solution Overview
To thwart the dictionary attack, one need to prevent the

adversary from generating valid ciphertexts based on 𝑃𝐾 and
a set of meaningful keywords. Our main idea is to involve
an additional secret 𝑟 during encryption and decryption which
is hidden from the adversary. Since distributing 𝑟 to all the
users will increase the risk of key exposure, 𝑟 is kept by
auxiliary proxy server(s) who would transform the partial
encryption by 𝑃𝐾 on the encryptors’ behalves. It does not
require interactions between the owners/encryptors and the
users.

Our idea is partly inspired by Zhu et al [40] who addressed
predicate privacy in PEKS. However, our solution is different
in two key aspects: (1) The application scenario and system
framework in this paper are different. PEKS is suitable for
email filtering applications and in PEKS each user can gen-
erate unrestricted search capabilities by herself. (2) We aim
at providing query privacy for HPE and our construction is
different from theirs.

B. Main Design of APKS+

1) Enhanced System Framework
For the threat model, we assume that the proxy server(s)

are semi-trusted, and an adversary cannot control both cloud
server and proxy server(s) at the same time. We argue this
is reasonable in practice since a proxy server can be well
protected by the organization that owns it (e.g., the TA’s
organization). Also, we assume the cloud server do not launch
active attacks such as probe-response attack [8] which needs a
large amount of partial ciphertexts be sent to the proxy, as there
exist some detection mechanism (e.g., traffic monitoring).

We depict the enhanced system framework in Fig. 6. The TA
generates a random secret 𝑟 in addition to 𝑀𝑆𝐾 and 𝑃𝐾, the
proxy is given 𝑟, which is also embedded into the capabilities
for the LTAs and users. An owner partially encrypts a PHR

388

∙ HPE+ − Setup(1𝜅). Generate param of a 𝑛+ 3 dimensional
vector space, and 𝑋 , 𝔹, �̂�, 𝔹∗ in the same way as in HPE-
Setup. Pick 𝑟 ∈𝑅 𝔽𝑞 − {0}, set basis �̃�

∗ := 𝑟𝔹∗ =
{𝑟b∗

1, ⋅ ⋅ ⋅ , 𝑟b∗
𝑛+3}, and output pk := (1𝜅, param, �̂�) (same),

msk := (𝑋, �̃�∗) (changed from (𝑋,𝔹∗)). The TA distributes
𝑟−1 to the proxy server via a secure channel.

∙ HPE+ − PartialEnc(pk,�⃗� := (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛), m): Executed by
the encryptor, which is the same with HPE-Enc and return
𝐶 := (c1, 𝑐2).

∙ HPE+−ProxyEnc(𝑟−1, 𝐶): Executed by a proxy. Parse 𝐶 as
(c1, 𝑐2), compute c′1 = 𝑟−1c1. Output 𝐶′ = (c′1, 𝑐2).

∙ HPE+−GenKey(pk, msk, �⃗�1 := (𝑣1,1, ⋅ ⋅ ⋅ , 𝑣1,𝑛)): Basically
the same as HPE-GenKey, difference is that now sk�⃗�1 is
generated using basis �̃�

∗ instead of 𝔹
∗. A user delivers the

key (trapdoor) to the cloud server via a secure channel.
∙ HPE+ − Dec(pk, k∗

dec, c′1, 𝑐2): The same as HPE-Dec.
∙ HPE+−Delegate(pk,⃗k

∗
ℓ , �⃗�ℓ+1 := (𝑣ℓ+1,1, ⋅ ⋅ ⋅ , 𝑣ℓ+1,𝑛)): The

same as HPE-Delegate.

Fig. 7. The details of HPE+ scheme.

index using 𝑃𝐾, which will be transformed by the proxy
before storing it on the cloud server. To learn 𝑟 an adversary
must compromise both the cloud server and the proxy.

To increase the attack-resiliency, a second choice is to
employ multiple proxies (not shown) where each of them can
be hosted by a local domain. And the secret 𝑟 will be divided
into 𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑃 s.t. 𝑟 = 𝑟1𝑟2 ⋅ ⋅ ⋅ 𝑟𝑃 where each 𝑟𝑖 is distributed
to one proxy. In this case, a partial ciphertext needs to traverse
all 𝑃 proxies before sent to the cloud server, with the cost of
increased delay. Our solution supports both design choices.

2) Scheme Details
In Fig. 7, we present an enhanced HPE+ scheme under

the first case (one proxy). The application of it to APKS+

is the same as in the basic solution. We will denote a vector
of points on elliptic curve as a, b, c, d, k; 𝑟b stands for point
multiplication of 𝑟 with each element in b, and 𝔹 for basis in
a vector space.

Correctness. Since 𝑟−1 is integrated into the transformed
ciphertext while 𝑟 is embedded into the user secret key, during
decryption they cancel out each other and the result will be
correct. Please refer to our technical report [25] for details.

VI. SECURITY ANALYSIS

A. Security of the Basic Solution
Index Privacy. The original HPE scheme has been proven

selectively attribute-hiding secure under the standard model
[30]. That is, two attribute/plaintext vectors encrypted in two
ciphertexts are indistinguishable for a computationally bound-
ed adversary (e.g., cloud server), as long as the adversary does
not obtain a trapdoor that distinguishes the two ciphertexts.
In other words, the adversary learns nothing about the index
�⃗� underlying a ciphertext in polynomial time as long as the
user-submitted capability 𝑇𝑄 satisfies 𝑄(�⃗�) = 0. On the other
hand, when 𝑄(�⃗�) = 1, 𝑇𝑄 will reveal information about
the underlying query, and combined with search results the
adversary can guess the returned indexes with non-negligible
probability. Thus the basic solution provides a weak form of
index privacy, while does not achieve query privacy.

B. Security of the Enhanced Solution
Query Privacy. We claim that the APKS+ achieves both

index privacy and query privacy under our threat model.
The TA publishes pk := (1𝜅,param, �̂�) where �̂� is based
on 𝔹, while the ciphertexts (after proxy transformation) and
capabilities are actually based on �̃� and �̃�

∗, respectively,
where �̃� = 𝑟−1

𝔹 and �̃�
∗ = 𝑟𝔹∗. On the one hand, 𝑟 is

kept by the TA and 𝑟−1 are kept by the proxy server(s).
On the other hand, even if the adversary eavesdrops the
communication between owners and proxies and obtains pairs
of partial ciphertexts c1 and their corresponding transformed
ciphertexts c′1 = 𝑟−1c1, because of the intractability of Elliptic
Curve Discrete Logarithm Problem (ECDLP), the adversary
cannot get 𝑟. Thus, without the ability to generate a legitimate
ciphertext for meaningful index, the adversary cannot launch
the dictionary attack.

In addition, since we assume the cloud server cannot launch
probe-response attack, it cannot deliver a large number of
partially encrypted, guessed indexes to the proxy and receive
the transformed ciphertexts. Moreover, if the cloud server
colludes with a malicious user, and if the user launches the
probe-response attack, it has a high chance to be detected when
both the attribute universe in each dimension and the number
of dimensions in the victim user’s query are large.

Statistical Attacks. When the adversary has some back-
ground information such as the probability distribution of
appearance of each keyword in all the indexes, it will be able to
guess the underlying query keyword of a search capability. A
natural countermeasure is to require each query must contain
no less than a certain number of dimensions, please refer to
[25] for more details on this.

VII. PERFORMANCE EVALUATION

We have implemented HPE and the basic solution of
APKS, using the Pairing-Based Cryptography (PBC) Library
[29]. We run the experiments on a server running Linux with a
32-bit, 3.4GHz Pentium D CPU. We adopt the type A elliptic
curve parameter [29], where the group order 𝑞 is 160-bits,
which provides 80-bit security strength equivalently.

A. Experimental Setup
We carry out a proof-of-concept performance demonstration

of our solution using the Nursery data set from the UCI
Machine Learning Repository [17], which has also been used
in previous works on searchable encryption [37]. The data
set features categorical attributes and has 8 attributes where
each attribute has up to 5 values. Each attribute is treated as a
dimension, and each attribute value is converted into elements
in 𝔽𝑞 using SHA1 hash algorithm. The data set contains 12,960
instances (rows) and 9 dimensions (columns).

B. Results
In the following we evaluate the computation, communi-

cation and storage overhead of APKS. As far as we know,
there are few existing works on multi-dimensional searchable
encryption with experimental results. We will compare the
efficiency of APKS with the 𝑀𝑅𝑄𝐸𝐷𝐷 range query scheme
in [33], where the running times were estimated based on

389

0 20 40 60 80
0

20

40

60

80

100

n

T
im

e
(s

)

Setup Time (s)

(a) Setup time.

0 20 40 60 80
0

10

20

30

40

n

T
im

e
(s

)

Per−Index Encryption Time (s)

(b) Per-index encryption time.

0 20 40 60 80
0

50

100

150

200

n

T
im

e
(s

)

Capability Generation/Delegation Time (s)

Generation, Case 1
Delegation, Case 1
Generation, Case 2
Delegation, Case 2

(c) Capability generation/delegation.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

n

T
im

e
(s

)

Per−Index Search Time (s)

Without preprocessing
With preprocessing

(d) Per-index search processing time.

Fig. 8. Time efficiency of APKS.

benchmark results. As a result, although APKS is slower than
𝑀𝑅𝑄𝐸𝐷𝐷 in setup, encryption and capability generation, it
is much faster in search operations.

1) Setup
The major overhead of the setup process is generating the

bases �̂� and 𝔹
∗, which involves 𝑂(𝑛2

0) = 𝑂(𝑛2) exponen-
tiations (point multiplications) each, where 𝑛0 = 𝑛 + 3 =∑𝑚′

𝑖=1 𝑑𝑖 + 4 is the dimension of the ECC vector spaces in
HPE and 𝑛 is lengths of �⃗�, �⃗�. In Fig. 8 (a), we plot the
average time for setup against 𝑛. The setup time is about
40s when 𝑛 = 46, which is an one-time cost. For storage
overhead, although the size of the base field for 𝔾1,𝔾2 is 512-
bits, an elements in 𝔾1,𝔾2,𝔾𝑇 can be represented by 65B in
compressed form, while 𝑞 is 20B. Thus the total size of 𝑃𝐾 is
65[𝑛0(𝑛0 − 1)+ 3]B, that of 𝑀𝑆𝐾 is 𝑛2

0(65+ 20) = 85𝑛2
0B.

When 𝑛 = 46, these equal to 153KB and 204KB, respectively.
For the 𝑀𝑅𝑄𝐸𝐷𝐷 scheme, setup takes 𝑂(𝑛) exponentiation-
s. When 𝑛 = 46, the setup time and key sizes equal to 4.6s,
22.5KB and 22.5KB, respectively.

2) Encrypted Index Generation
Next we compute the average encryption time for each index

(row). We assume 𝑑𝑖 = 𝑑, ∀1 ≤ 𝑖 ≤ 𝑚′, either fix 𝑚′ = 9
and vary 𝑑 from 1 to 5, or fix 𝑑 = 1 and vary 𝑚′ from
9 to 72, and confirmed the time depends only on 𝑚′𝑑, i.e,
𝑛. Note that, for the latter case, each original index field is
duplicate by factors of 2, 3, ⋅ ⋅ ⋅ , 8 to mimic the expansions
of hierarchical attributes in APKS. The results are presented
in Fig. 8 (b); again, the per-index encryption time scales
as 𝑂(𝑛2

0). When 𝑛 = 46, encrypting an index takes about
15s. Since we are aiming at searching on encrypted PHR in
the public domain and each owner generates one (or a few)
index for her PHR documents, this overhead is acceptable
in practice. The size of an encrypted index is 65(𝑛0 + 1),
which equals to merely 3.25KB when 𝑛 = 46. For the
𝑀𝑅𝑄𝐸𝐷𝐷 scheme, encryption takes 𝑂(𝑛) exponentiations.
When 𝑛 = 46, the time and ciphertext size equal to 2.3s and
11.6KB, respectively.

3) Capability Generation and Delegation
We carry out two sets of experiments here, and show

timing results of both capability generation and the first level
delegation in Fig. 8 (c). In the first set, we assume there are no
hierarchical attributes (𝑘 = 1) and the input query covers all
𝑚′ dimensions. Also, we randomly select 𝑑 keywords from the
keyword universe in each dimension to form a query. In this

case, the predicate vector �⃗� does not contain element 0 ∈ 𝔽𝑞 ,
which can be regarded as the worst case. It can be seen that,
although the direct capability generation takes relatively long
time, the delegation takes less time. The former is performed
by the TA; since it is usually an one-time operation, it is not
a burden. The latter delay is experienced by a Level-2 LTA
and users under a Level-1 LTA, which is faster. Note that, the
capability generation/delegation times both scale as 𝑂(𝑛2

0).
In the second set, the query over some of the dimensions

are set to “don’t care”, so as to represent the more realistic
case. Each original field in the index is expanded into 𝑘
subfields (𝑚′ = 9𝑘), a query involves at most 9 non-don’t
care fields instead of 𝑚′. We set 𝑑𝑖 = 𝑑 = 1 and change
the expansion factor 𝑘 from 1 to 8. In Fig. 8 (c), one can
observe that both the capability generation and delegation
times increase slower with 𝑛 than in the first set, which is
due to the “don’t care” terms. When 𝑛 = 46, delegating a
capability takes about 35s. Finally, the total size of a capability
is 65[𝑛2

0 + (𝑙 + 3)𝑛0]B, where 𝑙 is the number of times a
capability has been delegated. When 𝑛 = 46, 𝑙 = 1, this equals
to 169KB. For the 𝑀𝑅𝑄𝐸𝐷𝐷 scheme, capability generation
takes 𝑂(𝑛) exponentiations. When 𝑛 = 46, the time and
capability sizes are 2.3s and 14.4KB, respectively.

4) Search
We show in Fig. 8 (d) the average search processing time

on single encrypted index under different 𝑛 values. It can
be seen that the search is much faster than encryption and
is linear to 𝑛, since it only takes 𝑛 + 3 pairing operations.
In our benchmark tests, it takes 5.5ms for a single pairing
operation under type-A parameter without preprocessing, and
2.5ms with preprocessing. Based on the average search time,
we estimate the total search time for the Nursery data set,
by multiplying the former with 12,960. The results are given
in Table III. When 𝑛 = 46, it takes about 27min to search;
although it seems large, we argue that this is still acceptable
for practical use, especially for delay-tolerant applications like
profile matching, medical research etc. Also, if the cloud server
have multiple processors the search computation can be done
in a paralleled way. For the 𝑀𝑅𝑄𝐸𝐷𝐷 scheme, per-index
search takes 𝑂(𝑚log𝑁) = 5𝑛 pairings. When 𝑛 = 46, the
time equals to 0.59s with preprocessing, 5 times of ours.

C. Discussion
In the above results, for the same 𝑛 value, there are multiple

design choices of 𝑚, 𝑘 and 𝑑. This actually provides a tradeoff

390

𝑛 10 19 28 37 46 55 64 73
Time (s) 424 714 1016 1330 1625 1911 2194 2498

TABLE III
PROJECTED TOTAL SEARCH TIMES FOR THE NURSERY DATA SET (12,960
INDEXES) UNDER DIFFERENT 𝑛 VALUES, WITH PAIRING PREPROCESSING.

between the number of index fields and the maximum number
of OR terms. In general, the larger the expansion factor 𝑘, the
more expressive is a simple range query over each dimension,
and the maximum number of OR terms 𝑑 can be made smaller.
For example, for the Nursery data set, if 𝑛 = 46, we can have
𝑚 = 9, 𝑑 = 5 and 𝑘 = 1, or 𝑚 = 9, 𝑑 = 1 while 𝑘 = 5.

Moreover, in practice not all the attributes are hierarchical.
For example, “age”, “region”,“illness” are but “provider”,
“sex” etc are not. If 𝑍1, 𝑍2, 𝑍3 out of 𝑍1 ⋅ ⋅ ⋅ , 𝑍9 are hier-
archical, and 𝑘 = 9, the maximum number of OR terms
over each sub-field is 1, but 3 for 𝑍4, ⋅ ⋅ ⋅ , 𝑍9, we have
𝑛 = 3 × 9 + 6 × 3 + 1 = 46. Thus, the case of 𝑛 = 46
is a representative one.

VIII. RELATED WORK

A. Searchable Encryption with Authority Generated Capabil-
ities

In applications such as outsourced private databases, usually
the (sole) owner of the outsourced data plays the role of the
authority who generates search capabilities for users. Song et
al [35] proposed the first practical symmetric key cryptography
(SKC) based searchable encryption scheme. Later, various
schemes [18], [14], [15], [37] were proposed where a search-
able encrypted index is usually created, so that the encrypted
documents can be searched given a capability. The first public
key cryptography (PKC)-based searchable encryption scheme
was proposed by Boneh et al [10]. Recently Wang et al [36]
investigated secure ranked search over encrypted cloud data.
The above schemes are efficient in general, but are limited
to single-keyword queries which are inadequate for real-world
PHR search applications.

To support more complex queries, conjunctive keyword
search schemes [19], [5] over encrypted data have been pro-
posed. Recently a more general approach, predicate encryption
[21], [32] was proposed that supports inner-products. They can
potentially support arbitrary query types including CNF/DNF
formulas, however, with exponential complexity. In this paper,
we consider the multi-dimensional keyword search supporting
a subset of CNF formulas with equality, subset and a class
of simple range queries. Our work is more related to [11],
[33], where multi-dimensional arbitrary range queries are
considered. In hidden vector encryption [11], the complexity
of conjunctive subset and range query is 𝑂(𝑁𝑚), which is
much less efficient than our APKS. Moreover, they do not
support capability delegation.

Recently predicate encryption with delegation capabilities
was proposed in [30], [22] and [34]. However, these schemes
are under public key setting and do not achieve query (pred-
icate) privacy [32] per se. Camenisch et al [12] proposed a
PKC-based searchable encryption scheme with an authoriza-
tion process that is oblivious to the TA, which is orthogonal
to the problems addressed in our work.

B. Searchable Encryption with User Generated Capabilities
In this category, each user can generate any search capabil-

ities of her choice. This includes single-user scheme such as
PEKS [10], and “multi-user” schemes such as Curtmola et al
[15], Bao et al [6], and Dong et al [16].

The main advantage of schemes in this category is they
obviate the overhead for users to acquire search capabili-
ties. However, search authorization is intrinsically difficult to
achieve since it is contradictory with user-generated capa-
bilities. An exception is Hwang and Lee’s work [20], who
proposed a public key encryption scheme with conjunctive
search (PECK) with main applications to group email filtering.
Unfortunately, the ciphertext length grows linearly with the
number of authorized users. In contrast, in this paper search
authorization is based on users’ attributes and enforced by
LTAs indirectly, while the length of an encrypted index is
independent of the list of authorized users.

C. Predicate Privacy in Searchable Encryption
Shen et al [32] proposed a SKC-based predicate encryption

scheme with predicate privacy. However, in a SKC-based
scheme with an encryption key one can generate any search
capabilities, which is undesirable for search authorization. Un-
der public key setting, [4] proposed a key refreshing solution
to randomize the original keywords used in generating the
trapdoors in PEKS, but that requires a user to share a secret
with all potential encryptors. In contrast, in our enhanced
solution some secrets are kept by proxies, thus it does not
incur any interaction between owners and users.

IX. CONCLUDING REMARKS

In this paper, we address the problem of authorized private
keyword searches over encrypted data in cloud computing,
where multiple data owners encrypt their records along with
a keyword index to allow searches by multiple users. To limit
the exposure of sensitive information due to unrestricted query
capabilities, we propose a scalable, fine-grained authorization
framework where users obtain their search capabilities from
local trusted authorities according to their attributes. We then
propose two novel solutions for APKS over encrypted data
based on HPE, where in the first one we enhance the search
efficiency using attribute hierarchy, and in the second we
enhance the query privacy via the help of proxy servers. Our
solutions also support efficient multi-dimensional range query,
search capability delegation and revocation. In addition, we
implement our solution on a modern workstation; the results
show that APKS achieves reasonable search performance.

Acknowledgements. This work was supported in part by
the US National Science Foundation under grants CNS-
0716306, CNS-0831628, and CNS-0746977. We would like
to thank Prof. Joshua. D. Guttman for his helpful discussions.

REFERENCES

[1] Googlehealth. https://www.google.com/health/.
[2] At risk of exposure – in the push for electronic medical records, concern

is growing about how well privacy can be safeguarded, 2006.
[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above
the clouds: A berkeley view of cloud computing, Feb 2009.

391

[4] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with
keyword search revisited. In Proceedings of ICCSA, Part I, ICCSA ’08,
pages 1249–1259, 2008.

[5] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive
keyword searches over encrypted data. In Proc. of ICICS’05, 2005.

[6] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on
encrypted data in multi-user settings. In ISPEC’08, pages 71–85, Berlin,
Heidelberg, 2008. Springer-Verlag.

[7] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter. Patient controlled
encryption: ensuring privacy of electronic medical records. In CCSW
’09, pages 103–114, 2009.

[8] J. Bethencourt, J. Franklin, and M. Vernon. Mapping internet sensors
with probe response attacks. In Proceedings of the 14th conference on
USENIX Security Symposium, pages 13–13, 2005.

[9] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In IEEE S& P ’07, pages 321–334, 2007.

[10] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In Proc. of EUROCRYP’04, 2004.

[11] D. Boneh and B. Waters. Conjunctive, subset, and range queries on
encrypted data. In Proc. of TCC’07, pages 535–554, 2007.

[12] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and
anonymous identity-based encryption and authorised private searches on
public key encrypted data. In PKC’09, pages 196–214. Springer-Verlag.

[13] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. In IEEE INFOCOM,
2011.

[14] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In Proc. of ACNS’05, pages 442–455, 2005.

[15] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions.
In Proc. of ACM CCS’06, 2006.

[16] C. Dong, G. Russello, and N. Dulay. Shared and searchable encrypted
data for untrusted servers. In Journal of Computer Security, 2010.

[17] A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[18] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216,

2003. http://eprint.iacr.org/.
[19] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search

over encrypted data. In ACNS 04, pages 31–45. Springer-Verlag, 2004.
[20] Y. Hwang and P. Lee. Public key encryption with conjunctive keyword

search and its extension to a multi-user system. In Pairing-Based
Cryptography (Pairing 2007), volume 4575 of LNCS, pages 2–22. 2007.

[21] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYP-
T’08, pages 146–162, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchi-
cal) inner product encryption. In EUROCRYPT 2010.

[23] M. Li, N. Cao, S. Yu, and W. Lou. Findu: Privacy-preserving personal
profile matching in mobile social networks. In IEEE INFOCOM, 2011.

[24] M. Li, W. Lou, and K. Ren. Data security and privacy in wireless body
area networks. IEEE Wireless Communications Magazine, Feb. 2010.

[25] M. Li, S. Yu, N. Cao, and W. Lou. Authorized private keyword
search over encrypted data in cloud computing. Technical report,
http://ece.wpi.edu/ mingli/, Mar. 2011.

[26] M. Li, S. Yu, K. Ren, and W. Lou. Securing personal health records in
cloud computing: Patient-centric and fine-grained data access control in
multi-owner settings. In SecureComm’10, pages 89–106, Sept. 2010.

[27] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential
chain discovery in trust management: extended abstract. In ACM CCS.

[28] R. Lu, X. Lin, X. Liang, and X. S. Shen. Secure handshake with
symptoms-matching: The essential to the success of mhealthcare social
network. Mobile Netw. Appl., To appear.

[29] B. Lynn. The pbc library. http://crypto.stanford.edu/pbc/.
[30] T. Okamoto and K. Takashima. Hierarchical predicate encryption

for inner-products. In M. Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, volume 5912 of LNCS, pages 214–231. 2009.

[31] K. Paterson and J. Schuldt. Efficient identity-based signatures secure
in the standard model. In L. Batten and R. Safavi-Naini, editors,
Information Security and Privacy, LNCS. 2006.

[32] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems.
In Theory of Cryptography, volume 5444 of LNCS, pages 457–473.
2009.

[33] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In IEEE Symposium on
Security and Privacy, SP ’07, pages 350–364, 2007.

[34] E. Shi and B. Waters. Delegating capabilities in predicate encryption
systems. In ICALP ’08, pages 560–578, 2008.

[35] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In Proc. of IEEE S & P ’00, 2000.

[36] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword
search over encrypted cloud data. In Proc. of ICDCS’10, 2010.

[37] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on
encrypted data. In Proc. of ESORICS’06, pages 479–495, 2006.

[38] S. Yu, K. Ren, W. Lou, and J. Li. Defending against Key Abuse Attacks
in KP-ABE Enabled Broadcast Systems. In SecureComm’09.

[39] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable,
and fine-grained data access control in cloud computing. In IEEE
INFOCOM’10, 2010.

[40] B. Zhu, B. Zhu, and K. Ren. Peksrand: Providing predicate privacy in
public-key encryption with keyword search. Cryptology ePrint Archive,
Report 2010/466, 2010.

APPENDIX A
A BRIEF REVIEW OF HPE SCHEME [30]

Here we review the HPE scheme for general delegation.
Let 𝑒 : 𝔾1 × 𝔾2 → 𝔾𝑇 be a non-degenerate bilinear map,
where 𝔾1 and 𝔾2 are two cyclic groups of prime order 𝑞
with 𝑔1, 𝑔2 be generators, respectively, and 𝑔𝑇 := 𝑒(𝑔1, 𝑔2).
Define 𝑛-dimensional vector spaces 𝕍 := 𝔾1 × ⋅ ⋅ ⋅ × 𝔾1,
and 𝕍

∗ := 𝔾2 × ⋅ ⋅ ⋅ × 𝐺2 whose elements are vectors x :=
(𝑔𝑥1

1 , ⋅ ⋅ ⋅ , 𝑔𝑥𝑛
1) and y := (𝑔𝑦1

2 , ⋅ ⋅ ⋅ , 𝑔𝑦𝑛

2), respectively, where
𝑥𝑖, 𝑦𝑖 ∈ 𝔽𝑞 . Pairing operation between two vectors x and y is
𝑒(x, y) :=

∏𝑛
𝑖=1 𝑒(𝑔

𝑥𝑖
1 , 𝑔

𝑦𝑖

2) = 𝑒(𝑔1, 𝑔2)
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 = 𝑔�⃗�⋅𝑦𝑇 .
Define canonical bases 𝔸 := (a1, ⋅ ⋅ ⋅ , a𝑛) of 𝕍, where a𝑖 :=

(1, ⋅ ⋅ ⋅ , 1, 𝑔1, 1, ⋅ ⋅ ⋅ , 1) (all identity elements except the 𝑖-th
position), and 𝔸

∗ := (a∗
1, ⋅ ⋅ ⋅ , a∗

𝑛) of 𝕍
∗ is defined similarly.

Canonical basis 𝔸 can be changed to basis 𝔹 := (b1, ⋅ ⋅ ⋅ , b𝑛)
by 𝔹 = 𝑋 ⋅ 𝔸 where 𝑋 := (𝜒𝑖,𝑗) ∈𝑅 𝐺𝐿(𝑛,𝔽𝑞), and 𝔹

∗ =
(𝑋𝑇)−1 ⋅ 𝔸∗. 𝔹 and 𝔹

∗ are dual orthonormal bases.

HPE-Setup(1𝜅): param := (𝑞,𝕍,𝕍∗,𝔾𝑇 ,𝔸,𝔸
∗) where 𝕍,𝕍∗

are 𝑛 + 3 dimensional spaces. Generate 𝑋 , 𝔹, 𝔹
∗ as above;

d𝑛+1 := b𝑛+1 + b𝑛+2, �̂� := (b1, ⋅ ⋅ ⋅ , b𝑛, d𝑛+1, b𝑛+3), return
pk := (1𝜅, param, �̂�), msk := (𝑋,𝔹∗).
HPE-GenKey(pk, msk, �⃗�1 := (𝑣1,1, ⋅ ⋅ ⋅ , 𝑣1,𝑛)): Pick
𝜎dec, 𝜂dec, 𝜎ran,1, 𝜎ran,2, 𝜂ran,1, 𝜂ran,2, 𝜎del,𝑗 , 𝜂del,𝑗 , 𝜑 ∈𝑅

𝔽𝑞 , for 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛. Output sk�⃗�1 := k⃗
∗
1 :=

(k∗
1,dec, k

∗
1,ran,1, k

∗
1,ran,2, k

∗
1,del,1, ⋅ ⋅ ⋅ , k∗

1,del,𝑛), where:
k∗
1,dec := 𝜎dec(

∑𝑛
𝑖=1 𝑣1,𝑖b

∗
𝑖) + 𝜂decb∗

𝑛+1 + (1− 𝜂dec)b∗
𝑛+2;

k∗
1,ran,𝑗 := 𝜎ran,𝑗(

∑𝑛
𝑖=1 𝑣1,𝑖b

∗
𝑖)+𝜂ran,𝑗b∗

𝑛+1−𝜂ran,𝑗b∗
𝑛+2 (𝑗 = 1, 2);

k∗
1,del,𝑗 := 𝜎del,𝑗(

∑𝑛
𝑖=1 𝑣1,𝑖b

∗
𝑖) + 𝜑b∗

𝑗 + 𝜂del,𝑗b∗
𝑛+1 − 𝜂del,𝑗b∗

𝑛+2

(𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛).
HPE-Enc(pk,�⃗� := (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛), m ∈ 𝔾𝑇): Pick 𝛿1, 𝛿2, 𝜁 ∈𝑅 𝔽𝑞 ,
return 𝐶 := (c1, 𝑐2) where c1 := 𝛿1(

∑𝑛
𝑖=1 𝑥𝑖b𝑖)+𝜁d𝑛+1+𝛿2b𝑛+3,

𝑐2 := 𝑔𝜁𝑇 m.
HPE-Dec(pk, k∗

dec, c1, 𝑐2): m′ := 𝑐2/𝑒(c1, k∗
dec), return m′.

HPE-Delegate(pk,⃗k
∗
ℓ , �⃗�ℓ+1 := (𝑣ℓ+1,1, ⋅ ⋅ ⋅ , 𝑣ℓ+1,𝑛)):

Output sk�⃗�1,⋅⋅⋅ ,�⃗�ℓ+1
:= k⃗

∗
ℓ+1 :=

(k∗
ℓ+1,dec, k

∗
ℓ+1,ran,1, ⋅ ⋅ ⋅ , k∗

ℓ+1,ran,ℓ+2, k
∗
ℓ+1,del,1, ⋅ ⋅ ⋅ , k∗

ℓ+1,del,𝑛),
where:
k∗
ℓ+1,dec := k∗

ℓ,dec +
∑ℓ

𝑖=1 𝛼dec,𝑖k∗
ℓ,ran,𝑖 +

𝜎ℓ+1,dec(
∑𝑛

𝑖=1 𝑣ℓ+1,𝑖k∗
ℓ,del,𝑖), (𝛼dec,𝑖, 𝜎ℓ+1,dec ∈𝑅 𝔽𝑞, 𝑖 =

1, ⋅ ⋅ ⋅ , ℓ);
k∗
ℓ+1,ran,𝑗 :=

∑ℓ
𝑖=1 𝛼ran,𝑖k∗

ℓ,ran,𝑖 + 𝜎ℓ+1,ran,𝑗(
∑𝑛

𝑖=1 𝑣ℓ+1,𝑖k∗
ℓ,del,𝑖),

(𝛼ran,𝑖, 𝜎ℓ+1,ran,𝑗 ∈𝑅 𝔽𝑞, 𝑖 = 1, ⋅ ⋅ ⋅ , ℓ, 𝑗 = 1, ⋅ ⋅ ⋅ , ℓ+ 2);
k∗
ℓ+1,del,𝑗 :=

∑ℓ
𝑖=1 𝛼del,𝑖k∗

ℓ,ran,𝑖 + 𝜎ℓ+1,del,𝑗(
∑𝑛

𝑖=1 𝑣ℓ+1,𝑖k∗
ℓ,del,𝑖) +

𝜑′k∗
ℓ,del,𝑗 , (𝛼del,𝑖, 𝜎ℓ+1,del,𝑗 , 𝜑

′ ∈𝑅 𝔽𝑞, 𝑖 = 1, ⋅ ⋅ ⋅ , ℓ, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛).

392

