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Abstract. Sensitive data (e.g., passwords, health data and private
videos) can be leaked due to many reasons, including (1) the misuse
of legitimate operating system (OS) functions such as core dump, swap
and hibernation, and (2) physical attacks to the DRAM chip such as
cold-boot attacks and DMA attacks. While existing software-based mem-
ory encryption is effective in defeating physical attacks, none of them can
prevent a legitimate OS function from accidentally leaking sensitive data
in the memory. This paper introduces CryptMe that integrates memory
encryption and ARM TrustZone-based memory access controls to pro-
tect sensitive data against both attacks. CryptMe essentially extends the
Linux kernel with the ability to accommodate the execution of unmodified
programs in an isolated execution domain (to defeat OS function mis-
use), and at the same time transparently encrypt sensitive data appeared
in the DRAM chip (to defeat physical attacks). We have conducted
extensive experiments on our prototype implementation. The evaluation
results show the efficiency and added security of our design.

1 Introduction

Driven by the pressures of time-to-market and development cost, Internet-of-
Things (IoT) manufacturers tend to build their systems atop existing open-
source software stacks, notably the Linux kernel. Millions of IoT devices are
running Linux kernel on ARM-based System-On-Chip (SoC), ranging from smart
IP cameras, in-vehicle infotainment systems, to smart routers, etc. However,
the swift prototyping process often comes at the cost of security and privacy.
With full-blown software stacks, these devices often expose a much larger attack
surface than we anticipated. Recent attacks against IoT devices have further
indicated that our IoT devices are at higher and higher risk of being hacked.
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With a full-blown software stack deployed on IoT devices, sensitive data con-
tained in programs often spread across all layers of the memory system [7]. A
vulnerability in any layer can lead to the exposure of sensitive data. Unautho-
rized access to sensitive data residing on a DRAM chip is particularly serious
because the data contained in the DRAM frequently include unprotected sensi-
tive information (e.g., user credentials, video frames in an IP camera, Internet
traffic with health data). Its exposure can be a major security concern for IoT
device users.

In this paper, we aim to address two common types of DRAM-based memory
disclosure attacks. First, in a software-based attack, private data in a program
could be exposed to an attacker by misusing of benign OS functions or exploiting
read-only memory disclosure vulnerabilities. For example, attackers can trig-
ger normal OS functions such as coredump [22], hibernation/swap [12,21,34],
and logging [7] to export otherwise isolated private memory to external stor-
age. The second type of DRAM-based memory disclosure attack roots in the
cyber-physical characteristic of IoT devices. Specifically, IoT devices are often
deployed in diverse, and sometimes ambient environments; as a result, they
are usually physically unmonitored. Attackers could physically access them and
extract secrets contained in the DRAM chip [11]. Cold boot attack [16], bus-
monitoring attack [10] and DMA attack [5] are quite common forms of physical
attack. They can break the system even if the software is free of bugs.

Memory Encryption (ME) is a promising solution to address the aforemen-
tioned memory disclosure attacks. It operates on DRAM, and encrypts a por-
tion or all of the address space of a program at runtime [19]. However, on
one hand, ME solutions relying on hardware redesign increase the cost of the
chip [24], and are not feasible for incremental Commercial Off-The-Shelf (COTS)
defense deployment. On the other hand, existing general software-based ME
solutions [8,13,29] all leave a small working set (memory that is currently being
accessed) in clear-text to ensure the correct execution of a program. As a con-
sequence, it is still possible for the working set to be exposed.

Gap Statement. An ME solution that really works on defeating the associated
threats should protect both the non-working set memory and the working set
memory at all time. In particular, it should have the following features: (1)
The non-working set memory is encrypted; (2) The working set memory is in
clear-text, but does not appear in the vulnerable DRAM. (3) The working set
memory cannot be accessed by other software, including the OS. Unfortunately,
to the best of our knowledge, a ME solution meeting all these requirements is
still missing in the literature.

Software-based ME solutions can be classified into three types, as shown in
Fig. 1. Cryptkeeper [29] and RamCrypt [13] belong to Type A (see Fig. 1a). In
this category, most of the program data are encrypted while a small working set is
left unprotected (e.g., four pages in RamCrypt) in the DRAM. As a result, Type
A ME solutions are subject to both software and physical memory disclosure
attacks. Type B solutions (see Fig. 1b) eliminate all the occurrences of clear-
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text program data in the DRAM chip by further protecting the working set by
constraining them in the System-on-Chip (SoC) components such as iRAM) [18]
or processor cache [8]. The SoC components are commonly believed to be much
more difficult to attack compared with the DRAM chip [8]. Type B ME solutions
are effective in defeating cold-boot attacks to DRAM chips. Unfortunately, the
clear-text working set residing in the SoC components can still be exposed by
software memory disclosure or DMA-capable devices.

As shown in Fig. 1c, Type C ME solutions disable both the OS kernel and
DMA-capable devices to access iRAM. To implement a Type C ME system, a
straightforward solution would be to further isolate clear-text program data in
iRAM/cache from the OS kernel. In the ARM platform, the TrustZone architec-
tural extension seems to be an ideal solution. With TrustZone, an ARM processor
could run in two different execution domains – secure world or normal world. The
OS in the normal world cannot access iRAM monopolized by the secure world.
Therefore, if we execute the program in the secure world, and integrate existing
type B ME solution, the problem seems to be solved. However, this is actually
very challenging based on the following observations.

– O1: A legacy program runs in the same world with the OS. If the iRAM is a
secure resource only accessible by the secure world, the legacy program in the
normal world would simply crash; on the other hand, if the iRAM is designated
to be a non-secure resource, the OS can still reveal the contents of the iRAM.

– O2: If we instead execute the legacy program in the secure world, there is
no execution environment in the secure world. In particular, system services
including system calls, interruptions, and page fault, etc., are all missing in
the secure world.

– O3: To tackle the problem mentioned in O2, we could duplicate a full fledged
OS in the secure world. However, the code base in the secure world will be
inflated, making it prone to exploits.

Our Solution. In this work, we present CryptMe, the first type C ME solution
for COTS ARM platforms. CryptMe addresses the aforementioned challenges
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by offloading a program in the secure world. Instead of employing a fledged OS
to respond to the system service requests, we build a thin privileged layer in the
secure world. The privileged layer does not provide system services itself, but
forwards the requests to the OS in the normal world. By further incorporating
type B ME solution, we ensure that both the non-working set and working set
memory do not appear in clear-text in the DRAM chip, and the working set
memory cannot be accessed by any software in the normal world.

Specifically, we protect sensitive data (called SenData) by encrypting all the
anonymous memory segments (i.e., memory not backed a file, such as bss, heap,
stack, and anonymously mapped memory segments) and private Copy-On-Write
(COW) segments (such as data segment containing global and static variables).
When the encrypted data are accessed, they are transparently decrypted in the
iRAM. The program code in the DRAM chip is not protected. The key insight
behind this is that the code segment of a program is usually publicly available so
there is no need to protect its confidentiality. To further protect data in the iRAM
from software attacks, CryptMe sets iRAM to be a secure resource. Therefore,
even the OS kernel cannot access the data in it. To execute a protected process
(called SenProcess), CryptMe offloads it to an isolated execution domain –
TrustZone secure world, and a lightweight trusted execution runtime residing in
the secure world is responsible for maintaining the execution environment of the
process (such as setting up page tables). In summary, CryptMe ensures that
clear-text program data only exists in iRAM, and we restrict accesses to iRAM
from the Linux kernel by TrustZone configuration.

In summary, we made the following contributions.

– We have designed CryptMe, an ME system that prevents the clear-text
sensitive data of unmodified programs from leaking to the DRAM for ARM-
based IoT devices.

– CryptMe is the first ME system that is able to tackle both physical mem-
ory disclosure attacks and software attacks, including misuse of benign OS
functions and real-only memory disclosure attacks.

– We have implemented CryptMe prototype on a Freescale i.MX6q experiment
board. Security validation shows that CryptMe effectively eliminates all the
occurrence of private program data in the DRAM, and thwarts software-based
memory disclosure attacks.

2 Background

2.1 Memory Disclosure Attack

Though full system memory encryption has been a topic of interest, the privacy
concerns for memory disclosure have not been a real threat until demonstrations
of hardware-based memory disclosure attacks [5,10,16]. DMA capable devices
such as Firewire were leveraged to read system memory [5]. Since DMA engine
is independent of the processor, and directly talks to the DRAM chips, as long
as the device is powered on, all the DRAM contents can be read out. In [16],
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Halderman et al. transplanted the memory chip of a laptop onto a different one
where there was no software protection on the physical memory. Using a simple
dust blower to keep the memory chip cool, it was possible to extract almost all
of the information from the memory. The significance of this attack is that it
can bypass all the software system protections. The remanence effect of DRAM
was also exploited in [6,26] to launch cold-boot attacks to smartphones, where
the system is rebooted into a rouge OS to bypass the memory protection. For
advanced adversaries, it might even be possible to snoop the communication
between the CPU and the DRAM [10].

Memory disclosure can also occur due to misuse of legitimate OS functions
or passive read-only memory disclosure attacks. For example, the memory dump
function is a very useful feature in modern OSes. A core dump image provides
valuable information about the execution state when a crash happens which helps
developer identify the crash point. However, attackers exploited this feature to
dump sensitive data of a process [22]. Taking advantage of read-only memory
disclosure vulnerabilities, the authors in [17] successfully exposed the private
keys of an OpenSSH server and an Apache HTTP server.

2.2 TrustZone

TrustZone is a secure extension to the ARM architecture, including modifica-
tions to the processor, memory, and peripherals [35]. Most ARM processors
support this security extension. TrustZone is designed to provide a system wide
isolated execution environment for sensitive workloads. The isolated execution
environment is often called secure world, and the commodity running environ-
ment is often referred to as the normal world or the rich OS. Different system
resources can be accessed depending on the world of the process. In particular,
the Security Configuration Register (SCR) in the CP15 co-processor is one of
the registers that can only be accessed while the processor is in the secure world.
NS (non-secure) bit in the SCR controls the security context of the processor.
When the bit is set, the processor is in the normal world. When the bit is clear,
the processor is in the secure world.

One of the most important components in a TrustZone-based system is Trust-
Zone Address Space Controller (TZASC). Registers of TZASC are mapped into
the physical address of the SoC, and can be accessed via memory operations.
Access policies for different physical memory regions can be programmed via
these registers. With these controls, secure world code can control whether a
memory region can be accessed from both secure and normal worlds, or can
only be accessed from secure world. For other peripherals, such as iRAM, differ-
ent SoC manufactures implement different components to configure their access
policy. In a typical implementation, a Central Security Unit (CSU) is used by
trusted secure world code to set individual security access privileges on each of
the peripheral.
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3 Threat Model and Security Requirements

3.1 Threat Model

CryptMe is designed to prevent the sensitive data of a running program from
being leaked into DRAM chip or other peripherals. The threats considered in this
work, include (a) misused benign OS functions such as swap, hibernation, and
core dump, (b) passive read-only memory disclosure attacks, and (c) malicious
physical attacks targeting the DRAM chips.

We assume a benign OS kernel that runs in the normal world of a TrustZone-
powered device. That is, basic OS services, such as task management, memory
management and execution environment maintenance, etc. are trusted. We do
not assume a compromised OS kernel. Otherwise, the process can be manipulated
arbitrarily. We assume orthogonal solutions to ensure the integrity of the Linux
kernel [4].

The OS is also assumed to correctly implement supplementary functions to
improve efficiency (e.g., swap, hibernation), and to facilitate program analyses
(e.g., core dump). However, once misused, these functions can be exploited to
leak sensitive data, because they have the capability to access the whole address
space of a process. There seems to be a countermeasure to deal with this issue
– disabling these OS functions. However, many of them are indispensable in
modern OSes. Once disabled, the whole system will be significantly affected. For
example, disk swap is the key technique to support virtual memory. Without it,
the system could quickly run out of memory.

The attacker could also exploit passive read-only memory disclosure attacks.
When exploiting these read-only attacks, attackers often do not need to com-
promise the kernel to gain control flow and manipulate critical data structures.
Therefore, active monitoring techniques (e.g., kernel integrity checking) cannot
detect such “silent” data leakages. For example, in [17], the authors exploited
two kernel vulnerabilities [27,28] to successfully extract private keys used in
OpenSSH and Apache Server in several minutes. According to a statistics, this
kind of “Gain Information” vulnerability contributes 16.5% of all Linux vulner-
abilities as of Mar. 2018 [9].

We assume attackers are able to launch physical attacks to expose DRAM
contents, bypassing the process isolation enforced by the OS. In a cold boot,
the attacker is capable of dumping the entire DRAM image of a running device
by rebooting it into another malicious OS from an external storage [16,26]. In
DMA attacks [33], a malicious peripheral device is utilized to directly read out
memory contents by issuing DMA requests. Moreover, an advanced attacker
might even be able to eavesdrop data transmission between the DRAM chips
and the processor by monitoring the memory bus [10].

The protected program itself must be trusted. That is, we assume a Sen-
Process never leaks SenData out of its private memory segments by itself,
either intentionally or unintentionally. Since our protection is built on top of
ARM TrustZone, we also assume the correctness of TrustZone implementations.
The privileged codes of CryptMe running in the TrustZone secure world are
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assumed to be free of vulnerability, as well as the trusted boot process enabling
the TrustZone-based hardware memory control. In the design and implemen-
tation of CryptMe, we keep the privileged code base small (5.8K Lines Of
Code (LOC), in the prototype system), so it is possible to formally verify its
correctness. Lastly, side-channel attacks are out of the scope in this paper.

3.2 Security Requirements

Based on the threat model, we formalize the problem into the following security
requirements that CryptMe aims to meet.

R1. The DRAM chip does not contain any clear-text SenData.
R2. The clear-text SenData is constrained in the on-chip iRAM, which can only
be accessed by the secure-world code.

Software-based memory disclosure attacks are thwarted by the combination
of R1 and R2. In addition, meeting R1 keeps SenData immune to cold-boot
attacks and bus-monitoring attacks, while meeting R2 prevents DMA attacks.

4 Design

This section describes the design of CryptMe. We start with an overview of
the proposed system, then expand on several key techniques. We show how
CryptMe supports offloading CryptMe-enabled SenProcesses to an isolated
execution environment in the TrustZone secure world, and how page tables in
this isolated environment are maintained. Finally we present the protections that
CryptMe provides for the offloaded SenProcesses– encryption and isolation.
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4.1 Overview

In CryptMe, a Linux OS runs in the normal world, while protected SenPro-
cesses run in the secure world. As shown in Fig. 2, like any other processes in
a Linux system, each SenProcess is referenced by a task struct data struc-
ture in the normal OS. In fact, the task struct of a SenProcess is no different
from normal ones except for a newly added flag (tz) and a world-shared memory
buffer (shared struct). The flag identifies a process as a SenProcess while
the shared buffer is used to exchange critical information (such as page table
updates) between the two worlds.

Each SenProcess is still created, maintained, and scheduled by the normal
OS, but executed in the secure world. The normal OS is customized so that
just before a SenProcess is to return to user space, an smc instruction is
issued to transfer the control to the secure world. In the secure world, there
is a piece of Secure Privileged Code (SPC) that is responsible for maintaining
the execution environment of a SenProcess by exchanging context information
with the normal OS. Each SenProcess has its own private struct that stores
its hardware context, and shared struct that is shared with the normal OS to
enable data exchange.

When the SenProcess is executed in the secure world, its working data set
is kept in clear-text in the iRAM, which is not accessible by the normal OS. For
each SenProcess, SPC keeps a sliding window of iRAM pages for the working
set. If the working set of a SenProcess exceeds the threshold assigned to it,
SPC encrypts the oldest page in the window and copies it to the corresponding
DRAM page, and then assigns the freed iRAM page to the virtual address that
triggers the page fault.

A SenProcess has separate page tables in each world. Normal world page
table is maintained by the normal OS with a customized page fault handler. It
serves as a template for the Secure Page Table in the secure world. In both page
table settings, the clear-text code segment is backed by the same DRAM pages,
which CryptMe takes no effort to protect. However, SenData, which normal
world page table maps to DRAM pages, is encrypted. SenData contained in
the sliding window in iRAM is decrypted to keep the SenProcess runnable in
the secure world, as shown in Fig. 2.

CryptMe employs the on-chip hardware-based cryptographic engine to
accelerate AES computations. An AES key is generated randomly when a new
SenProcess is about to be created. It is kept in a dedicated iRAM page shared
by all the SenProcesses. The round keys and intermediate values generated
during encryption/decryption are all constrained in this page, therefore, the key
materials enjoy the same level of protection with that provided for SenData.

4.2 Executing in the Secure World

This section describes how a SenProcess gets offloaded to execute in the secure
world. This is the prerequisite to enforce other security measures that will be dis-
cussed later. Since the secure world and the normal world are logically separated,
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SPC has to maintain the essential execution environments for SenProcesses
to run in the secure world. In this section, we introduce a näıve code offloading
mechanism, in which the normal-world page table and secure-world page table
share the same set of page table entries. As a result, SenProcess code runs in
the secure world, while all the memory references are routed to DRAM pages
that both worlds can access. In Sect. 4.3, we show how to improve this näıve
design to encrypt SenData that appear in the DRAM. Then, in Sect. 4.4, we
further describe how to deprive the Linux OS kernel and other peripheral devices
of the privilege to access clear-text SenData in iRAM.

Code Offloading. CryptMe supports memory encryption on a per-process basis.
To start a SenProcess, the user land loader invokes a dedicated system call,
similar execve, which marks the process in its task struct.

With the capability to identify a SenProcess, the kernel is further instru-
mented to invoke an smc instruction whenever a SenProcess is about to be
scheduled to run in user space. The smc instruction transfers control flow to
the monitor mode in secure world, where the monitor mode code handles world
switch, and invokes SPC to restore the hardware context of the SenProcess
and execute it in the user space in secure world.

System Services. SenProcess in the secure world may incur exceptions during
execution. When this happens, the SenProcess traps into SPC. To keep the
code base of SPC small, SPC forwards all of them directly to the normal world
OS kernel. In ARM platform, system calls are requested by the swi instruction,
which traps the processor in the privileged SVC mode. Other exceptions such
as interrupt and page fault trap the processor to the corresponding privileged
CPU modes. To forward an exception to the normal world while keeping the
normal OS oblivious of it, SPC needs to reproduce a hardware context as if the
exception is triggered in the user space of the normal world. To achieve this,
system registers indicating the context must be correctly set.

Re-producing Exceptions. Any SenProcess exception is first intercepted by
the SPC. Because the monitor-mode code taking charge of world switches has
ultimate privilege to access the resources of both worlds, it is possible to manually
manipulate relevant registers that indicate the pre-exception context. Normally,
these registers can only be set by hardware. With these registers manipulated,
the system call handler in the Linux kernel can correctly parse the context
information.

Page Table Synchronization. Each SenProcess in the secure world has its
own page table. We instrument existing page fault handler in the normal Linux
kernel to share the page table update information with SPC. This is based on
the aforementioned exception forwarding mechanism. In particular, when a page
fault exception is forwarded to the Linux kernel, it invokes its own page fault
handler to populate the corresponding page in the normal world. Whenever the
set pte at function is invoked, page table update information is duplicated in
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Table 1. Cache and iRAM comparison

Immunity to
physical attacks

Capacity Controllability Continuous
support

Intrusiveness

iRAM ✓ ✗ ✓ ✓ ✓

L2 cache ✓ ✓ ✗ ✗ ✗

the world-shared buffer shared struct. The information includes the address of
the page table entry, the updated value of the page table entry, the influenced
virtual address, and other metadata. When the SenProcess is scheduled to
execute in the secure world, SPC uses the shared information as a template
to update the secure-world page table. In this way, SPC and the normal-world
kernel maintain an identical copy of page table for each SenProcess.

4.3 Transparent Encryption

Barely offloading a SenProcess to the secure world does not gain any security
benefit. This section describes how CryptMe enforces security requirement R1.
That is, SenData appears in DRAM only as cipher-text.

To execute a process, the processor should always work on clear-text program
data. In our design, a SenProcess runs with a clear-text working set that resides
on on-chip memory unit, which is more expensive for an attacker to launch a
physical attack. The rest of SenData is kept encrypted in the DRAM. Here,
two commonly used on-chip memory units are processor caches and iRAM. We
show the advantages and disadvantages of each option in the next paragraphs.

Selecting On-chip Memory. On-chip caches are small static RAM that are tightly
coupled with a processor. It buffers recently accessed memories with very low
access latency. In the recently shipped ARM SoCs, the capacity of a Level-2
(L2) cache can achieve several megabytes. When it loses power supply, all of its
contents are lost. Therefore, in literatures, many solutions seek to defeat physical
attacks to the DRAM chip using L2 caches [8,36].

iRAM is another on-chip memory that is more like a traditional DRAM chip.
Most manufacturers integrate a 256 KB iRAM into their products to run boot
code that initializes other SoC components. After that, all of its storage is free
to use. During a reboot, the immutable booting firmware explicitly erases all the
iRAM content [8]. Therefore, iRAM is also immune to cold-boot attacks. Table 1
summaries pros and cons for both L2 cache and iRAM.

Both options are suitable to defeat physical attacks. However, using cache
has many drawbacks. First, even though cache can be used as SoC-bound mem-
ory storage, the dynamic nature of its allocation algorithm makes it difficult to
lock its mapping to the physical memory address. Second, although many ARM
processors support cache locking, this feature itself only benefits programs requir-
ing customized cache allocation to maximize cache usage. As the size of cache
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is growing in each generation of processors, the need for customized cache use
is diminishing. As a consequence, this feature is becoming obsolete in the latest
generations of ARM processors such as Cortex-A57 [3]. Furthermore, cache is
designed to ease the bottleneck at the slow memory operations. Monopolizing
cache for security purpose can severely degrade the overall system performances.
Therefore, in CryptMe, we choose iRAM to back the clear-text working memory.

Memory Encryption. Building atop the page table synchronization mecha-
nism introduced in Sect. 4.2, SPC further differentiates the types of page table
updates for a SenProcess. In particular, within the shared data structure
shared struct, a flag indicating the property of the corresponding fault page
is added. The flag instructs SPC how to set up the page table – to duplicate
the normal-world page table entry that points to an identical normal DRAM
page (e.g., for a code page), or to allocate a new page in the iRAM (e.g., for an
anonymous data page). In the latter case, SPC replaces the target normal-world
DRAM page address with the newly allocated iRAM page address in the secure-
world page table entry, and then maintains the mapping. Since the capacity of
an iRAM chip is limited, SPC cannot meet all the page table requests of a Sen-
Process. We introduce a sliding window mechanism to address this problem.

Sliding Window. SPC assigns a dynamic number of iRAM pages to each Sen-
Process. Starting from the first available iRAM page, SPC keeps a circular index
to the next available iRAM page. Page faults corresponding to SenData accesses
continue to consume iRAM pages until the assigned pages are used up. In this
case, the circular index points to the first iRAM page in the window. SPC then
encrypts that iRAM page and copies it to the corresponding DRAM page. Finally,
this iRAM page is assigned to be used for the newly occurred page fault request.

4.4 Disabling Access to the Sliding Window

We have ensured that no clear-text SenData would occur in the DRAM. How-
ever, privileged kernel can still read out any program data in the sliding window
contained in iRAM. This flaw actually exists in all the existing software-based
memory encryption solutions, such as Bear [18], RamCrypt [13], and Crypt-
Keeper [29]. Moreover, it is possible that a local attacker issues DMA requests
to iRAM. CryptMe addresses this threat by enforcing hardware-based access
control to iRAM. More specifically, during booting, CryptMe configures the
CSU available in TrustZone so that normal world code, including the Linux
kernel, and any other peripherals, cannot access iRAM. This effectively enforces
security requirement R2. That is, iRAM that holds clear-text SenData cannot
be accessed by any entities other than the secure world code.

5 Implementation

We have implemented a full prototype of CryptMe on a Freescale i.MX6q
experiment board which features an ARM Cortex-A9 processor with 1 GB DDR3
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DRAM and 256 KB iRAM. Our implementation includes two parts. In the secure
world, the implementation of SPC comprises around 5.3K LOC of C, and 0.5K
LOC of assembly. In the normal world, we instrument the Linux kernel version
3.18.24 to be CryptMe-aware with 300 LOC of modification.

5.1 Secure World

The experiment board supports High Assurance Boot (HAB), a proprietary
technology to ensure trusted boot. After power on, a proprietary boot ROM
in the board executes to initialize critical system components and verify the
integrity of the next stage image – in our case, the SPC. If SPC passes checking,
it gets execution privilege in the secure world. Otherwise, the ROM will be reset.

To disable access to iRAM from DMA and the Linux kernel, SPC configures
the CSU to set iRAM as a secure master. In our implementation, we achieve that
by enabling the OCRAM TZ EN bit in register IOMUXC GPR10, and setting access
control policy in the low 8 bits of the CSU CSL26 register in CSU1. Then SPC
locks the configuration. As a result, any intentions to make modifications to the
CSU configuration will trigger a system reboot, including SPC itself.

Finally, SPC hands the control to the boot loader in the normal world –
uboot, which further boots the Linux OS.

5.2 Normal World

SenProcesses are still created and scheduled by the Linux kernel. We add a
customized system call execve enc to load a SenProcess. A process started
with execve enc has a tz flag set in its task struct. We instrument the
ret to user and ret fast syscall routines, so that whenever a SenProcess
is about to return to user space, an smc instruction is issued to route the exe-
cution in the secure world. To run an unmodified program as a SenProcess,
the user only needs to invoke a wrapper program with the path of the target
program as a parameter. The wrapper program simply replaces itself with the
target program by invoking the execve enc system call.

5.3 Key Management and Encryption

When a SenProcess is created by execve enc, the SPC invokes the on-board
hardware-based random number generator to extract a 256-bit AES key anew.
This key is used to protect all the SenData of this SenProcess. When the the
process is terminated, the key can be safely discarded, because the anonymous
SenData which it protects, do not persist across invocations.

The experiment board we use integrates Cryptographic Acceleration and
Assurance Module (CAAM), which provides accelerated cryptographic compu-
tation, including AES, DES/3DES, RC4, etc. We employed CAAM to implement
1 CSU CSL is a set of registers only accessible in secure state that can set individual

slave’s access policy. Low 8 bits of CSU CSL26 is marked as reserved in the manual
of our experiment board, we found that it controls access to iRAM by experiments.
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(a) Image dumped with a
native Linux Kernel.

(b) Image dumped when
CryptMe is enabled.

Fig. 3. Physical memory image with and without CryptMe enabled.

a SoC bounded cryptographic service. Specifically, during an AES computation,
all the sensitive data, including the original AES key, its key schedule, and inter-
mediate results are redirected into a single reserved iRAM page. As a result, this
page, together with plain-text SenData, has the highest protection level in our
system. In CryptMe, we use AES-256 in CBC mode. The Initialization Vector
(IV) is chosen as the virtual address of the encrypted page.

6 Evaluation

In this section, we evaluate CryptMe in both security and performance. In
terms of security, we designed and conducted experiments to validate the security
requirements R1 and R2 in Sect. 3.2. In terms of performance, we measured the
overhead introduced by CryptMe compared with the base line in the native
Linux environment. Our evaluation was performed on the same board and the
same software environment as our prototype.

6.1 Security Evaluation

This section introduces several simulated attacks we designed to evaluate the
security features of CryptMe.

Meeting Security Requirement R1 . Security requirement R1 states that the
DRAM chip contains no clear-text SenData. In order to obtain the contents of
DRAM chip, we use the “memdump” utility to dump memory contents from the
/dev/mem device file. To test the effectiveness of our system, we wrote a simple
program which constantly writes a magic string (“Hack Me”) into memory. Then
we dump the whole DRAM image to search for this magic string.

Figure 3 depicts the results on the dumped images we obtained from the
native Linux and CryptMe. The addresses displayed in these figures are the
offsets from the beginning of the dump file. The beginning of this file represents
the contents of the beginning of DRAM, which has an offset from the start
of physical memory map, therefore, the real physical address is calculated by
deducing this DRAM offset from the displayed file offset. Figure 3a shows the
result from the native Linux kernel. Clearly, we were able to locate a bunch of
magic strings in the dump image. Figure 3b shows the result we obtained when
CryptMe is enabled. Throughout the searching, we did not find any occurrence
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of “Hack Me” string. This indicates that all the magic strings are encrypted in
DRAM.

Meeting Security Requirement R2 . Security requirement R2 states that on-chip
iRAM cannot be accessed by any entities other than the secure-world software. To
simulate an attack targeting iRAM, we wrote a kernel module that deliberately
maps iRAM to the address space of a process using the vm iomap memory kernel
function, and attempted to read the iRAM content in the normal world. The result
shows that we can only obtain zero values, regardless of what we wrote into the
iRAM. On the contrary, after we disabled hardware access control enforcement
on iRAM as mentioned in Sect. 4.4, we were able to read out the data that the
process wrote.

Defeating Attacks Misusing Legitimate OS Functions. In a software-based attack
that misuses legitimate OS functions, the whole address space of a SenProcess
is exposed. A kind of such attacks takes advantage of the coredump function
which was originally designed to assist program analyses when a crash happens.
In particular, the attacker deliberately crashes the target program, and it triggers
a coredump operation which allows the OS to generate an image containing
target process’s memory contents, CPU context etc., when the crash happens.
As the image is stored in the persistent storage (i.e., flash chip in an IoT device),
the attacker could easily read it out.

In order to simulate such an attack, we sent a “SIGSEGV” signal to the
victim SenProcess to trigger a coredump after it writes a bunch of magic values
(0xEF87AE12) into its anonymous memory segment. We got the coredump images
of this process from the systems running with and without CryptMe enabled.
As expected, we successfully found the target value in the image dumped from
the native Linux system. On the contrary, we did not find any occurrence of
0xEF87AE12 in the image dumped when CryptMe is enabled throughout the
searching process.

6.2 Performance Evaluation

To evaluate the performance overhead, we compare the benchmarks of pro-
grams in three system configurations. They are (1) native Linux system without
modification, (2) CryptMe using the AES algorithm to encrypt pages being
swapped, and (3) CryptMe using plain copy to swap pages. We first tested our
system with the LMbench micro-benchmark [25] to measure the overhead intro-
duced by world switches. This overhead is inevitable if we want to shield the
iRAM from attacks. Next we tested our system with a self-written AES bench-
mark. This lightweight cryptographic primitive is frequently used in IoT devices.
Finally, the performance of Nginx, a large complex web server is measured. Lots
of IoT devices expose a web interface for users to access their functionality or
to perform configuration changes to them. To better understand the introduced
overhead, we designed experiments to measure the time consumption of different
steps in the program execution.
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Fig. 4. System call latency. Fig. 5. Latency of memory reading
with varying buffer sizes.

LMbench. SPC acts as an intermediate layer in-between the user space in secure
world and kernel space in normal world. This design doubles the length of path to
travel from user space to the Linux kernel and increases context-switch overhead.
Therefore, we first report our results on the lat syscall test, which measures
the response time for various system calls.

Figure 4 depicts the results of null, read, write, stat, fstat, and open
operations [25]. As shown in the figure, compared with the native Linux system,
it takes CryptMe almost 3 times longer to complete null and read operations.
However, such overhead is amortized in other non-trivial operations. For exam-
ple, the performance overhead for the open()/close() system call is only about
1.5 times. Moreover, CryptMe with AES encryption and CryptMe with plain
copy exhibit very similar performance. This is expected because a system call is
not likely to trigger a page swapping between DRAM and iRAM.

lat mem rd is a program included in the LMbemch test-suite that measures
memory read latency. It reads memory buffers with varying sizes from 512 B to
768 KB. Because the maximum working set is obviously larger than the sliding
window of a SenProcess, lat mem rd effectively exposes and even enlarges
performance overhead caused by CryptMe.

We explain the measured data as following. Since lat mem rd is a memory-
intensive program, when the size of the buffer is small enough to be fit in the
sliding window, very few pages need to be swapped in and out of the iRAM. As
a result, no additional CPU cycles are needed. This is what we can see in Fig. 5
before the array size reaches 0.25 MB. At this stage, the three lines overlap
with one another. When the buffer size exceeds that of the sliding window,
old pages in the sliding window need to be swapped out to make room for
new page requests. The introduced swapping operations indeed cause an abrupt
performance degradation. Additional overhead can also be observed between
CryptMe with encryption and CryptMe with plain copy. This is caused by
the additional CPU cycles spent on the AES encryption.

Although the overhead introduced by CryptMe appears to be significant
in this experiment, we would like to argue that: (1) such extremely memory-
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intensive use cases are very rare in real-world applications, especially in IoT
devices. And (2) with the development of hardware technologies and reduced
costs, commercial IoT devices on the market are often loaded with computing
powers that are significantly beyond their needs.

Table 2. AES-128 throughputs with different numbers of threads (completed AES
blocks per second)

Thread # 1 2 3 4 5 6

Native 62011 63832 63862 62847 62858 62863

Encryption 63187 64213 64256 63243 63268 64316

Table 3. Nginx performance (requests per second)

Sliding window= 16 Sliding window= 32 Sliding window= 48

Plain 109.30 247.95 574.04

Encryption 23.60 72.26 571.32

AES Benchmark. We implemented an AES benchmark based on mbed TLS [2]
library. It computes AES-128 for 500,000 times using different numbers of
threads. As AES is a computation-intensive program with small memory foot-
print, Table 2 clearly shows that CryptMe incurs negligible overhead. Both
CryptMe and native Linux complete around 63,000 AES block calculations
per second regardless of the number of computing threads.

Nginx Web Server. We also measured the overhead of CryptMe when serv-
ing large complex programs. Many IoT devices provide their users with a web
interface, through which the users are able to access the service or configure the
device.

Table 4. Raw HTTP performance measurements (requests per second).

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

Native 655.70 625.64 633.62 604.30 513.94 434.26 310.75 208.74 124.36 71.14 39.20

Encryption 601.97 560.68 580.87 554.98 474.72 403.92 292.52 195.08 121.51 70.18 39.05

Overhead 1.09x 1.12x 1.09x 1.09x 1.08x 1.08x 1.06x 1.07x 1.02x 1.01x 1.00x

Nginx [31] is an open-source high-performance HTTP server and reverse
proxy, as well as an IMAP/POP3 proxy server. We used Nginx version 1.10.1
to run a HTTP web server, and used Apache benchmark [1] to measure the
performance of the systems. The HTML file is the default 151 bytes welcome
page, and the base line measured with native Linux system is 647.10 requests
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per second. In Table 3, we present the throughput of CryptMe under different
sliding window sizes. In Table 4, we compare the HTTP throughput of CryptMe
under 48-page sliding window size with native Linux system for different raw file
sizes. When the sliding window is 48 pages, comparable performance is observed.
Therefore, we would like to conclude that the overhead introduced by CryptMe
is very acceptable, because of the redundant computing power in such systems.
However, as the sliding window decreases, the overhead becomes non-negligible.
It is clear that frequent page swapping causes the noticeable overhead. In the
following, we present a break-down measurement of additional time consumed
in world switching and page swapping.

Table 5. Break-down measurement of time consumed in each period.

Operation Time (µs)

Context switch 2.27

Encryption/decryption & copy 326.32

PTE setup 7.01

Break-down Measurement. Based on the above experiment results, CryptMe
is friendly to computation-intensive programs while exhibits ineligible overhead
to memory-intensive programs. For memory-intensive programs, frequent page
swapping is the key factor that influences the performance. In Table 5, we show
a break-down measurement of the time spent on handling a page fault due
to page swapping. Context switch is the time when completing a getpid()
system call, which is drawn from Fig. 4. Note that this represents the minimum
time for a world switch. Encryption/decryption & copy is the time spent on a
encrypting/decrypting a page and copying it to normal/secure world. Note that
a page swap invokes this operation twice; one for encrypting an old page into
DRAM, and the other for decrypting a cipher-text page into iRAM. Finally, PTE
setup measures the time for installing a page table entry in the secure world.
It can be observed that cryptographic operation remains the dominating factor,
which is the necessary price for the additional protection in memory encryption
in general. However, many IoT devices are designed to be single purpose devices
with limited functionality, therefore often do not require large working sets.
This fixed cost for data encryption can be further reduced with more efficient
hardware implementation of the cryptographic primitive.

7 Related Work

7.1 Memory Encryption

Many solutions on system memory encryption is motivated by the need to pro-
tect sensitive information stored in the memory [30]. With the rapid increase
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in speed and more sophisticated hardware-supported cryptographic function in
modern processors, there has been recent efforts to realize practical software-
based memory encryption on COTS hardware [8,13,14,18,29]. In particular,
Cryptkeeper [29] and RamCrypt [13] implement ME on x86 platforms on a per-
page basis with configurable security. Their implementation keeps a small set
of decrypted working pages called sliding window. CryptMe also adopts the
sliding window concept, but the decrypted working set is stored in the on-chip
memory, which is protected from memory attacks [16]. In [14], hypervisor is
used to encrypt kernel and user space code in guest operating systems, and the
decrypted working set is configured to fit the cache. Bear [18] is a comprehen-
sive ME solution that hides working set in the on-chip memory. However, this
work focuses on a “from scratch” microkernel that does not fit commodity OS.
Sentry encrypts sensitive Android application when the device is locked, and
employs on-chip caches to support background applications [8]. This solution is
not practical for applications at normal state because substantial performance
slowdown is observed. All the aforementioned approach towards full system mem-
ory encryption takes a probabilistic approach that reduces the risk of having
sensitive content stored in the memory. This however leaves a door for the afore-
mentioned software attacks that allow kernel to read the entire address space
of application. Because memory coherence is maintained automatically by the
processor, OS kernel could directly read out the private data in the working set,
regardless they reside in DRAM, on-chip memory or caches. With CryptMe,
this decrypted working set is protected within the processor boundary in the
iRAM against the cold boot attack. The iRAM is further protected by the Trust-
Zone memory separation against memory disclosure attacks due to misused OS
functions.

7.2 TrustZone-Based Solutions

TrustZone is a system wide security extension on ARM processors. Due to its
unique ability to provide isolated execution environment even when the soft-
ware of the system is compromised, TrustZone has been widely adopted in both
academia research project and commercial project [4,15,20,23,32,36]. CaSE [36]
is a system closely related to CryptMe. In CaSE, sensitive workloads are
encrypted and only decrypted during execution completely within the processor
cache in ARM system to address the threat from physical memory disclosure.
However, CaSE has limitation on the size of application binary. CryptMe uti-
lizes the iRAM for storing sensitive data and extends its capacity by employing
a sliding-window algorithm. Therefore, it can support unmodified binaries of
arbitrary size. TrustShadow [15] resembles our work in that we both offload the
execution of trusted applications to the secure world. However, TrustShadow
focuses on defeating malicious OSes, while CryptMe focuses on defeating mem-
ory disclosure attacks.
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8 Limitations and Future Work

Our design is not a full memory encryption solution which encrypts the whole
address space of a process. Encrypted code is a compelling form of protection to
thwart reverse-engineering of proprietary software. Although the current version
of CryptMe does not protect the confidentiality of program code, it is possi-
ble to extend it to encrypt code segment as well. However, we anticipate that
new issues will arises. For example, how to handle shared libraries with non-
SenProcesses is challenging. Moreover, it will inevitably introduce overhead
due to increased working set.

We observed noticeable overhead for micro-benchmarks such as the memory
latency test shown in Fig. 5. The overhead in the CryptMe mainly originates
from page swapping as is shown in Table 5. In the future, we plan to improve
CryptMe through the following two aspects. First, we will seek a better way to
adjust the size of sliding window for individual SenProcesses. The provided
customization allows for personalized configuration to maximum the usage of
the valuable iRAM resource. Second, within a given sliding window, we plan to
find a smarter page replacement algorithm to minimize the occurrence of page
swapping.

9 Conclusions

In this paper, we present CryptMe, a practical ME solution for the ARM-based
IoT devices. CryptMe supports unmodified program working on encrypted
memory, mitigating the threats caused by memory leakages. Sensitive data is
only decrypted in the iRAM of the SoC to protect against physical memory disclo-
sure attacks. The trusted process is offloaded into an isolated execution domain
with TrustZone. Therefore, our solution can also defeat software memory dis-
closure attacks from other processes or even the OS. We have implemented a
CryptMe prototype on a real ARM SoC board. Experiment results show that
CryptMe effectively defeats a wide range of memory disclosure attacks. Fur-
thermore, CryptMe introduces moderate overhead for computation intensive
programs, and negligible overhead for programs with small memory footprints.
CryptMe enables ME for unmodified programs on the widely deployed ARM
platforms. With small trade-off on the performance, CryptMe provides its users
with unprecedented protection for private user data.
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