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Abstract—In this paper, we investigate the performance of
MIMO-based ad hoc networks under imperfect channel state
information (CSI). Most existing results on MIMO ad hoc net-
works assume perfect CSI. This assumption is usually unrealistic
in practice because the feedback overhead of perfect CSI is
prohibitively high. Thus, it is of great interest to study how
to optimize the performance of MIMO-based ad hoc networks
under imperfect CSI. In this paper, we propose a solution based
on stochastic approximation technique to address imperfect CSI.
To analyze the performance gap due to the existence of CSI error,
we first show that our proposed solution is stable and converges
with probability one to a neighborhood of an optimal solution
obtained under perfect CSI. Based on this stability result, we
characterize the performance gap due to imperfect CSI. We show
that the boundary of the stability neighborhood is constituted by
points for which the excess capacity of each link is equal to the
ergodic link capacity loss due to imperfect CSI. Thus, as the
amount of CSI feedback increases, the performance gap of our
proposed solution vanishes.

I. INTRODUCTION

The pioneering works by Foschini and Gans [1], and
Teletar [2] have shown that much higher spectral efficiency
and capacity gain can be achieved by the use of multiple
antenna systems, now known as multiple-input multiple-output
(MIMO) technology. The potential of significant improvement
in channel capacity has positioned MIMO technology as a
major breakthrough in modern wireless communications. As
a result, there is a great interest on applying MIMO to ad hoc
networks.

However, applying MIMO in practical ad hoc networks is
far from trivial. One major obstacle is due to channel state
information (CSI) feedback. It is well understood that with
or without CSI knowledge at the transmitter can make a big
difference in MIMO channel capacity [3]. Usually, CSI knowl-
edge at transmitter side requires CSI feedback on the reverse
link from the receiver. Unfortunately, in practice, acquiring full
CSI appears to be difficult even in point-to-point or single-hop
systems. For example, a 4×4 matrix channel has 32 complex
parameters that need to be quantized each time when the
channel changes. Compared with conventional single-antenna
systems, this is a factor of 30 increase in feedback overhead
on the reverse link [4]. Apparently, such feedback overhead is
not acceptable. In more complex multi-hop MIMO networks,
assuming perfect CSI becomes even more unrealistic because
the amount of CSI feedback grows not only with the product
of transmit antennas and receive antennas but also with the
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number of links and queuing delay spread in the network. The
bandwidth consumed for CSI feedback becomes prohibitively
large even for a moderate sized networks.

To optimize system performance while still keeping feed-
back overhead acceptable, researchers have proposed to use
various limited feedback (LFB) techniques for point-to-point
systems (see [4] for an overview) and single-hop systems [5]–
[7]. The basic idea of these LFB schemes is that, instead of
full CSI, only a limited number of feedback bits representing
certain state of CSI are transmitted by the receiver back to
the transmitter. The transmitter can then use this imperfect
CSI to adapt its signals to approximate the current channel
eigen-structure with certain error. However, compared with
the research on imperfect CSI (due to LFB) in point-to-point
and single-hop systems, research on multi-hop ad hoc network
performance under imperfect CSI remains in its infancy. This
is perhaps because imperfect CSI brings further challenges
to cross-layer design, which is now widely considered a
necessary approach due to the high complexity of MIMO [8],
[9]. Imperfect CSI at the physical layer may have a chain effect
to upper layers as follows. Due to power control decision error
under imperfect CSI, the transmitted signals are no longer
adapted to the eigen-direction of the channel, thus resulting
in suboptimal link capacities. The loss in link capacity will
in turn cause other network-wide issues, such as erroneous
end-to-end rate control and routing decisions. Moreover, many
existing cross-layer optimization algorithms can no longer be
applied if the perfect CSI assumption is violated.

Our goal in this paper is to fill this important gap by
developing a methodology to optimize the performance of
MIMO ad hoc networks under imperfect CSI. The main
contributions of this paper are the following:
• We propose a solution to the cross-layer optimization

problem for MIMO networks under imperfect CSI. We
show that our proposed solution converges with probabil-
ity one to a neighborhood of the solution obtained under
perfect CSI. The mathematical technique for this result
is based on stochastic approximation.

• Based on the above result, we further analyze the size
of the neighborhood (performance gap) of our proposed
solution under imperfect CSI. We show that the size of the
performance gap is determined by the ergodic capacity
loss and power control error, which depend on the number
of feedback bits. We further show that the performance



gap of our proposed solution vanishes as the number of
feedback bits goes to infinity.

The remainder of this paper is organized as follows. In
Section II, we discuss the network model and the problem
under study. Section III gives a solution under perfect CSI.
In Section IV, we propose a solution under imperfect CSI.
In Section V, we show the stability of our proposed solution
and analyze the performance gap. Section VI presents some
numerical results. Section VII concludes this paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a joint rate and power control problem for a
MIMO-based ad hoc network. Our goal is to jointly optimize
the transmission rate of each session and the power allocation
of each node such that some utility function (a function of
session rates) is maximized.

We first introduce notation for matrices, vectors, and com-
plex scalars in this paper. We use boldface to denote matrices
and vectors. For a matrix A, A† denotes the conjugate
transpose, Tr{A} denotes the trace of A, and |A| denotes
the determinant of A. We denote I the identity matrix with
dimension determined from context. A º 0 represents that A
is Hermitian and positive semidefinite (PSD). 1 and 0 denote
vectors whose elements are all ones and zeros, respectively,
and their dimensions are determined from context. For matrix
A, Aij denotes the entry on the i-th row and the j-th column.
For a real vector v and a real matrix A, v ≥ 0 and A ≥ 0
mean that all entries in v and A are nonnegative, respectively.
The operator “〈·, ·〉” represents the inner product operation for
vectors or matrices.

The topology of a MIMO-based ad hoc network is modeled
as a set of nodes, denoted by N , and a set of links, denoted
by L. In our model, a link connecting a pair of nodes exists
if the distance between the nodes is less than or equal to the
maximum transmission range dmax, i.e., L = {(i, j) : dij ≤
dmax, i, j ∈ N , i 6= j}, where dij represents the distance
between node i and node j. The maximum transmission range
dmax is determined by a node’s maximum transmission power.
Suppose that the cardinalities of the setsN and L are |N | = N
and |L| = L, respectively. For convenience, we identify the
links in the network numerically as 1 . . . L instead of using
node pairs (i, j). Also, we use O (n) to represent the set
of outgoing links from node n and tx(l) to represent the
transmitting node of link l. In this paper, we assume that each
node has been assigned non-overlapping (possibly reused)
frequency bands for its incoming and outgoing links. There is a
vast amount of literature (see, e.g., [10] and references therein)
on how to perform channel assignments and its discussion is
beyond the scope of this paper.

Let Hl ∈ Cnr×nt represent the channel gain matrix of
link l, where nt and nr are the numbers of transmitting and
receiving antennas, respectively. The channel is assumed to be
block faded, i.e., the channel remains static within each block
and varies independently from block to block. The received
complex base-band signal vector for MIMO link l is given by
yl =

√
ρlHlxl + nl, where yl and xl represent the received

and transmitted signal vectors, nl is complex additive white
Gaussian noise vector with zero mean and unit variance, ρl

denotes signal-to-noise ratio (SNR).
Let matrix Ql represent the covariance matrix of input

symbol vector xl at link l, i.e., Ql = E
{
xl · x†l

}
. We

normalize xl such that Ql º 0 and Tr(Ql) ≤ 1. It is well
known that the optimal input covariance matrix for link l is
achieved by “water-filling” its power along the eigen-direction
of the effective channel [2]. Let PHl

≤ 1 represent the total
power of link l when the channel realization is Hl and denote
the water-filling solution under total power PHl

as Q∗(PHl
).

Denote the capacity of link l as Cl. The ergodic mutual
information can be computed by [3]

Cl = EHl

[
log2

∣∣∣I + ρlHlQ∗(PHl
)H†

l

∣∣∣
]
, (1)

where EHl
[·] represents the expectation taken over the fading

distribution of Hl. During a unit time interval, since the
power sum (averaged over fading distribution) of all outgoing
links at each node cannot be larger than the node’s maximum
transmission power, we have, for all n,

∑

l∈O(n)

EHl
[PHl

] ≤ 1.

We assume there are S communication sessions in the
network. We assume that the source of the s-th session emits
one flow with rate fs, using a pre-assigned route to its
destination. We can describe the routing paths compactly by
using a routing matrix R ∈ RL×S , defined as

Rls =
{

1 if session s passes through link l
0 otherwise.

Since the total traffic on a link cannot exceed its link capacity,
we have

∑S
s=1 Rlsfs ≤ Cl, for all l ∈ L.

For the problem under study, we aim to perform joint
rate and power control such that some network utility is
maximized. We adopt weighted proportional fairness as the
utility function [11], i.e., ws ln(fs) for flow rate fs, where
ws is the given weight for session s. Coupling the network
layer and the physical layer models, we have the problem
formulation as follows:

Maximize
∑S

s=1 ws ln(fs)
subject to

∑S
s=1 Rlsfs ≤ Cl ∀ l

Cl = EHl

[
log2

∣∣∣I + ρlHlQ∗(PHl
)H†

l

∣∣∣
]

∀ l∑
l∈O(n) EHl

[PHl
] ≤ 1 ∀n

PHl
≥ 0 ∀Hl, ms ≤ fs ≤ Ms ∀ s

(2)

III. SOLUTION UNDER PERFECT CSI

When perfect CSI is available, (2) can be solved rather
cleanly. This is because the formulation in (2) is convex, which
can be solved efficiently. We employ dual decomposition (DD)
technique, which solves (2) in its dual domain rather than
attacking it directly. This is because, for a convex problem,
the optimal dual objective value is equal to that of the original
primal problem due to strong duality [12] (i.e., zero duality



gap). The main purpose of solving the problem in the dual do-
main is due to the availability of nice decomposable structure
so that each subproblem can be solved with reasonably low
complexity.

In this paper, we focus on PD to solve (2) in its dual domain
because PD generally has a faster convergence rate compared
with other algorithms [13]. Denote vector u , [u1 u2 . . . uL]T

the collection of dual variables associated with link capacity
coupling constraints and v , [v1 v2 . . . vN ]T the collection
of dual variables associated with power constraints. Then, the
Lagrangian dual function can be written as

Θ(u,v) , max
f ,P

{L(f ,P,u,v)|(f ,P) ∈ Ψ} , (3)

where f and P denotes the collections of all flow rates
and power variables, respectively. In (3), the Lagrangian
L(f ,P,u,v) can be computed as

L(f ,P,u,v) =
S∑

s=1

ws ln fs +
L∑

l=1

ul ×
[
EHl

[
log2

∣∣∣I + ρlHlQ∗(PHl
)H†

l

∣∣∣
]
−

S∑
s=1

Rlsfs

]

+
N∑

n=1

vn


1−

∑

l∈O(n)

EHl
[PHl

]




and Ψ , {(f ,P) |PHl
≥ 0 ∀Hl, ms ≤ fs ≤ Ms ∀ s}. Then,

the Lagrangian dual problem can be written as:

Minimize Θ(u,v) subject to u ≥ 0, v ≥ 0. (4)

After re-arranging terms, the Lagrangian function can be
rewritten as

L(f ,P,u,v) =
S∑

s=1

[
ws ln (fs)−

L∑

l=1

Rlsulfs

]

︸ ︷︷ ︸
Network Layer Subproblem

+
N∑

n=1

vn

+
L∑

l=1

EHl

[
ul log2

∣∣∣I + ρlHlQ∗(PHl
)H†

l

∣∣∣− vtx(l)PHl

]

︸ ︷︷ ︸
Physical Layer Subproblem

.

As a result, the Lagrangian dual function can be written as
Θ(u,v) = maxf ,P L(f ,P,u,v) = Θnet(u) + Θphy(u,v) +
〈1,v〉, where Θnet(u) , {max

∑S
s=1 ws ln(fs) −∑L

l=1

∑S
s=1 Rlsulfs|ms ≤ fs ≤ Ms, ∀s}; and Θphy(u,v) ,

{max
∑L

l=1 EHl

[
ul log2

∣∣∣I + ρlH̄lQ∗
PHl

H̄†
l

∣∣∣− vtx(l)PHl

]
|

PHl
≥ 0, ∀Hl}. For the physical layer subproblem, we have

the following lemma.

Lemma 1. In the k-th iteration, the physical layer subproblem
Θphy can be solved in closed form as

P
(k)
Hl

=


 u

(k)
l

v
(k)
tx(l)

D −
D∑

d=1

σ−1
d (ρlH

(k)†
l H(k)

l )




+

, (5)

where [·]+ = max(·, 0), D is the rank of H(k)†
l H(k)

l ,
σ−1

d (ρlH
(k)†
l H(k)

l ) represents the inverse of the d-th non-zero
eigenvalue of (ρlH

(k)†
l H(k)

l ).

The basic idea of the proof is based on the argument that
power should be water-filled according to the eigen-direction
of (ρlH

(k)†
l H(k)

l ) with water level (u(k)
l /v

(k)
tx(l))D. Due to

space limitation, we omit the details of the proof in this paper.
When using PD to solve (4), we update primal variables

f and dual variables u and v on the same time-scale. We
summarize the PD algorithm in Algorithm 1. In Algorithm 1,
Mu and mv are appropriate upper and lower bounds for dual
variables u and v, respectively. In general, as long as step
size λk satisfies λk → 0 as k → ∞,

∑∞
k=1 λk → ∞, and∑∞

k=1 λ2
k < ∞, PD converges to a dual optimal solution [12].

Algorithm 1 The Primal-Dual Algorithm
1. Choose the initial starting points f (0), u(0), v(0). Compute P(0)

according to (5)
2. In the kth iteration, choose an appropriate step size λk. Update
primal variables f as:

f (k+1)
s =

[
f (k)

s + λk

(ws

fk
s

−
L∑

l=1

Rlsu
(k)
l

)]Ms

ms

, ∀s. (6)

Update dual variables u as:
u

(k+1)
l =

[
u

(k)
l − λk

(
EHl

[
log2

∣∣∣I + H
(k)
l Q∗(P (k)

Hl
)H

(k)†
l

∣∣∣
]

−
S∑

s=1

Rlsf
(k)
s

)]Mu

0
, ∀l. (7)

Update dual variables v as:
v(k+1)

n =
[
v(k)

n − λk

(
1−

∑

l∈O(n)

EHl

[
P

(k)
Hl

] )]∞
mv

, ∀n. (8)

3. Compute P(k+1) according to (5).
4. If ‖f (k+1)−f (k)‖2+‖u(k+1)−u(k)‖2+‖v(k+1)−v(k)‖2 < ε,
stop; otherwise, let k ← k + 1 and go to 2.

IV. SOLUTION UNDER IMPERFECT CSI

It can be observed that the updates on dual variables u
and v in Algorithm 1 (Eqs. (7) and (8)) require perfect CSI
as well as channel distribution information (CDI). However,
as discussed earlier, obtaining full CSI and CDI may not be
feasible in practice as the amount of overhead is prohibitively
large. So the result by Algorithm 1 can only be used as an
ideal reference.

In this section, we strive to answer the following two
questions: Is it possible to develop a solution to (2) based
on imperfect CSI? Can the performance gap of the proposed
solution (under imperfect CSI) to the ideal solution (under
perfect CSI) be characterized? We show that answers to both
questions are yes. In this section, we show the answer to the
first question and in the next section, we show the answer
to the second. We propose a revised PD algorithm based on
Algorithm 1 using imperfect CSI. Our key technique in this
revised algorithm is stochastic approximation (SA). We refer
to this approach as PD-SA algorithm.

The purpose of using SA is to avoid computing expectations
over fading distributions, thus eliminating the requirement



of perfect CSI and CDI. The main idea is that, instead of
evaluating the subgradients by averaging over all possible
channel realizations, we only use an imperfect observation
of the current channel realization to compute u and v in
each iteration. Although only one channel realization is used
in each iteration, it can be shown that the decreasing step
sizes would provide an implicit averaging over the observed
channel realizations across iterations. Therefore, our proposed
algorithm can adapt to unknown fading distributions on the
fly. More precisely, we revise the dual updates in (7) and (8)
as follows.

û
(k+1)
l =

[
û

(k)
l − λk

(
log2

∣∣∣I + ρlH
(k)
l Q(P̂ (k)

Hl
)H(k)†

l

∣∣∣
−∑S

s=1 Rlsf
(k)
s

)]Mu

0
, ∀l,

(9)

v̂(k+1)
n =

[
v̂(k)

n − λk

(
1−

∑

l∈O(n)

P̂ (k)
)]∞

mv

, ∀n, (10)

where Q(P̂ (k)
Hl

) and P̂
(k)
Hl

denotes the suboptimal covariance
matrix and power level due to imperfect CSI. From (9) and
(10), we find that the differences to the original PD are: 1)
Q∗(P (k)

Hl
) and P

(k)
Hl

are replaced by Q(P̂ (k)
Hl

) and P̂
(k)
Hl

; and
2) In each iteration, there is no expectation computation over
fading distributions in PD-SA. Although the changes in (9)
and (10) appear minor, they have profound impacts on the
algorithm’s behavior. First, the running time of each iteration
becomes much shorter and since no expectation computation
is needed. Second, whether or not such a SA is stable and
how far it deviates from the original optimal solution remain
unclear and will be the main topic in the next section.

V. PERFORMANCE GAP ANALYSIS

Due to the existence of CSI error, a performance gap
between the solutions under imperfect and perfect CSI is
inevitable. In this section, we study this performance gap
mathematically.

A. A Closer Look at Stochastic Approximation
Before we study the stability of PD-SA, we need to take a

closer look at our proposed SA. Recall that the subgradients
L

(k)
ul and L

(k)
vn of the Lagrangian function (with respect to

ul and vn, respectively) under perfect CSI during the k-th
iteration are as follows:

L(k)
ul

= EHl

[
log2

∣∣∣I + H(k)
l Q∗(P (k)

Hl
)H(k)†

l

∣∣∣
]
−

S∑
s=1

Rlsf
(k)
s ,

L(k)
vn

= 1−
∑

l∈O(n)

EHl

[
P

(k)
Hl

]
=

∑

l∈O(n)

L(k)
vn,l

,

where L
(k)
vn,l , 1

|O(n)|−EHl

[
P

(k)
Hl

]
. Note that in our proposed

PD-SA, the subgradients are changed to the following SA:

L̂(k)
ul

= log2

∣∣∣I + H(k)
l Q(P̂ (k)

Hl
)H(k)†

l

∣∣∣−
S∑

s=1

Rlsf
(k)
s ,

L̂(k)
vn

= 1−
∑

l∈O(n)

P̂
(k)
Hl

,
∑

l∈O(n)

L̂(k)
vn,l

,

where L̂
(k)
vn,l , 1

|O(n)| − P̂
(k)
Hl

. Observe that L̂
(k)
ul can be

decomposed as follows:

L̂(k)
ul

= L(k)
ul

+ µ
(k)
l + ζ

(k)
l , (11)

where µ
(k)
l is the error of biased estimation of Lul

, defined as

µ
(k)
l , EHl

[
L̂(k)

ul

]
− L(k)

ul
=

EHl

[
log2

∣∣∣I + H(k)
l Q(P̂ (k)

Hl
)H(k)†

l

∣∣∣−
log2

∣∣∣I + H(k)
l Q∗(P (k)

Hl
)H(k)†

l

∣∣∣
]
, (12)

and ζ
(k)
l is defined as

ζ
(k)
l , L̂(k)

ul
− EHl

[
L̂(k)

ul

]
=

= log2

∣∣∣I + H(k)
l Q(P̂ (k)

Hl
)H(k)†

l

∣∣∣−
EHl

[
log2

∣∣∣I + H(k)
l Q(P̂ (k)

Hl
)H(k)†

l

∣∣∣
]
. (13)

Similarly, the stochastic subgradient approximation L̂
(k)
vn can

be decomposed as follows:

L̂(k)
vn

=
∑

l∈O(n)

[
L(k)

vn,l
+ ν

(k)
n,l + ξ

(k)
n,l

]
, (14)

where ν
(k)
n,l is the error of biased estimation of L

(k)
vn,l , defined

as

ν
(k)
n,l , EHl

[
L̂(k)

vn,l

]
− L(k)

vn,l
= EHl

[
P

(k)
Hl

− P̂
(k)
Hl

]
, (15)

and ξ
(k)
n,l is defined by

ξ
(k)
n,l , L̂(k)

vn,l
− EHl

[
L̂(k)

vn,l

]

=
(

1
|O (n) | − P̂

(k)
Hl

)
− EHl

[
1

|O (n) | − P̂
(k)
Hl

]

= EHl

[
P̂

(k)
Hl

]
− P̂

(k)
Hl

. (16)

A closer look at the biased estimation error µ
(k)
l in (12) reveals

that µ
(k)
l is precisely the ergodic capacity loss on link l due

to imperfect CSI. This ergodic capacity loss will not diminish
as k →∞. Thus, L̂

(k)
ul can be viewed as a biased estimator of

the true subgradient L
(k)
ul . Likewise, we can also see that the

biased estimation error ν
(k)
n,l in (15) can be interpreted as the

ergodic power allocation error of outgoing link l at node n
due to imperfect CSI.

B. Stability Study

We now formally define the stability of a stochastic approx-
imation algorithm.

Definition 1. Denote the iterates generated by an approx-
imation algorithm A as xk, k = 1, 2, . . .. Suppose that at
iteration k0, the current solution xk0 is in a neighborhood N
around the original optimal solution x∗. Let pk0(n) denote
the probability of the first reentry to N at iterate k0 + n,
i.e., pk0(n) = Pr(xk0+n ∈ N, xk0+n−1 /∈ N, . . . , xk0+1 /∈



N|xk0 ∈ N). We say A is stable if
∑∞

n=1 pk0(n) → 1. That
is, the iterates generated by A is recurrent to N.

The stability of PD-SA can be shown by the following
steps. First, we will construct a Lyapunov function and de-
rive some appropriate upper bounds for one-step dynamics
of the stochastic iterates. Second, we will identify some
neighborhood and establish the stability with respect to this
neighborhood.

Let (f∗,P∗,u∗,v∗) be an optimal point under PD. Now,
we define a Lyapunov function as follows.

V (f ,P,u,v) , ‖f−f∗‖2+‖P−P∗‖2+‖u−u∗‖2+‖v−v∗‖2,
For the stochastic iterates {(f̂ (k), P̂(k), û(k), v̂(k)) : k =
1, 2, . . .} generated by PD-SA, we have the following lemma.

Lemma 2. The average distance between û(k+1) and u∗ in
the (k + 1)-th iteration is bounded as follows:

EH

[
‖û(k+1) − u∗‖2

]
≤ ‖û(k) − u∗‖2 − 2λk(û(k) − u∗)T ×

L(k)
u − 2λk(û(k) − u∗)TEH

[
µ(k)

]
+ O(λ2

k).

Proof: Substituting (11) into (9), we have

û
(k+1)
l = û

(k)
l − λk

[
L(k)

ul
+ µ

(k)
l + ζ

(k)
l

]
+ λkZ

(k)
l , (17)

where Z
(k)
l is a correction term that projects the iterate û

(k+1)
l

back to the non-negative orthant. Thus, in vector form, we have

‖û(k+1) − u∗‖2 ≤ ‖û(k) − u∗‖2 − 2λk(û(k) − u∗)T ×[
L(k)

u + µ(k) + ζ(k)
]

+ λ2
k‖L(k)

u + µ(k) + ζ(k)‖2, (18)

where the inequality follows because the projection term
λkZ

(k)
l is non-expansive. Since the Lagrangian function

L(f ,P,u,v) is twice-differentiable, L
(k)
u is bounded. Also,

‖u(k)−u∗‖ is bounded and EHl

[
ζ
(k)
l

]
= 0. From the iteration

update in (9), |ζ(k)| must be bounded. As a result, ‖L̂(k)
u ‖ is

bounded. Thus, taking expectation of both sides of (18) yields
the result stated in the lemma.

Following the same token, we can also derive the upper
bounds for EH

[‖v̂(k+1) − v∗‖2] and EH

[
‖f̂ (k+1) − f∗‖2

]
.

We omit the derivations in here for brevity.
Now, we define a family of neighborhoods Bφ parameter-

ized by a variable φ as follows:

Bφ ,



(f ,P,u,v)

∣∣∣∣∣∣

µ̄l ≥ φ|Lul
|, for all l

ν̄n ≥ φ|Lvn |, for all n
φ ≥ 0.



 , (19)

where µ̄l , lim supk→∞ µ
(k)
l and ν̄n , lim supk→∞ ν

(k)
n ,

respectively. In essence, Bφ defines a neighborhood around the
optimal point (f∗,P∗,u∗,v∗). This is because Lul

(f ,P,u,v)
and Lvn(f ,P,u,v) are continuous at (f∗,P∗,u∗,v∗) and
by KKT conditions, we have Lul

(f∗,P∗,u∗,v∗) = 0 for
all l and Lvn(f∗,P∗,u∗,v∗) = 0 for all n, respectively.
The constraints in (19) means that the points in Bφ satisfy

|Lul
(f ,P,u,v)| ≤ µ̄l

φ and |Lvn
(f ,P,u,v)| ≤ ν̄n

φ , which
clearly includes (f∗,P∗,u∗,v∗).

The size of Bφ depends on the value of parameter φ, µ̄l,
and ν̄n. For a given LFB scheme (with a certain number of
feedback bits), µ̄l and ν̄n can be determined. In this case,
the smaller the value of φ is, the larger the size of Bφ

is. In the extreme cases, Bφ becomes the whole space of
(f ,P,u,v) when φ = 0 and Bφ collapses to the optimal
solution (f∗,P∗,u∗,v∗) when φ →∞. When we characterize
the recurrence region of PD-SA later, we will specify what
condition φ should satisfy.

On the other hand, for a fixed φ, the larger the values of
µ̄l and ν̄n are (i.e., due to poor LFB and/or fewer number of
feedback bits), the larger the size of Bφ. For convenience, let
a denote the collection of all dual variables u and v. Then,
for Bφ and the stochastic iterates {(f̂ (k), P̂(k), â(k)) : k =
1, 2, . . .}, we have the following lemma.

Lemma 3. If the current iteration (f̂ (k), P̂(k), â(k)) is not in
Bφ, then the following inequality holds:

EH

[
‖f̂ (k+1) − f∗‖2 + ‖â(k+1) − a∗‖2

]

−
(
‖f (k) − f∗‖2 + ‖â(k) − a∗‖2

)

≤ 2λk[2 + (sgn[L(k)
f ] + sgn[L(k)

a ])φ]J (k) + O(λ2
k),

where sgn[x] = 1 if x ≥ 0 and −1 otherwise; J (k) is defined
as J (k) , (f̂ (k) − f∗)T L

(k)
f − (â(k) − a∗)T L

(k)
a .

Proof: If û(k) is not in Bφ, then we have
lim supk |µ(k)| ≤ φ|L(k)

u |. From Lemma 2, it follows
that

EH

[
‖û(k+1) − u∗‖2

]
≤ ‖û(k) − u∗‖2 − 2λk(û(k) − u∗)T ×

[
L(k)

u + φ|L(k)
u |

]
+ O(λ2

k) = ‖û(k) − u∗‖2 − 2λk ×
[1 + sgn[L(k)

u ]φ](û(k) − u∗)T L(k)
u + O(λ2

k). (20)

Likewise, we can obtain

EH

[
‖v̂(k+1) − v∗‖2

]
≤ ‖v̂(k) − v∗‖2 − 2λk ×

[1 + sgn[L(k)
v ]φ](v̂(k) − v∗)T L(k)

v + O(λ2
k), (21)

EH

[
‖f̂ (k+1) − f∗‖2

]
≤ ‖f̂ (k) − f∗‖2 + 2λk ×

[1 + sgn[L(k)
f ]φ](f̂ (k) − f∗)T L

(k)
f + O(λ2

k). (22)

Combining (20), (21), and (22) and using the notation a and
the definition of J (k), the proof is complete.

Now, we are ready to prove the stability result, which is
stated in the following theorem.

Theorem 1. If the step size selection satisfies λk → 0,∑∞
k=1 λk → ∞, and

∑∞
k=1 λ2

k < ∞, then the iterates
{(f (k),P(k),u(k),v(k)) : k = 1, 2, . . .} generated by PD-
SA returns with probability one to a neighborhood Bφ with
0 ≤ φ < 1.



Proof: Since 0 ≤ φ < 1 and λk > 0, we have
2λk[2 + (sgn[L(k)

a ] + sgn[L(k)
f ])φ] > 0. As a result, by

Lemma 3 and according to [14, Theorem 5.4], the proof
of this theorem boils down to showing that J (k) < 0 for
(f̂ (k), P̂(k), â(k)) /∈ Bφ. Note that the Lagrangian function
L(f ,P,a) is strictly concave in f and convex in a. We have

L(f̂ (k), P̂(k), â(k))− L(f∗, P̂(k), â(k)) > (f̂ (k) − f∗)T L
(k)
f ,

L(f̂ (k), P̂(k), â(k))− L(f̂ (k), P̂(k),a∗) ≤ (â(k) − a∗)T L(k)
a ,

Combining these two inequalities, we have

J (k) < L(f̂ (k), P̂(k),a∗)− L(f∗, P̂(k), â(k))

=
[
L(f̂ (k), P̂(k),a∗)− L(f∗,P∗,a∗)

]

+
[
L(f∗,P∗,a∗)− L(f∗,P∗, â(k))

]

+
[
L(f∗,P∗, â(k))− L(f∗, P̂(k), â(k))

]
.

Since (f∗,P∗,a∗) is an optimal solution, from saddle point
optimality condition, we have that

L(f̂ (k), P̂(k),a∗) ≤ L(f∗,P∗,a∗) ≤ L(f∗,P∗, â(k)),

which indicates that
[
L(f̂ (k), P̂(k),a∗)− L(f∗,P∗,a∗)

]
and[

L(f∗,P∗,a∗)− L(f∗,P∗, â(k))
]

are non-positive. On the
other hand, when L(·, ·, ·) is fixed at f∗ and â(k), we have
that P̂(k) is the unique maximizer from (5), which means[
L(f∗,P∗, â(k))− L(f∗, P̂(k), â(k))

]
is also non-positive.

Thus, we can conclude that J (k) < 0.
The proof of Theorem 2 implies that the stochastic iterates

may not return to Bφ≥1 with probability one. Thus, the
recurrence region of PD-SA includes the whole space of
(f ,P,u,v) minus the union of all Bφ≥1’s. Since the iterates
is recurrent with probability one to Bφ=1−δ where δ > 0 is
arbitrarily small, the iterates path of PD-SA will be arbitrarily
close to the boundary of Bφ=1 as k →∞.

C. Characterizing Performance Gap

Now that we have shown that PD-SA is stable and will get
arbitrarily close to the boundary of Bφ=1, the next question
is how large the performance gap is. It is apparent that the
performance gap depends on the size of Bφ=1. As mentioned
earlier, when φ is fixed, the size of Bφ depends on the values
of µ̄l, and ν̄n. In the following theorem, we characterize
the performance gap using ergodic capacity loss and ergodic
power allocation error.

Theorem 2. Each point (f ,P,u,v) on the boundary of the
stability region satisfies |Lul

(f ,P,u,v)| = ∆Cl for all l
and |Lvn(f ,P,u,v)| = ∆Pn for all n, where ∆Cl and
∆Pn denote the largest ergodic capacity loss for link l and
largest ergodic power allocation error due to imperfect CSI,
respectively.

Proof: Recall that any point (f ,P,u,v) ∈ Bφ satisfies
φ|Lul

(f ,P,u,v)| ≤ µ̄l. Also by definition, µ̄l is the supre-
mum limit of µ

(k)
l , which is precisely the largest ergodic

capacity loss on link l due to imperfect CSI. Therefore, from
Theorem 1, we know that there exists a φ ∈ [0, 1) such that

φ|Lul
(f ,P,u,v)| ≤ ∆Cl = µ̄l, for (f ,P,u,v) ∈ Bφ,

It then follows that

|Lul
(f ,P,u,v)| ≤ ∆Cl

φ
. (23)

From our earlier discussion, we know that for a given LFB
scheme, the iterates of PD-SA will move toward Bφ=1 ar-
bitrarily close and infinitely often. Thus, we have that the
neighborhood is an open region inner-bounded by points
satisfying |Lul

(f ,P,u,v)| = ∆Cl for all l. Along the same
line, we can also show that |Lvn

(f ,P,u,v)| = ∆Pn for all
n.

Recall that the gradients Lu can be interpreted as the excess
link capacity of every link in the network (i.e., how much
link capacity is under-utilized) and µ(k) can be interpreted
as the ergodic capacity loss due to imperfect CSI. When
(f (k),P(k),u(k),v(k)) is too far away from the saddle point,
the excess link capacity Lu will dominate the ergodic capacity
loss µ(k). Thus, the subgradient approximation L̂

(k)
u follows

approximately the correct subgradient direction L
(k)
u and will

drive the iterates toward (f∗,P∗,u∗,v∗). On the other hand,
since µ(k) is dictated by imperfect CSI, it will not diminish
as k increase. If (f (k),P(k),u(k),v(k)) gets too close to the
(f∗,P∗,u∗,v∗), the ergodic capacity loss will dominate the
excess link capacity and drive the iterates away from the
(f∗,P∗,u∗,v∗). Theorem 2 says that, as k →∞, the iterates
will reach with high probability to an equilibrium state where
the excess link capacity of each link is equal to the ergodic
capacity loss caused by imperfect CSI. A similar conclusion
can also be drawn for the interaction between the excess power
at each node (i.e., how much power is unused, represented by
|Lvn(f ,P,u,v)|) and the ergodic power allocation error at
each node due to imperfect CSI (represented by ν̄n).

Note also that if the number of feedback bits B →∞, we
have ∆Cl → 0 and ∆Pn → 0 because the quality of CSI be-
comes better and better. In this case, we can see from (23) that
|Lul

(f ,P,u,v)| → 0 (so does |Lvn(f ,P,u,v)| → 0). This
means that the size of the neighborhood Bφ=1 becomes smaller
and smaller and PD-SA will converges to (f∗,P∗,u∗,v∗)
asymptotically. In other words, the performance gap vanishes
as the quality of CSI feedback improves. Clearly, there exists
a tradeoff between the amount of CSI feedback and the
performance gap.

VI. NUMERICAL RESULTS

In this section, we provide some numerical results to better
understand on our theoretical analysis. Fig. 1 shows a network
example consisting of 15 nodes. Each node in the network is
equipped with 4 antennas. There are 4 sessions in the network
and their flow routes are shown in Fig. 1. The maximum
transmit power of each node are all 20dBm and the path loss
index is assumed to be 3. The weights of all sessions are set
to 1.
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Fig. 1. A network example of 15 nodes and 4 sessions.

For this example setting, we first use the PD method
with perfect CSI to solve the cross-layer rate control for
this network. We found that the optimal rates (in (b/s/Hz))
for this network example are f∗1 = 3.9903, f∗2 = 3.9633,
f∗3 = 3.8322, f∗4 = 4.1232.

Now, we use PD-SA with a LFB scheme. The LFB scheme
we use is covariance adaption with random vector quantiza-
tion (CA-RVQ). The RVQ codebook generation follows the
uniformly distributed random covariance codebook design in
[15]. In Fig. 2, we plot the normalized distance of the iterates
to the optimal flow rates, which is defined as ‖f (k)−f∗‖

‖f∗‖ and
represents how much link capacity resources are underutilized
in the network. In Fig. 2, 4-bit CA-RVQ and 8-bit CA-RVQ
mean that using 4 and 8 bits to convey the information of
input covariance matrices, respectively. For both 4-bit and
8-bit CA-RVQ, it can be seen that the algorithm returns to
a neighborhood of the optimal solution (the horizontal axis)
infinitely often. It is also seen that the normalized distances
(performance gap) for 4-bit CA-RVQ and 8-bit CA-RVQ are
bounded approximately by 0.39 and 0.18, respectively, which
are in accordance with the simulation results of the ergodic
capacity loss in [15]. This result corroborates our theoretical
analysis in Theorem 2.

VII. CONCLUSION

In this paper, we investigated the performance of MIMO-
based ad hoc networks under imperfect CSI. We first proposed
an solution based on stochastic approximation. We showed
that the proposed solution converges with probability one to a
neighborhood of an optimal solution obtained under perfect
CSI. We further analyzed the performance gap due to the
existence of imperfect CSI. This paper offers a theoretical
understanding on the performance of MIMO-based ad hoc
networks under imperfect CSI.
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