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Abstract—Recently, researchers showed that “dirty paper cod-
ing” (DPC) achieves the capacity region of MIMO Gaussian
broadcast channels (MIMO-BC). So far, there has been little
study on how this fundamental information-theoretic result
will impact the cross-layer design for MIMO-based ad hoc
networks. To fill this gap, we consider the problem of jointly
optimizing DPC power allocation at the physical layer and
multihop/multipath routing at the network layer for MIMO-
based ad hoc networks. This optimization problem turns out to
be a challenging non-convex problem. To address this difficulty,
we transform the original problem to an equivalent problem by
exploiting the uplink-downlink duality. For the transformed prob-
lem, we propose a solution procedure that integrates Lagrangian
dual decomposition, conjugate gradient projection based on
matrix differential calculus, and cutting-plane methods.

I. INTRODUCTION

From network information theory perspective, the set of
outgoing MIMO links from a node sharing a common commu-
nication spectrum can be modeled as a nondegraded MIMO
Gaussian broadcast channel (MIMO-BC), for which the ca-
pacity region is a well-known hard problem [1]. Recently,
significant progress has been made in this area. Most notably,
Weigarten et al. proved in [2] that “dirty paper coding” (DPC)
[3] is the optimal transmission strategy for MIMO-BC in the
sense that the DPC rate region CDPC is equal to the broadcast
channel’s capacity region CBC, i.e., CBC = CDPC.

However, this fundamental information-theoretic result is
still not adequately exposed to the wireless networking re-
search community. In current networking literature, most
works considering links sharing a common communication
spectrum are concerned with how to allocate frequency sub-
bands/time-slots and schedule transmissions to share the com-
mon communication spectrum. Although time and frequency
division schemes are simple and effective, it has been shown
that they are sub-optimal [1]. So far, how to exploit DPC’s
benefits in the cross-layer design for MIMO-based wireless ad
hoc networks has not been studied. The main objective of this
paper is to fill this gap and to obtain a rigorous understanding
of the impact of employing DPC in MIMO-based ad hoc
networks.

However, applying DPC in MIMO-based ad hoc networks
is far from trivial. For a K-user broadcast channel, there
exist K! encoding orders. Different encoding orders will have
different impacts on system performance. Also, since DPC
allows interference between links, optimal power allocation

needs to be determined. Thus, the optimization for a single
MIMO-BC with K users is itself a challenging combinatorial
non-convex problem, not to mention the cross-layer design in
a networking environment with multiple MIMO-BC.

In this paper, our goal is to solve the problem of jointly
optimizing DPC power allocation at each node at the physical
layer and multihop/multipath routing at the network layer for
MIMO-based ad hoc networks. This optimization problem
turns out to be a challenging non-convex problem. By ex-
ploiting uplink-downlink duality, we show that the original
non-convex optimization problem can be transformed into
an equivalent convex problem, thus paving the way to ef-
ficiently solve the physical layer subproblem. Based on the
transformation, we develop an efficient solution procedure that
integrates Lagrangian dual decomposition, conjugate gradient
projection based on matrix differential calculus, and cutting-
plane methods.

The remainder of this paper is organized as follows. In
Section II, we discuss the network model and problem for-
mulation. In Section III, we introduce the key components
for solving the challenging physical layer subproblem in the
Lagrangian decomposition. We provide numerical results in
Section IV to illustrate the efficacy of our proposed algorithm.
Section V concludes this paper.

II. NETWORK MODEL

We first introduce notation for matrices, vectors, and com-
plex scalars in this paper. We use boldface to denote matrices
and vectors. For a matrix A, A† denotes the conjugate trans-
pose, Tr{A} denotes the trace of A, and |A| denotes the deter-
minant of A. Diag{A1, . . . ,An} represents the block diagonal
matrix with matrices A1, . . . ,An on its main diagonal. We
denote I the identity matrix with dimension determined from
the context. A � 0 represents that A is Hermitian and positive
semidefinite (PSD). 1 and 0 denote vectors whose elements
are all ones and zeros, respectively, and their dimensions are
determined from the context. (v)m represents the mth entry
of vector v. For a real vector v and a real matrix A, v ≥ 0
and A ≥ 0 mean that all entries in v and A are nonnegative,
respectively. We let ei be the unit column vector where the
ith entry is 1 and all other entries are 0. The dimension of ei

is determined from the context as well. The operator “〈·, ·〉”
represents the inner product operation for vectors or matrices.
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A. MIMO Gaussian Broadcast Channels and DPC Rate Re-
gion

In network information theory, a communication system
where a single MIMO-based transmitter sends independent
information to multiple uncoordinated MIMO-based receivers
is referred to as a MIMO broadcast channel (MIMO-BC).
Let H = [H1, . . . ,HK ]T be the collection of K channel
gain matrices in a MIMO-BC, and Γ = [Γ1 . . . ,ΓK ] be the
collection of K input covariance matrices. From the encoding
process of DPC, the achievable DPC rate in a MIMO-BC can
be computed as follows [4]:

Rπ(i)(Γ) = log2

∣∣∣I + ρπ(i)Hπ(i)

(∑
j≥i Γπ(j)

)
H†

π(i)

∣∣∣∣∣∣I + ρπ(i)Hπ(i)

(∑
j>i Γπ(j)

)
H†

π(i)

∣∣∣ , (1)

where π(·) denotes a permutation of the set {1, . . . , K}, ρπ(i)

captures the path-loss effect on link π(i), Hπ(i) is the channel
gain matrix of link π(i). It is evident that (1) is a non-convex
function of the input covariance matrices Γi. Also, the choice
of π(·) will have a significant impact on Rπ(i).

The dirty paper rate region CDPC(P,H) is defined as the
convex hull of the union of all such rate vectors over all pos-
itive semidefinite covariance matrices Γ1, . . . ,ΓK satisfying
Tr{∑K

i=1 Γi} ≤ P (the maximum transmit power constraint
at the transmitter) and over all K! permutations, i.e.,

CDPC(P,H) � Conv (∪π,ΓR(π,Γ)) ,

where Conv(·) represents the convex hull.

B. Routing

In this paper, the topology of a MIMO-based ad hoc network
is represented by a directed graph, denoted by G = {N ,L},
where N and L are the set of nodes and all possible MIMO-
based links, respectively. By saying “possible” we mean the
distance between a pair of nodes is less than or equal to
the maximum transmission range Dmax, i.e., L = {(i, j) :
Dij ≤ Dmax, i, j ∈ N , i �= j}, where Dij represents the
distance between node i and node j. Dmax can be determined
by a node’s maximum transmission power. Without loss of
generality, we assume that G is always connected. Suppose
that the cardinalities of the sets N and L are |N | = N and
|L| = L, respectively. For convenience, we index the links
numerically (e.g., link 1, 2, . . . , L) rather than using node pairs
(i, j).

The network topology of G can be represented by a node-
arc incidence matrix (NAIM) [5] A ∈ R

N×L, whose entry
anl associating with node n and arc l is defined as

anl =




1 if n is the transmitting node of arc l
−1 if n is the receiving node of arc l

0 otherwise.
(2)

We define O (n) and I (n) as the sets of links that are
outgoing from and incoming to node n, respectively. We
use a multicommodity flow model for the routing of data
packets across the network. In this model, several nodes send
independent data to their corresponding destinations, possibly

through multipath and multihop routing. We assume that flow
conservation at each node is satisfied, i.e., the network is a
flow-balanced system.

Suppose that there is a total of F sessions in the network,
representing F different commodities. The source and des-
tination nodes of session f , 1 ≤ f ≤ F , are denoted as
src(f) and dst(f), respectively. For the supply and demand
of each session, we define a source-sink vector sf ∈ R

N ,
whose entries, other than at the positions of src(f) and dst(f),
are all zeros. In addition, for flow conservation, we have
(sf )src(f) = −(sf )dst(f). Without loss of generality, we let
(sf )src(f) ≥ 0 and simply denote it as a scalar sf . Therefore,
we can further write the source-sink vector of flow f as

sf = sf

[ · · · 1 · · · −1 · · · ]T , (3)

where the dots represent zeros, and 1 and −1 are in the
positions of src(f) and dst(f), respectively. Note that 1 does
not necessarily appear before −1 as in (3), which is only for
an illustrative purpose. Using the notation “=x,y” to represent
the component-wise equality of a vector except at the xth and
the yth entries, we have sf =src(f),dst(f) 0. In addition, using
the matrix S �

[
s1 s2 . . . sF

] ∈ R
N×F to denote the

collection of all source-sink vectors, we further have

Sef =src(f),dst(f) 0, 1 ≤ f ≤ F, (4)

〈1,Sef 〉 = 0, 1 ≤ f ≤ F, (5)

(Sef )src(f) = sf , 1 ≤ f ≤ F, (6)

where ef is the f th unit column vector.
Denote t

(f)
l ≥ 0 be the amount of flow of session f on link

l. Define t(f) ∈ R
L the flow vector for session f . At node

n, components of the flow vector and source-sink vector for
the same commodity satisfy the flow conservation as follows:∑

l∈O(n) t
(f)
l −∑l∈I(n) t

(f)
l = (sf )n, 1 ≤ n ≤ N , 1 ≤ f ≤

F . With NAIM, the flow conservation for the entire network
can be written as At(f) = sf , 1 ≤ f ≤ F . Denote matrix
T �

[
t(1) t(2) . . . t(F )

] ∈ R
L×F the collection of all

flow vectors. With T and S, the flow conservation can be
further written as AT = S.

Since the total amount of flow on each link l cannot exceed
its capacity limit, we must have

∑F
f=1 t

(f)
l ≤ Rl(Γ), ∀l, where

Rl(Γ) ∈ C(n)
DPC(P (n)

max,H(n)) is the DPC rate of link l. This
can be further compactly written using matrix-vector notations
as 〈1,TT el〉 ≤ Rl(Γ), ∀l.

C. Problem Formulation

In this paper, we focus on how to jointly optimize routing at
the network layer and power allocation at the physical layer.
We suppose that each node in the network has been assigned
an orthogonal frequency band. There is a vast amount of
literature on how to perform channel assignments (see [6] and
references therein) and its discussion is beyond the scope of
this paper. We adopt the proportional fairness utility function,
i.e., ln(sf ) for flow f . The objective is to maximize the sum
of utilities of all sessions. Putting together the physical layer
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constraints in Section II-A and the network layer constraints
in Section II-B, we have the problem formulation as follows:

Maximize
∑F

f=1 ln(sf )
subject to AT = S

T ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f
〈1,TT el〉 ≤ Rl(Γ) ∀ l

Rl(Γ) ∈ C(n)
DPC(P (n)

max,H(n)) ∀l ∈ O (n)∑
l∈O(n) Tr{Γl} ≤ P

(n)
max ∀n

Γl � 0 ∀ l
Variables: S, T, Γ,

(7)

It is evident that (7) is a non-convex optimization problem
since DPC rate equation in (1) is a non-convex function.
However, in what follows, we will show that (7) can be
reformulated as an equivalent convex optimization problem.

D. Reformulation

In this paper, we employ an important concept called uplink-
downlink duality from network information theory to reformu-
late problem (7). Due to space limitation, we refer readers to
[4] for details on how to construct a dual MIMO multiple
access channel (MIMO-MAC) from a MIMO-BC. In essence,
uplink-downlink duality theorem says that the DPC rate region
of a MIMO-BC channel with maximum power constraint P
is equal to the capacity region of its dual MIMO-MAC with
the same sum power, i.e., CDPC(P,H) = CMAC(P,H†). Thus,
we can replace CDPC(·) in (7) by CMAC(·) and problem (7)
becomes

Maximize
∑F

f=1 ln(sf )
subject to AT = S

T ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f
〈1,TT el〉 ≤ Rl(Q) ∀ l

Rl(Q) ∈ C(n)
MAC(P (n)

max,H†(n)) ∀l ∈ O (n)∑
l∈O(n) Tr{Ql} ≤ P

(n)
max ∀n

Ql � 0 ∀ l
Variables: S, T, Q

(8)

The benefit of these replacements is that CMAC(·) is convex
with respect to the input covariance matrices Q1, . . . ,QK

in the dual MIMO-MAC. After solving (8), we can recover
the corresponding MIMO-BC covariance matrices Γ∗ from
the optimal solution Q∗ of (8) by the MAC-to-BC mapping
provided in [4].

III. SOLUTION PROCEDURE

Due to the convexity of (8), we can solve it by solving its
Lagrangian dual problem. Introducing Lagrangian multipliers

ui to the link capacity coupling constraints 〈1,TT el〉 ≤
Rl(Q), we can write the Lagrangian as

Θ(u) = sup
S,T,Q

{L(S,T,Q,u)|(S,T,Q) ∈ Ψ} , (9)

where L(S,T,Q,u) =
∑

f ln (sf ) +
∑

l ul(Rl(Q) −
〈1,TT el〉) and Ψ is defined as

Ψ �




(S,T,Q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AT = S
T ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f∑

l∈O(n) Tr{Ql} ≤ P
(n)
max ∀n

Ql � 0 ∀ l

Rl(Q) ∈ CMAC(P
(n)
max,H

†(n)) ∀n




.

The Lagrangian dual problem of (8) can be written as:

D : Minimize Θ(u)
subject to u ≥ 0.

For a given u, the Lagrangian in (9) can be rearranged and
separated into two parts:

Θ(u) = Θnet(u) + Θphy(u),

where, for a given Lagrangian multiplier u, Θnet and Θphy

correspond to network layer and physical layer variables,
respectively:

Θnet(u) � Maximize
∑

f ln (sf )
−∑l ul〈1,TT el〉

subject to AT = S
T ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f

Variables : S, T

Θphy(u) � Maximize
∑

l ulRl(Q)
subject to

∑
l∈O(n) Tr{Ql} ≤ P

(n)
max ∀n

Ql � 0 ∀ l

Rl(Q) ∈ CMAC(P (n)
max,H†(n)),

∀ l ∈ O (n) , n ∈ N
Variables : Q

The Lagrangian dual problem can thus be written as the
following master dual problem:

MDCRPA−E : Minimize Θnet(u) + Θphy(u)
subject to u ≥ 0

From the structure of Θnet(u), it is clear that it can be
readily solved by many polynomial time convex programming
methods. However, solving Θphy(u) is substantially more
challenging. Note that Θphy(u) can be further decomposed
on a node-by-node basis as follows:

Θphy(u) = max
∑

l

ulRl(Q)

=
N∑

n=1


max

∑
l∈O(n)

ulRl(Q)


 =

N∑
n=1

Θ(n)
phy(u

(n)). (10)
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We can see that Θ(n)
phy(u

(n)) � max
∑

l∈O(n) ulRl(Q) is a
maximum weighted sum rate problem of the dual MIMO-
MAC for some given dual variables u(n) as weights. Without
loss of generality, suppose that node n has K outgoing links,
which are indexed as 1, . . . , K and are associated with dual
variables u1, . . . , uK , respectively.

Now, we consider the maximum weighted sum rate problem
of the dual MIMO-MAC. It can be shown that we do not
have to enumerate all K! successive decoding order when
computing the maximum sum rate of the dual MIMO-MAC.
Instead, the maximum sum rate problem can be simplified as
follows:

Theorem 1. Suppose that each link rate Ri in MIMO-MAC
is associated with a non-negative weight ui, i = 1, . . . ,K.
The maximum weighted sum rate max

∑K
i=1 uiRi(Q) can be

solved by the following convex optimization problem:

Maximize
∑K

i=1(uπ(i) − uπ(i−1))×
log
∣∣∣I +

∑K
j=i ρπ(j)H

†
π(j)Qπ(j)Hπ(j)

∣∣∣
subject to

∑K
i=1 Tr(Qi) ≤ Pmax

Qi � 0, i = 1, . . . ,K,

(11)

where uπ(0) � 0, π(i), i = 1, . . . ,K is a permutation on
{1, . . . , K} such that uπ(1) ≤ . . . ≤ uπ(K).

Due to space limitation, we refer readers to [7] for the proof
of Theorem 1.

Although Θ(n)
phy(u

(n)) is a convex problem, generic convex
programming methods are not efficient because of the complex
structure of the objective function and constraints in (11). In
the next subsection, we propose a custom-designed method to
solve Θ(n)

phy(u
(n)).

A. Solving the Physical Layer Subproblem

Our proposed method is based on conjugate gradient projec-
tion (CGP). CGP utilizes an important concept called Hessian
conjugate, which deflects the gradient direction appropriately
to achieve an asymptotic superlinear convergence rate [8]. In
each iteration, CGP projects the conjugate gradient direction
to find an improving feasible direction. The framework of
CGP for solving (11) is shown in Algorithm 1. Due to the

Algorithm 1 Conjugate Gradient Projection Method
Initialization:

Choose the initial conditions Q(0) = [Q
(0)
1 ,Q

(0)
2 , . . . ,Q

(0)
K ]T . Let

k = 0.
Main Loop:

1. Calculate the conjugate gradients G
(k)
i , i = 1, 2, . . . ,K.

2. Choose an appropriate step size sk . Let Q
′(k)
i = Q

(k)
i + skG

(k)
i ,

for i = 1, 2, . . . ,K.
3. Let Q̄(k) be the projection of Q

′(k) onto Ω+(P
(n)
max).

4. Choose an appropriate step size αk . Let Q
(k+1)
i = Q

(k)
i +

αk(Q̄
(k)
i − Q

(k)
i ), i = 1, 2, . . . ,K.

5. k = k+1. If the maximum absolute value of the elements in Q
(k)
i −

Q
(k−1)
i < ε, for i = 1, 2, . . . , L, then stop; else go to Step 1.

complexity of the objective function, performing an exact

line search is onerous as it calls for excessive evaluations
of the objective function. Therefore, we adopt the “Armijo
rule” inexact line search method [8], which offers provable
convergence. For convenience, we use F (Q) to represent the
objective function in (11), where Q = (Q1, . . . ,QK) denotes
the set of covariance matrices at a node. In our numerical
study, we choose sk = 1. According to Armijo Rule, in the kth

iteration, αk can be computed as αk = βmk , where 0 < β < 1
is a fixed scalar, and mk is the first non-negative integer m
that satisfies

F (Q(k+1)) − F (Q(k)) ≥ σβm〈G(k), Q̄(k) − Q(k)〉

= σβm
K∑

i=1

Tr
[
G†(k)

i

(
Q̄(k)

i − Q(k)
i

)]
, (12)

where 0 < σ < 1 is a fixed scalar. Since ∂ ln|A+BXC|
∂X =[

C(A + BXC)−1B
]T

[9], [10], we have

Ḡπ(j) = 2ρπ(j)Hπ(j)

[
j∑

i=1

(
uπ(i) − uπ(i−1)

)×
(

I +
K∑

k=i

ρπ(k)H
†
π(k)Qπ(k)Hπ(k)

)−1

H†

π(j). (13)

The conjugate gradient direction in the mth iteration can
be computed as G(m)

π(j) = Ḡ(m)
π(i) + κmG(m−1)

π(i) . We adopt the
Fletcher and Reeves’ choice of deflection [8], which can be
computed as

κm =
‖Ḡ(m)

π(j)‖2

‖Ḡ(m−1)
π(j) ‖2

. (14)

The purpose of deflecting the gradient using (14) is to find the
Hessian-conjugate direction that tends to reduce the “zigzag-
ging” phenomenon encountered in the conventional gradient
projection method; achieve an asymptotic K-step superlinear
convergence rate under certain regulation conditions [8]; and
without actually storing a large Hessian approximation matrix
as in quasi-Newton methods.

Noting that Gπ(j) is Hermitian, we have that Q
′(k)
π(j) =

Q(k)
π(j) + skG

(k)
π(j) is Hermitian as well. Then, the projection

problem becomes how to simultaneously project K Hermitian
matrices onto the set Ω+(Pmax) � {Ql :

∑
l Tr{Ql} ≤

Pmax,Ql � 0, l = 1, . . . ,K}. We construct a block diagonal
matrix D = Diag

{
Qπ(1) . . .Qπ(K)

} ∈ C
(K·nr)×(K·nr). It is

easy to recognize that Qπ(j) ∈ Ω+(Pmax), j = 1, . . . ,K, if
and only if Tr(D) =

∑K
j=1 Tr

(
Qπ(j)

) ≤ Pmax and D � 0.
In our projection, given a block diagonal matrix Dn, we wish
to find a matrix D̃n ∈ Ω+(Pmax) such that D̃n minimizes
‖D̃n − Dn‖F , where ‖ · ‖F denotes Frobenius norm. For
more convenient algebraic manipulations, we instead study the
following equivalent optimization problem:

Minimize 1
2‖D̃ − D‖2

F

subject to Tr(D̃) ≤ Pmax, D̃ � 0.
(15)
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Note that this problem is a convex minimization problem
and we can solve this minimization problem by solving its
Lagrangian dual. Associating Hermitian matrix Π to the
constraint D̃ � 0 and µ to the constraint Tr(D̃) ≤ Pmax,
we can write the Lagrangian as g(Π, µ) = minD̃{(1/2)‖D̃−
D‖2

F − Tr(Π†D̃) + µ(Tr(D̃) − Pmax)}.
Since g(Π, µ) is an unconstrained convex quadratic min-

imization problem, we can compute the minimizer of the
Lagrangian by simply setting its first derivative (with respect
to D̃) to zero, i.e., (D̃ − D) − Π† + µI = 0. Noting that
Π† = Π, we have D̃ = D − µI + Π. Substituting D̃ back
into the Lagrangian and after some algebraic simplifications,
we can rewrite the Lagrangian dual problem as

Maximize − 1
2‖D − µI + Π‖2

F − µPmax + 1
2‖D‖2

subject to Π � 0, µ ≥ 0.
(16)

Eq. (16) belongs the class of so-called matrix nearness
problems, which are not easy to solve in general (see [11] and
references therein). However, based on the special structure in
(16), we are able to design a polynomial time algorithm to
solve (16). Due to space limitation, we only give the pseudo-
code in Algorithm 2 and refer readers to [12] for more details.

Algorithm 2 Positive Semidefinite Cone Projection
Initiation:

1. Construct a block diagonal matrix D. Perform eigenvalue decompo-
sition D = UΛU†, sort the eigenvalues in non-increasing order.

2. Let λ0 = ∞ and λK·nt+1 = −∞. Let Î = 0. Let the
endpoint objective value ψÎ (λ0) = 0, φ∗ = ψÎ (λ0), and µ∗ = λ0.

Main Loop:
1. If Î > K ·nr , go to the Final Step; else let µ∗

Î
= (
∑ Î

j=1 λj −P )/Î .
2. If µ∗

Î
∈ [λÎ+1, λÎ ]∩R+, then let µ∗ = µ∗

Î
and go to the final step.

3. Compute ψÎ(λÎ+1). If ψÎ(λÎ+1) < φ∗, then go to the final step;

else let µ∗ = λÎ+1, φ∗ = ψÎ(λÎ+1), Î = Î + 1 and continue.

Final Step: Compute D̃ as D̃ = U (Λ − µ∗I)+ U†.

B. Solving the Master Dual Problem

In this paper, we propose a cutting-plane algorithm based
on outer-linearization to solve the master dual problem. Com-
pared to the widely-used subgradient approach, the attractive
feature of the cutting-plane method is its robustness, efficiency,
and simplicity in recovering optimal primal feasible solutions.
We briefly introduce the basic idea of cutting-plane method as
follows. Letting z = Θ(u), the dual problem is equivalent to

Minimize z
subject to z ≥∑f ln (sf ) +

∑
l ul

(
Rl(Q) − 〈1,TT el〉

)
u ≥ 0,

(17)
where (S,T,Q) ∈ Ψ. Although (17) is a linear program with
infinite number of constraints not known explicitly, we can
consider the following approximating problem:

Minimize z

subject to z ≥∑f ln(s(j)
f ) +

∑
l ul

(
Rl(Q(j))−

〈1,T(j)T el〉
)

u ≥ 0,

(18)

where the points (S(j),T(j),Q(j)) ∈ Ψ, j = 1, . . . , k − 1.
The problem in (18) is a linear program with a finite number
of constraints and can be solved efficiently. Let (z(k),u(k))
be an optimal solution to the approximating problem, which
we refer to as the master program. If the solution is feasible
to (17), then it is an optimal solution to the Lagrangian dual
problem. To check the feasibility, we consider the following
subproblem:

Maximize
∑

f ln (sf ) +
∑

l u
(k)
l

(
Rl(Q) − 〈1,TT el〉

)
subject to (S,T,Q) ∈ Ψ.

(19)
Suppose that (S(k),T(k),Q(k)) is an optimal solution to the
subproblem (19) and Θ∗(u(k)) is the corresponding optimal
objective value. If zk ≥ Θ∗(u(k)), then u(k) is an opti-
mal solution to the Lagrangian dual problem. Otherwise, for
u = u(k), the inequality constraint in (17) is not satisfied for
(S(j),T(j),Q(j)). Thus, we can add the constraint

z ≥
∑

f

ln
(
s
(k)
f

)
+
∑

l

ul

(
Rl(Q(k)) − 〈1,T(k)T el〉

)
(20)

to (18), and solve the master linear program again. Obviously,
(z(k),u(k)) violates (20) and will be cut off by (20). We
summarize the cutting plane algorithm in Algorithm 3.

Algorithm 3 Cutting Plane Algorithm for Solving DCRPA

Initialization:
Find a point (S(0),T(0),Q(0)) ∈ Ψ. Let k = 1.

Main Loop:
1. Solve the master program in (18). Let (z(k),u(k)) be an optimal

solution.
2. Solve the subproblem in (19). Let (S(k),T(k),Q(k)) be an optimal

point, and let Θ∗(u(k)) be the corresponding optimal objective value.
3. If z(k) ≥ Θ(u(k)), then stop with u(k) as the optimal dual solution.

Otherwise, add the constraint (20) to the master program, replace k
by k + 1, and go to step 1.

IV. NUMERICAL RESULTS

In this section, we present some numerical results through
simulations to provide further insights. As shown in Fig. 1,
we have 15 nodes uniformly distributed in a square region of
1200m × 1200m. Each node is equipped with two antennas.
There are three sessions in the network: node 14 to node 1,
node 6 to node 10, and node 5 to node 4.

The convergence process for the cutting-plane method is
illustrated in Fig. 2. The optimal objective value for this
15-node example with DPC is 6.72. The optimal flows for
sessions N14 to N1, N6 to N10, and N5 to N4 are 9.17
bps/Hz, 9.30 bps/Hz, and 9.93 bps/Hz, respectively. It can be
observed that the cutting-plane algorithm efficiently converges
with approximately 160 cuts. As expected, the duality gap
is zero because the convexity of the transformed equivalent
problem based on dual MIMO-MAC.

For comparison, we plot the convergence process of the
subgradient approach for the same 15-node example in Fig. 3.
The step size selection is λk = 0.1/k. The subgradient method
also achieves the same optimal solution and objective value
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Fig. 1. Topology of a 15-node example network.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

Number of Iterations

N
et

w
or

k 
U

til
ity

 (
lo

g(
b/

s/
H

z)
)

Lagrangian UB

Primal Feasible Solution

Fig. 2. Convergence behavior of cutting-plane method.

when it converges. However, it is seen that the subgradient
algorithm takes approximately 1600 iterations to converge,
which is much slower than the cutting-plane method. This
is due to the heuristic nature in step size selection (cannot be
too large or too small at each step).

V. CONCLUSION

In this paper, we investigated the problem of cross-layer
optimization of multi-path routing and power allocation for
MIMO-based ad hoc networks with dirty paper coding (DPC).
We developed a mathematical solution procedure, which in-
tegrates Lagrangian decomposition, gradient projection, and
cutting-plane methods. We provided theoretical insights for
our proposed solution and gave some numerical results. The
decomposable structure of the Lagrangian dual problem and
the efficiency of the CGP algorithm make our solution an
attractive approach for optimizing MIMO-based ad hoc net-
works with DPC.
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ACKNOWLEDGEMENTS

The work of Y.T. Hou and J. Liu has been supported in
part by the National Science Foundation (NSF) under Grant
CNS-0721421 and Office of Naval Research (ONR) under
Grant N00014-08-1-0084. The work of H.D. Sherali has been
supported in part by NSF Grant CMMI-0552676.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, Inc., 1991.

[2] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.

[3] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29,
no. 3, pp. 439–441, May 1983.

[4] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of MIMO broadcast channels,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[5] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows, 3rd ed. New York: John Wiley & Sons Inc., 2005.

[6] R. Vedantham, S. Kakumanu, S. Lakshmanan, and R. Sivakumar,
“Component based channel assignment in single radio, multi-channel
ad hoc networks,” in Proc. ACM Mobicom, Las Angeles, CA, USA,
Sep.23-26, 2006, pp. 378–389.

[7] J. Liu, Y. T. Hou, and H. D. Sherali, “Maximum weighted sum
rate of MIMO gaussian broadcast channels,” Technical Report,
Deptment of ECE, Virginia Tech, Nov. 2006. [Online]. Available:
http://www.ece.vt.edu/thou/Publications/publications.html

[8] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, 3rd ed. New York, NY: John Wiley & Sons
Inc., 2006.

[9] S. Ye and R. S. Blum, “Optimized signaling for MIMO interference
systems with feedback,” IEEE Trans. Signal Process., vol. 51, no. 11,
pp. 2839–2848, Nov. 2003.

[10] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with
Applications in Statistics and Economics. New York: Wiley, 1999.

[11] J. Malick, “A dual approach to semidefinite least-squares problems,”
SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp.
272–284, Sep. 2005.

[12] J. Liu, Y. T. Hou, and H. D. Sherali, “On the maximum weighted
sum-rate of MIMO Gaussian broadcast channels,” in Proc. IEEE ICC,
Beijing, China, May19-23, 2008.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.


	Select a link below
	Return to Main Menu




