
Black Penguin: On the Feasibility of Detecting
Intrusion with Homogeneous Memory

Ning Zhang∗ Ruide Zhang∗ Qiben Yan† Wenjing Lou∗ Y. Thomas Hou∗ Danfeng Yao∗
∗ Virginia Polytechnic Institute and State University, VA
† University of Nebraska-Lincoln, Lincoln, NE, USA

{ningzh, rdzhang, wjlou, thou, danfeng}@vt.edu yan@unl.edu

Abstract—Growing complexity in modern software is mak-
ing signature-based intrusion detection an increasing challenge.
Many recent intrusion detection systems rely on accurate re-
covery of application semantics from memory. In this paper,
we approach the problem from a different angle. We observe
that the user applications in corporate network often run in
identical system environments due to standardized IT deployment
procedure. The same applications share similar runtime statistics
across different workstations through out the time, despite differ-
ent uses by the end users. When an application is compromised
on one workstation, its runtime profile would be different from
the rest, similar to how a black penguin would look distinctly
different from the rest of the colony.

In this work, we present our preliminary study on Black Pen-
guin, a compare-view based intrusion detection system leveraging
homogeneity of application-level memory statistics in corporate
environment. The detection system follows a three-step process
that includes memory analysis, unsupervised learning and risk
mitigation. To explore the feasibility of Black Penguin, we conduct
two types of experiments using Internet Explorer and Firefox as
target applications. First, we examine the statistical differences
of the same application under different user usage. To this
end, we collect and analyze memory statistics of browser when
visiting the top 500 websites ranked by Moz. Second, we examine
the difference when the application is under attack. Several
browser attacks are used to generate the intrusion samples.
Our preliminary evaluation demonstrates the feasibility of the
approach. Lastly, we also provide discussions on the limitations
of the proposed system as well as future directions.

I. INTRODUCTION

As information system becomes more and more integrated
in our life, the complexity of the software system is also
growing rapidly. Despite significant amount of research ef-
forts in intrusion detection [1], [2], [3], [4] and software
engineering [5], [6], software vulnerabilities still pose serious
threats. As file-based malware scanning tools continue to
become widely deployed, attackers are shifting their focus
to memory-based techniques [7]. Many commercial virus
scanning engines [8], [9] rely on malware signatures, and can
be easily evaded via obfuscation and polymorphic techniques.
Research on memory based malware scanning often relies on
application level semantics [10], [7], [11], [12], [13]. However,
recovering accurate application level semantic of memory
remains a research problem, and it can often have significant
performance impact.

In this paper, we propose to take a different approach to
address the problem. Instead of tackling the challenge of
semantic recovery to provide a high confidence detection,

we try to answer the question: Can we discover potential
intrusion without knowing the fine grained application seman-
tic? To explore the feasibility of such approach, we present
the preliminary study on Black Penguin (BPenguin), a host-
based memory scanning framework that is capable of detecting
malicious attack without application level semantic informa-
tion. Memory snapshot of application contains rich program
information. Abstractly, each program has a set of invariants
that ensure the proper operation of the application. When
the program is compromised, some invariants are changed.
However, identifying these invariants for arbitrary programs
remains an open research problem. Instead of tackling the
challenge of invariant identification, we take advantage of the
homogeneity in the corporate environment, where workstations
have identical configurations on hardware, operating system
and user software to ease the IT management tasks. When
the application on one of the computers is compromised, the
memory snapshot would appear differently compared to the
others, similar to how a pure black penguin will stand out
among all the black and white ones.

Building on this intuition, BPenguin applies unsupervised
machine learning to discover intrusions. There are three steps
in BPenguin. First, memory statistics of the target application
are collected at the end host by BPenguin agents. The second
step is classification using the unsupervised learning. In this
step, the collected statistics are transmitted to a centralized
intrusion analysis server. In the last step, results from step
two are analyzed to provide recommendations for further
investigation.

We study the feasibility of the system by asking two
questions. The first question is what the variance of memory
statistics is under different user usage. The second question is
whether the memory statistics are significantly different when
the application is under attack. To answer these questions, we
collected memory statistics of popular browsers in both Linux
and Windows on the top 500 websites listed by Moz [14].
Browser is chosen as the target application, because it is
one of the most targeted applications [24]. We apply the
proposed system to detect heap spray attacks [15], since it
is now one of the most widely used techniques [12] with
the recent improvement in defense such as address space
layout randomization (ASLR) [16], data execution prevention
(DEP) [17], and stack protection [18]. In a heap spray attack,
the attacker first allocates a large number of objects in the



heap of the target application. The contents of the objects are
then filled with attack code which often consists of a long sled
with shell code at the end. While heap spray itself does not
directly lead to exploitation, the technique is widely used to
significantly simplify and improve attacks.

Our experimental results indicate that the memory statistics
among different browsers on different websites are surpris-
ingly similar, while substantial disparity is observed when the
application is under attack. The accuracy of detecting heap
spray reaches as high as 98%. Furthermore, it is even able
to detect different heap spray attacks with high accuracy. We
make the following contributions in this work:

• We propose Black Penguin, an unsupervised learning sys-
tem to detect intrusions using a compare-view philosophy.

• We analyze the memory statistical property of several
applications under different application contexts in both
Windows and Linux, and show that it is possible to use
unsupervised learning on application memory to discover
the intrusion.

II. THREAT MODEL AND SYSTEM OVERVIEW

BPenguin is an intrusion detection system that examines
the temporal variance of the memory of applications. It
is capable of detecting memory corruption attacks without
low level semantic information, and the overall design of
the BPenguin system is shown in Fig. 1. From the system
perspective, BPenguin consists of three subsystems. The first
subsystem is the collection agent, which is installed as system
service at the end host, responsible for collecting memory
statistics of the target application. The second subsystem is
the analysis engine, which can be placed on a more powerful
corporate-wide intrusion analysis engine. The third subsystem
is responsible for analyzing the intrusion analysis report and
providing further mitigation steps either automatically or via
reporting mechanism.

We assume that the adversary can exploit vulnerabilities in
the monitored application to execute arbitrary code. However,
the adversary is unable to break out the application sandbox
set forth by the operating system. Since BPenguin is designed
to be a memory scanning tool, attacks that do not modify
application memory are not the focus of this study. BPenguin
relies upon the trustworthiness of the operating system to
obtain an accurate measurement of the memory statistics of
the monitored application. Lastly, we also assume most of
the samples are good, in that either only a small number of
workstations under a corporate network is under attack or a
workstation is under attack for a short period.

III. BPENGUIN SYSTEM DESIGN

As shown in Fig. 1, the workflow of BPenguin contains
three stages, memory feature extraction, anomaly detection and
recommendation. Memory images and associated information
such as mapping details are captured first. The BPenguin agent
will then extract features from the memory system as the last
step of stage one. The extracted features are then forwarded
to the reasoning module for intrusion detection. Finally, the

recommendation subsystem examines the result to decide the
mitigation strategy.

A. Memory Feature Extraction

There are two steps in the memory feature extraction stage,
memory collection and memory processing.

The first step is memory collection. In this step, the process
memory map is obtained by the agent, because it indicates the
current memory pages mapped by the application along with
certain semantic information. Typical semantic information
includes the executable that is currently memory mapped,
the location of the static and heap, the page for system call
kernel export, etc. Using the memory map of the process, the
BPenguin agent then obtains the memory contents itself by
accessing the process memory.

The second step, memory preprocessing, follows three parts,
as shown in Fig. 2. The first part correlates the process memory
map along with the process pages accessed. For some of the
pages that are shared between multiple processes, it is often
desirable to disregard them in feature extraction. Writable
data page in display library is a good example, where the
contents of the data might have little to do with the control.
Furthermore, it will also likely bring in additional noise in the
memory collection. This correlation process is application or
operating system specific. When there is no prior information
to incorporate, the correlation step can be a simple pass-
through.

The second part examines the memory and extracts the
distribution statistics. In BPenguin prototype, we collect the
octet frequency and byte frequency inside the memory as
the preliminary feature set to perform the machine learning.
Depending on the application to be examined, this step should
be carefully considered by examining the distribution of the
sample population. The octet frequency is captured with a
vector of eight dimensions, each recording the number of
appearance of an octet value, and the byte frequency feature
is a vector of 256 dimensions. Even with just octet frequency
and byte frequency, the dimension of the feature set is too
large, and may have the curse of dimensionality problem[19].
Therefore we apply dimension reduction technique in the third
step, feature extraction.

In the last part of step two, Principle Component Analysis
(PCA) is used to reduce the dimension. More specifically,
both the octet frequency feature vector and the byte frequency
feature vector are analyzed and transformed into principle
component matrix. The most significant N dimension is used.

B. Reasoning Module

Due to polymorphic nature of memory corruptions, it can be
challenging to create adequate training set to train a classifier.
Therefore, we elect to use unsupervised learning in this step
to discover deviation from the normal profile. To be more
specific, we use k-means to do the clustering. The data sample
can be spatial-temporal in that application under different
machine and different time is collected. The reasoning system
can apply clustering on the application memory statistics



Fig. 1: Black Penguin Workflow Diagram

Fig. 2: Memory Processing Workflow

measurements over time on a single node or across all the
nodes at a single time. When K is set to two, it is assumed that
there is a sample of memory under attack in the population,
which could be incorrect, and therefore we need the third
step to mitigate the false positive. Note that there are many
other more sophisticated machine learning techniques such as
OC-SVM, X-Mean clustering that could be used to improve
BPenguin, we plan to investigate these techniques as future
work. In this paper, we focus on the feasibility aspect.

C. Recommendation System

Since we assume that memory snapshots are continuously
monitored in BPenguin, and that all previous observations
are normal, when there is a new attack, we should be able
to see two clusters, one containing a single member with
the memory of the application under attack. The second
cluster should contain all the memory samples of a normal
execution. Therefore, when the clustering result matches the

distribution, we would raise an alarm. It should be noted that
the current decision logic is binary and straightforward. In a
more complex system, measurements from the clustering result
should be correlated back to a policy engine. However, the
detailed mapping from machine learning results to actionable
items is an open problem [20].

IV. EVALUATION

Applications in modern operating systems often have very
different memory profiles in various settings. We would like
to explore the feasibility of applying BPenguin to different
applications under different conditions. We first explore the
possibility of applying BPenguin in Linux using SSHD and
Firefox as the monitored application. We then further explore
its usage in Windows using Internet Explorer and Firefox as
monitored applications.

A. BPenguin in Linux Environment

1) Secure Shell Hyperterminal Daemon as a Target: The
first process we look at is ssh daemon process, which is
considered as one of the simplest network programs in the
Linux system. sshd is a program that is spawned from the
original sshd -D in order to handle each individual incoming
ssh connection [21].

Lack of spatial data on sshd process, we record the memory
snapshot of an sshd process over 9 hour period, by dumping
the memory contents into disk every 30 minutes, to collect
the samples. Each memory dump is approximately 1.9MB in
size, and it takes the bash script approximately 40 seconds to
dump all the writable pages of the process. During 9 hours of
recording, there are constant activities in the ssh connection for
the first two hours by running a script that generates printout
on the console, and completely idle except TCP keep-alive
message for the next 7 hours. Due to the lack of readily
available heap attack on the sshd process, we perform a
synthetic attack on the sshd process using the gdb debugger.
We spray the heap with 20 spray blocks consisting of a 1000
0x9090 nop sled, along with a 23 byte shell code. This spray
technique is very common in practice [22]. In this experiment,
since the heap is directly observed from the memory map, we



Fig. 3: SSHD Octet Heatmap

decide to only use the heap memory pages when generating
the statistics in order to minimize the potential noise.

Fig. 3 show the heat map of the octet values in the memory
dump. Due to the insertion of large amount of 0x9090 shell
code, it can be observed that in the distribution graph that 0x9
and 0x0 have a distinctive spike compared to others for the
intrusion sample at 11.

Fig. 4: SSHD Cluster

Lastly we cluster the observations in Fig. 4. K-mean clus-
tering algorithm is used to generate the clustering, k is set to
2. The corrupted heap can be observed, distinctively as cluster
of its own.

2) Firefox as a target: Besides the simple program, we
are also interested in observing the memory statistics of a
more complex program, such as a browser. Furthermore, since
heap spray attack is very common in browser, this experiment
can demonstrate the effectiveness of the detection mechanism
towards real attacks with real usage environment. Firefox
37.02[23] is used for the experiment. There is no add-on in the
browser. 7 memory snapshots are recorded in the experiment.

Fig. 5: Firefox Octet Heatmap

We start the browser, and visit the following pages in order.
1) a html based hell world page
2) cnn.com
3) vt.edu
4) google.com
5) nytimes.com
6) washingpost.com
7) heap spray attack page on local server
The writable memory pages of the entire process are

recorded after the page finishes loading, indicated by the
spinning wheel on the browser. The size of memory dump
varies from 700 MB to 1.3GB. The time it takes to dump
varies from 3 minutes to 7 minutes to dump to disk in a
virtual machine. For the last heap spray attack page, we use
the exploit we found in exploit-db.com [24].

The octet distribution heatmap of the memory image is
shown in Fig. 5. Sample number 8 is the intrusion sample.
We can observe from the distribution graph that the noise is
significantly higher than sshd. However, the effect of heap
spraying is still quite easy to detect. Fig. 6 shows the clustering
result for Firefox. Two distinctive cluster can be observed,
however due to the contents of various website, it can also be
observed that cluster label 0 can be easily divided into two
clusters. This brings a unique challenge of how one can build
a robust clustering method to accommodate such difference in
browser memory footprints.

B. BPenguin in Windows Environment

To further investigate the application of BPenguin in differ-
ent operating systems, we conduct a series of experiments on
Windows. We choose modern browser as the target applica-
tion, since it is one of the popular targets of malicious attacks
in corporate environments.

1) Windows Samples Collection Process: Memory images
of two browsers, Firefox [23] and Internet Explorer [25],
are studied. For each target, we first collect the memory



Fig. 6: Firefox Memory Cluster

statistics of the browser visiting top 500 Internet websites
on Moz [14] using a powershell script, which we labeled as
the benign samples. The intrusion samples are then collected
by visiting a locally hosted malicious website immediately
after the visit to the benign websites. Before collecting the
memory images using scripts, we manually verify that the
attack is successful. The effect of the heap spray technique
used as part of the attack can be observed using the VMMap
tool by Microsoft [26] as shown in Fig. 7. VMMap is a
diagnostic application that shows the virtual memory structure
of a running process. As shown in Fig. 7, a large amount
of identical private memory objects appear in the heap as a
result of this exploit. To collect the memory image for the
500 samples, a powershell script is written to automatically
navigate the browser to the top 500 pages and dump the
memory of the process using ProcDump [27]. Procdump is
a process core dump tool provided by Microsoft as a system
internal tool. Option -ma is used to dump the memory of
the process. The result of procdump however is in minidump
format [28], and contains raw memory as well as meta-data
about the core dump. To extract the raw memory content,
dumpChk is firstly used to find the raw memory offset and
length in the core dump file, the memory content is then copied
out for feature extraction.

2) Internet Explorer as a Target: To collect the intrusion
samples of Internet Explorer, we use the proof of concept
(PoC) exploit published in [29] to attack IE11 on Windows 7
x64 SP. The vulnerability is described in CVE-2015-2419 [30].

Fig. 8 shows the normalized octet frequencies (frequency of
byte value 0x0 - 0xF appearing in memory) for 200 samples.
The upper 100 samples are benign samples, and the lower 100
samples are applications under attack. As shown in Fig. 8,
there are significant amount of octets for 0x0 and 0x7-0x8.
This is because the memory is filled with the destination ad-
dress of the shell code. We perform the experiment using 500
malicious sample and 50 intrusion samples. With unsupervised
learning method k-means, we achieve 99.85% accuracy and
0% false negative rate. Fig. 9 shows the result of applying K-

Fig. 7: Heap Spray VMMap for Firefox under attack

Fig. 8: IE11 Octet Heatmap

mean clustering to the Internet Explorer samples. We apply
PCA to extract three features out of the initial 256 byte-
frequency features to show the clustering results in Fig. 9.

3) Firefox as a Target: The PoC exploit we use against
Firefox 50.0.1 can be found on exploitdb [31]. The vulner-
abilities used in the exploit are CVE-2016-9079 and CVE-
2017-5375 [22]. We are restricted to use Windows 7 in the
Internet Explorer sample collection due to the availability of



Fig. 9: IE11 Cluster

Fig. 10: Firefox(Windows 10) Octet Heatmap

the exploit. For Firefox, we collect the memory statistics in
Windows 10, the latest Windows operating system. The octet
frequency is depicted in a heatmap shown in Fig.10. It can
be observed that 0x0 has significantly higher frequency than
other values. Using the 500 normal execution samples and 50
intrusion samples, we evaluate BPenguin using unsupervised
learning method k-means. We achieve 98% accuracy and 0%
false negative rate. Fig. 11 shows the clustering result for the
experiment.

4) Detecting Multiple Attacks: While the system is effective
in detecting a single type of attacks that employ heap spray
technique, we are also interested in evaluating how feasible
it is to apply unsupervised learning across different attacks
on different applications. Fig. 12 shows the clustering result
of benign samples of IE and Firefox. It can be observed
that the memory statistics of Firefox and Internet Explorer
are not clearly distinguishable through K-means clustering.
Fig. 13 shows the result of applying clustering to all of

Fig. 11: FireFox Clustering

Fig. 12: The Clustering of Benign FireFox and IE Samples

our samples, including both benign and intrusion samples
of Internet Explorer and Firefox. From Fig. 13, we can see
that it is still possible to distinguish normal applications
from applications under attack. With K-means clustering, we
achieve 97.17% accuracy and 2.22% false negative rate.

V. DISCUSSION

BPenguin is originally inspired by the idea of detecting
memory corruption attacks with only the memory snapshots of
an application. The detection mechanism exploits the spatial-
temporal homogeneity of an running application, it raises an
alarm when the current memory profile deviates significantly
from the past. By only comparing the memory profile, the
system does not require the low level semantic information
of the memory which is often difficult to obtain, and more
difficult to keep up-to-date. However, BPenguin also has
limitations due to its focus on memory homogeneity. In the rest



Fig. 13: The Clustering of Benign and Malicious FireFox and
IE Samples

of the session, we will provide some discussions on potential
pitfalls of BPenguin and the path forward.

A. Limited Detection

While incorporating machine learning in cyber attack and
defense is very attractive, the machine learning method as well
as the model we used to present the application state do pose
limitations on the ability to detect attacks that leads to false
positives and false negatives. There are cases where high level
semantic information of the memory layout is not available.
In the case of Firefox browser[23], unlike Chrominium[32]
browser, all sub systems of the complex browser resides in
a single process space. Therefore when the memory image is
captured, the memory content becomes very large, and precise
memory attacks that corrupt a small portion of the stack will
most likely be statistically insignificant, and therefore is able
to evade the detection of BPenguin.

Another problem with the current detection mechanism is
that it has the underlying assumption that memory footprint
under attacks are statistically significantly different from the
footprint in normal execution, and this condition might not be
necessarily correct. Since the initial establishment of the con-
cept of mimicry attack[33], there has been a significant amount
of interest in applying the same concept to different attacks
[34], [35], [36]. Furthermore, similar to the polymorphic shell
codes, there are several types of NOP sleds, including one-byte
or multi-byte NOP equivalent instructions. Our current method
relies on the n-gram statistics of the memory footprints.
In the case where the adversary has the ability to perform
adversarial learning, it is possible for the attacker to choose
a polymorphic nop sled along with polymorphic shell code
to closely mimic the statistical property of the memory of
the application. Further experiments should be performed to
investigate the resistance of the method against such powerful
attackers. Emulation component should be added to the system

if the detection is no longer effective under polymorphic shell
code [37].

B. Utilization of High Level Semantic

Even though the goal of BPenguin is to perform intrusion
detection without the need for low level semantic of the appli-
cations. Needless to say, semantic information on the memory
can often be extremely helpful in reducing the false negative
and false positive of the system. In the current BPenguin
system, the system memory is captured using the process
memory map in the procfs. And the system still utilized high
level semantic provided by the operating system to reduce
the amount of data it collects. The read/write flag was used
to determine whether the memory should be included in the
snapshot or not in BPenguin system, significantly improving
the time it takes to generate a snap shot.

C. Time of Memory Collection

Time of collection can also be a problem with periodical
scanning. In our experiment, we dump the memory before
it exits. This strategy might not always work if the attacker
anticipate such detection and cleans up after exploitation.
It is also possible to perform memory check during large
memory allocations, which is often accompanied with heap
sprays. However, legitimate applications can also allocate large
memory when it is executing resource intensive tasks such as
web-based video games.

D. Conflicts with Memory Management System

While memory scanning techniques are very attractive in its
ability to detect in-memory corruption attacks. It can however
be quite expensive to run especially if the memory page has
been stored in the non-volatile storage to free up memory
space for other running process in the system. In order to
scan the application memory, the operating system will have
to load the process memory back from the disk, and in the
case of Linux, the swap space. Once the memory scanning
is complete, these recently loaded memory are then stored
back in the disk due to its infrequent usage. On the other
hand, for process memory that are used so infrequently to the
point that is relinquished by the operating system to free up
memory space for other process. The possibility of finding an
exploitation in such area is slim.

E. Utilization of Spatial-Temporal Features

Besides studying how to overcome the limitation discussed
above, it is also possible to study the spatial-temporal as-
pect of application memory. Information systems nowadays
are increasingly homogeneous. More specifically, in today’s
corporate-centric and cloud computing driven environment,
it is quite common to have a very small set of configura-
tions across a large number of computing systems across the
network. The configuration includes hardware configuration,
operating system version, applications and the version of the
applications. Furthermore, the day to day usage of a user often
remains the same. Therefore, BPenguin can be extended to



capture not only the states across time in the same machine
but the states across different machines and different users.

VI. RELATED WORK

A. Intrusion Detection

Intrusion detection has been a very active field in the past
decade. The detection mechanism can be generalized into three
types: host-based [38], [4], [39], [38], network-based [40], [41]
and hybrid-based approaches [2], [3]. The host-based approach
[38] generally instruments the program execution to obtain
more information. Network-based approach utilizes network
traffic for program behavioral analysis [40], [41]. Lastly, the
third type attempts to combine host based and network based
approach, usually by combining the information from both
approaches [2], [3].

B. Memory Analysis

Another method of detecting intrusion is through memory
analysis of applications. This method also belongs to the
family of host based intrusion detection. While the behavior
based intrusion detection systems examines system call as a
model of program behavior. The memory analysis approaches
on the other hand examine the internal memory to uncover
the program status with application semantic information.
The semantic information can be obtained by binary analysis
or source code examination. The construction of high level
semantic information from low level details has been an active
area of research [42], [43], [44], [45], [11], [7], [10], [46].

There have been many previous research works in the
area of memory introspection [11], [10], [7], and BPenguin
certainly falls in the category of memory introspection based
approach. Jason et al. proposed SEER in [7], which is a
malware scanning service framework that uniquely utilizes
cloud environment to deduplicate memory scanning efforts.
In [12], Ratanaworabhan et al. proposed to perform static
analysis on the heap by treating bytes in the heap as code.
Different from these approaches, BPenguin uses statistical
method to automatically discover deviation from normal ex-
ecution instead of matching memory to an existing attack
pattern. Recognizing the performance overhead in Nozzle [12],
Zozzle [13] was proposed to be a lightweight detection with
an efficient emulation engine to counter javascript obfuscation.
Closely related to BPenguin is the black sheep system pro-
posed by Bianchi et. al. [11]. It uses compare view technique
to detect kernel rootkit through crowdsourcing. However, they
need to conduct extensive reverse engineering on the Windows
operating system kernel to be able to make a semi-automatic
comparison based on the semantic knowledge of the Windows
kernel memory structure. The compare-view approach at the
kernel level for detecting injected or tampered kernel data was
also demonstrated in [47]. It deploys multiple checkpoints at
the kernel data paths and utilizes lightweight cryptographic
mechanisms to ensure kernel data integrity and consistency.
However, BPenguin focus on intrusion detection at the appli-
cation level.

VII. CONCLUSION

In this work, we propose BPenguin, a memory-based
intrusion detection system. BPenguin utilizes unsupervised
machine learning that compares memory statistics within a
group with identical applications, similar to how a pure black
penguin will stand out within a colony. It is capable of
uncovering previously unknown attacks due to the compare-
view nature. Furthermore, because only the statistics are used
to perform anomaly detection, it does not require low level
semantics of the applications. We use multiple applications in
both Linux and Windows systems as targets for memory spray
attacks to illustrate the effectiveness of BPenguin. However,
the proposed system has its own limitations, and will be our
future research focus.

ACKNOWLEDGMENTS

This work was supported in part by NSF under Grants
CNS-1446478, CNS-1405747, and CNS-1443889. Dr. Yan is
supported by NSF under Grant CNS-1566388. The opinions
expressed in this article are the authors own and do not reflect
the view of the National Science Foundation or any agency of
the U.S. government.

REFERENCES

[1] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network
signature generation with mixed network behaviors,” in Research in
Attacks, Intrusions, and Defenses. Springer, 2013, pp. 144–163.

[2] S. Shin, Z. Xu, and G. Gu, “Effort: A new host–network cooperated
framework for efficient and effective bot malware detection,” Computer
Networks, vol. 57, no. 13, pp. 2628–2642, 2013.

[3] Y. Zeng, X. Hu, and K. G. Shin, “Detection of botnets using combined
host-and network-level information,” in Dependable Systems and Net-
works (DSN), 2010 IEEE/IFIP International Conference on. IEEE,
2010, pp. 291–300.

[4] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on. IEEE, 1996, pp. 120–128.

[5] R. J. Anderson, Security engineering: a guide to building dependable
distributed systems. John Wiley & Sons, 2010.

[6] L. D. Fosdick and L. J. Osterweil, “Data flow analysis in software
reliability,” ACM Computing Surveys (CSUR), vol. 8, no. 3, pp. 305–330,
1976.

[7] J. Gionta, A. Azab, W. Enck, P. Ning, and X. Zhang, “Seer: practical
memory virus scanning as a service,” in Proceedings of the 30th Annual
Computer Security Applications Conference. ACM, 2014, pp. 186–195.

[8] “Symantec anti-virus,” http://www.symantec.com, accessed: 2015-04-30.
[9] “Mcafee anti-virus,” http://home.mcafee.com, accessed: 2015-04-30.

[10] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 128–138.

[11] A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Blacksheep:
detecting compromised hosts in homogeneous crowds,” in Proceedings
of the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 341–352.

[12] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn, “Nozzle: A defense
against heap-spraying code injection attacks.” in USENIX Security
Symposium, 2009, pp. 169–186.

[13] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, “Zozzle: Fast and
precise in-browser javascript malware detection.” in USENIX Security
Symposium, 2011.

[14] “The moz top 500,” https://moz.com/top500, accessed: 2017-04-30.
[15] SkyLined, “Internet explorer iframe src&name parameter bof remote

compromise,” https://goo.gl/wUaV3X, accessed: 2017-06-30.
[16] B. Spengler, “Pax: The guaranteed end of arbitrary code execution,”

G-Con2: Mexico City, Mexico, 2003.



[17] “Data execution prevention (dep),” https:
//support.microsoft.com/en-us/help/875352/
a-detailed-description-of-the-data-execution-prevention-dep-feature-in,
accessed: 2017-04-30.

[18] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows:
Attacks and defenses for the vulnerability of the decade,” in DARPA
Information Survivability Conference and Exposition, 2000. DISCEX’00.
Proceedings, vol. 2. IEEE, 2000, pp. 119–129.

[19] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[20] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 305–316.

[21] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escala-
tion.” in USENIX Security, vol. 3, 2003.

[22] “Firefox svg animation remote code execution,” https://www.mozilla.
org/en-US/security/advisories/mfsa2016-92/.

[23] “Firefox browser,” https://www.mozilla.org/en-US/firefox/new/, ac-
cessed: 2015-04-30.

[24] “Firefox exploit,” https://www.exploit-db.com/exploits/9181/, accessed:
2015-04-30.

[25] “Internet explorer,” https://www.microsoft.com/en-us/download/
internet-explorer.aspx.

[26] “Vmmap,” https://docs.microsoft.com/zh-cn/sysinternals/downloads/
vmmap, accessed: 2017-04-30.

[27] “Procdump,” https://docs.microsoft.com/zh-cn/sysinternals/downloads/
procdump, accessed: 2017-04-30.

[28] “Minidump files,” https://msdn.microsoft.com/en-us/library/windows/
desktop/ms680369, accessed: 2017-04-30.

[29] “Too much freedom is dangerous, understanding ie11 cve-2015-2419
exploitation,” https://goo.gl/5YCzLA, accessed: 2017-04-30.

[30] “cve-2015-2419,” http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=
cve-2015-2419.

[31] “Firefox 50.0.1 - asm.js jit-spray remote code execution,” https://www.
exploit-db.com/exploits/42327/, accessed: 2017-04-30.

[32] A. Barth, C. Jackson, C. Reis, T. Team et al., “The security architecture
of the chromium browser,” 2008.

[33] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security. ACM, 2002, pp. 255–264.

[34] C. Parampalli, R. Sekar, and R. Johnson, “A practical mimicry attack
against powerful system-call monitors,” in Proceedings of the 2008 ACM
symposium on Information, computer and communications security.
ACM, 2008, pp. 156–167.

[35] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automat-
ing mimicry attacks using static binary analysis,” in Proceedings of the
14th conference on USENIX Security Symposium-Volume 14. USENIX
Association, 2005, pp. 11–11.

[36] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo,
“On the infeasibility of modeling polymorphic shellcode,” Machine
learning, vol. 81, no. 2, pp. 179–205, 2010.

[37] T. Toth and C. Kruegel, “Accurate buffer overflow detection via abstract
payload execution,” in Proceedings of the 5th international conference
on Recent advances in intrusion detection. Springer-Verlag, 2002, pp.
274–291.

[38] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host.” in
USENIX security symposium, 2009, pp. 351–366.

[39] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 559–570, 2013.

[40] D. Whyte, E. Kranakis, and P. C. van Oorschot, “Dns-based detection
of scanning worms in an enterprise network.” in NDSS, 2005.

[41] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol- and structure-independent
botnet detection,” in Proceedings of the 17th Conference on Security
Symposium, ser. SS’08. Berkeley, CA, USA: USENIX Association,
2008, pp. 139–154. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1496711.1496721

[42] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “Siggraph: Brute
force scanning of kernel data structure instances using graph-based
signatures.” in NDSS, 2011.

[43] P. Movall, W. Nelson, and S. Wetzstein, “Linux physical memory
analysis.” in USENIX Annual Technical Conference, FREENIX Track,
2005, pp. 23–32.

[44] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu, “Dimsum: Discovering
semantic data of interest from un-mappable memory with confidence,”
in Proc. ISOC Network and Distributed System Security Symposium,
2012.

[45] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu, “Dscrete: automatic
rendering of forensic information from memory images via application
logic reuse,” in Proceedings of the 23rd USENIX conference on Security
Symposium. USENIX Association, 2014, pp. 255–269.

[46] ——, “Dscrete: Automatic rendering of forensic information from mem-
ory images via application logic reuse.” in USENIX Security Symposium,
2014, pp. 255–269.

[47] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao, “Data-provenance
verification for secure hosts,” IEEE Transactions on Dependable and
Secure Computing, vol. 9, no. 2, pp. 173–183, 2012.


