
Bijack: Breaking Bitcoin Network with TCP
Vulnerabilities

Shaoyu Li1, Shanghao Shi1, Yang Xiao2, Chaoyu Zhang1,
Y. Thomas Hou1, and Wenjing Lou1

1 Virginia Polytechnic Institute and State University, VA, USA
{shaoyuli, shanghaos, chaoyu, thou, wjlou}@vt.edu

2 University of Kentucky, KY, USA
xiaoy@uky.edu

Abstract. Recent studies have shown that compromising Bitcoin’s peer-
to-peer network is an effective way to disrupt the Bitcoin service. While
many attack vectors have been uncovered such as BGP hijacking in the
network layer and eclipse attack in the application layer, one significant
attack vector that resides in the transport layer is largely overlooked.
In this paper, we investigate the TCP vulnerabilities of the Bitcoin
system and their consequences. We present Bijack, an off-path TCP
hijacking attack on the Bitcoin network that is able to terminate Bitcoin
connections or inject malicious data into the connections with only a few
prior requirements and a limited amount of knowledge. This results in
the Bitcoin network topology leakage, and the Bitcoin nodes isolation.
We measured the real Bitcoin network and discovered that more than
1700 (27%) of the reachable Bitcoin nodes are vulnerable to our attack
whose physical locations are spread across the world. We evaluated the
efficiency and impacts of the Bijack attack in real-world settings, and the
results show that Bijack successfully realizes several fatal Bitcoin attacks
without too much effort.

Keywords: Bitcoin · TCP · Network security.

1 Introduction

With a market capitalization of more than 534 billion US dollars (May 9th,
2023), Bitcoin is among the most successful cryptocurrencies. The fundamental
appeal of Bitcoin stems from its underlying design, the blockchain system, which
is characterized as a fully decentralized architecture [33] that relies on a unique
consensus protocol to ensure its security and immutability. Within this large and
decentralized system, tens of thousands of Bitcoin nodes have formed a global
peer-to-peer network overlaying upon the Internet. This peer-to-peer network,
commonly referred to as the Bitcoin network, enables Bitcoin nodes to transmit
transactions and blocks to each other and is critical to the fundamental consensus
security of Bitcoin [46].

As a global and public infrastructure, the Bitcoin network has attracted
various attacks from different perspectives that aim to disrupt the security and



2 Shaoyu Li, et al.

performance of the Bitcoin system. For example, the eclipse attack aims to
dominate a victim node’s communication with the main network in order to
isolate it from the consensus [29, 43]. The topology inference attack seeks to
extract the connection profiles of targeted nodes to manipulate their consensus
status [5, 32, 36]. Other network-based Bitcoin attacks include delay attacks [7,
22] and deanonymization attacks [2, 5], for which Section 8 provides a detailed
discussion. In order to realize these network-based attacks, the attacker needs
to manipulate the P2P connections of the victim, which ultimately requires
tampering with the Internet functions that underpin the P2P network. To this
regard, the BGP hijacking attack [3] and its stealthier variant [43] exploit the
vulnerabilities of the BGP protocol to allow an autonomous system (AS)-level
attacker to redirect all traffic from/to a victim toward its malicious routers. More
recent connection manipulation attacks [15, 16] leverage the positional advantage
of the routing-level attackers to eavesdrop, monitor, and tamper with specific
Bitcoin traffic.

Limitation of On-path Attacks The aforementioned connection manip-
ulation attacks are predominantly performed by an on-path attacker. This as-
sumption is impractical and often does not yield an attack reward comparable to
the potential cost. On-path attackers, who can intercept, monitor, and modify
network traffic trespassing them, are classified into two categories: routing-level
attackers, such as switches or routers, and AS-level attackers. However, in the
case of specific connection attacks, routing-level attackers are unlikely to cause
a significant impact on the overall network because they can only disrupt the
traffic passing through them, which affects only a small fraction of Bitcoin nodes.
As for AS-level attackers, although they have the ability to monitor and tamper
with a large volume of network traffic, they often refrain from doing so due to
the need to carefully weigh the costs and potential reputation impact of their
malicious actions against the potential gains of the attack. These large actors
may face serious commercial and regulatory consequences when they are detected.
Moreover, the open and dynamic nature of the Bitcoin network, whose topology
is subject to constant change, imposes an additional cost for the on-path attacker
to adapt and re-launch the attack.

Another commonality among existing network-based attacks is the overlook
of Transport Layer vulnerabilities of the Bitcoin network. Like most connection-
oriented network applications, Bitcoin relies on the TCP protocol for end-to-
end data transmission between nodes, utilizing TCP connections established
through the TCP three-way handshake. However, TCP itself has no authentication
mechanism to build up secure channels between Bitcoin nodes and cannot verify
the integrity of transmitted Bitcoin data. This creates an opportunity for attackers
to manipulate Bitcoin connections by compromising the TCP connections and
substituting legitimate data with malicious data. Worse yet, the Bitcoin protocol
stack naturally transmits all traffic in plaintext, and Bitcoin does not employ TLS
(Transport Layer Security, [13]) to guarantee the security of the TCP connections
as in normal web apps like email and VoIP (Voice over Internet Protocol, [27]).
Therefore, anybody in the network is able to eavesdrop, capture, and analyze the



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 3

TCP traffic of the victim nodes, opening up opportunities for off-path attackers
to conduct TCP-based manipulation attacks on the Bitcoin network.

Our Work In this paper, we propose Bijack, a new off-path Bitcoin TCP
hijacking attack against the Bitcoin network. As an off-path attack, Bijack does
not require the attacker to have knowledge of on-path communication traffic
between Bitcoin peers, nor need any information about the internal operating
information of Bitcoin nodes. We exploit a TCP protocol vulnerability of the
Linux system [17, 18, 37] to devise our attack, which is based on a security flaw
of the mixed IPID assignment method in some versions of the Linux kernel. Our
attack can be conducted in three phases. First, the attacker discovers the victim
node by a flaw detection mechanism to identify whether the node is subject to the
TCP vulnerability we have mentioned. Second, the attacker identifies the Bitcoin
connections between the victim node and its peers. The Bitcoin connections
will be tricked into downgrading the IPID assignment method from the per-
packet-based method to the globally 2048 hash-based method and a side channel
method based on the globally hash-based IPID assignments is utilized to infer
the three-tuple [victim node’s port number, peer’s IP address, peer’s

port number]. The attacker completely hijacks the connections by inferring
the sequence and acknowledgment numbers of the victim connections. After a
successful hijack, the attacker can terminate the TCP connections by sending a
forged TCP RST segment or injecting malicious Bitcoin data into the connections
to disrupt the Bitcoin system. As a result, the attacker can take over the Bitcoin
connections and send malicious transactions or blocks to the victim nodes to
break the Bitcoin consensus.

To show the potential impact of Bijack, we demonstrate two Bitcoin network
attacks mentioned earlier—the topology inference attack and the eclipse attack—
for which an off-path attacker can perform based on Bijack. For the topology
inference attack, the attack goal is to know the Bitcoin network topology around
the victim nodes. The victim nodes are tricked by the attacker to send the known
addresses to the attacker, helping it to detect the potential connections. Bijack
allows the off-path attacker to build connections with the victim nodes and send
forged network packets, and then infer the other connections of victim nodes.
For the eclipse attack, the attacker aims to isolate the victim node from the
rest of the Bitcoin network by surrounding it with malicious nodes, effectively
controlling all incoming and outgoing connections of the victim. With Bijack,
the off-path attacker who controls a swarm of malicious nodes (similar to the
Sybil attack) can continuously disrupt the benign connections established by the
victim until all of the victim’s connections are established with the malicious
nodes.

Evaluation We provided global network-wide measurement and surprisingly
found out that more than 27% of the total Bitcoin nodes are vulnerable to our
attack as of May 2023. We also implemented the Bijack attack in the real world
and evaluated the efficiency and impacts of the Bijack attack. For the topology
inference attack, when given the address list of 46262 potential peers, the attacker
was able to infer all connected peers of the victim node in 25.68 hours. When



4 Shaoyu Li, et al.

performing the eclipse attack, the attacker discovered all initial ten outbound
connections of the victim node in 168 minutes and successfully isolated the victim
node in 11.6 hours. Finally, we propose practical countermeasures (Section 7.2)
from the perspective of the network and Bitcoin system to detect and defend
against the Bijack attack.

In summary, we make the following contributions:

• To the best of our knowledge, this is the first work that focuses on the TCP
vulnerabilities of the Bitcoin network. We identify this unique attack vector
and its security impacts imposed on the Bitcoin network.

• We propose Bijack, an off-path Bitcoin TCP attack that only requires very
little prior knowledge of the victim nodes. The attack can be launched by
any malicious party within the Bitcoin network, resulting in a complete
hijacking of the communication session between victim nodes. Bijack can
lead to further catastrophes results including topology leakage, eclipse, and
even double-spending.

• We measured all the reachable nodes from the Bitcoin network and found
that more than 27% of them are vulnerable to our attack, calling for an
urgent need to fix this vulnerability. We implemented Bijack attack in real
Bitcoin networks by performing the topology inference and eclipse attack,
and the experiment results confirm the efficiency and effectiveness of our
attack.

2 Background

2.1 Bitcoin Network Formation

As a peer-to-peer network, Bitcoin requires each node to maintain a list of
IP addresses of potential peers. This list stored in the local addresses database
is initially acquired from a public DNS server, and additional addresses are
exchanged among connected peers. Each Bitcoin node pseudo-randomly selects
peers from the list to build unencrypted TCP connections with them. By default,
each Bitcoin node establishes 10 outbound connections (including 2 block-relay
connections) and accepts up to 117 inbound connections on TCP port 8333.

Nodes request connected peers’ known addresses by sending GETADDR
messages and the peer responds with ADDR messages containing up to (but
necessarily) 1000 known node addresses. In addition, most nodes will unsolicitedly
propagate their own addresses in ADDR messages to their peers when building
new connections. Currently, in order to avoid topology leakage, each node can
only propagate at most 1000 addresses per day [34].

2.2 TCP Vulnerability

The TCP vulnerability revealed in 2020 [37] enables an off-path attacker to
monitor TCP connections of the victim hosts when they run the Linux kernels
prior to version 5.17 [17, 18]. In this attack, the attacker first pretends to be a



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 5

router and sends a forged ICMP “Fragmentation Needed” error message [38] to the
victim node in order to trigger it to downgrade the IPID assignment of the victim
connection from the per-socket-based method to the insecure hash-based method.
For the hash-based method, the node uses a total of 2048 (11 bits) IPID counters
determined by IPIDcounter = HASH(sourceIP, destIP, protocol, Boot key) to
assign IPIDs for its IP packets. However, this method has been shown to be
insecure [17] as the hash collision space is too small and an attacker is able
to use many IP addresses and its desired protocol to trigger a hash collision.
For example, the attacker can achieve this by using ICMP protocol and trying
different destination IP addresses, as shown in Eq. (1):

hash(victim node IP, peer IP, TCP,Boot key) =

hash(victim node IP, attacker IP, ICMP,Boot key)
(1)

In practice, the attacker can send ICMP echo request messages with its IP
addresses and observe the IPID of the returned ICMP echo reply messages. If one
IP address collides with the targeted TCP connection, the attacker can observe
a non-linear IPID increment in its received ICMP messages because the victim
connection and the attacker’s ICMP connection are using the same IPID counter.
As a result of this hash collision, the attacker is able to monitor the IPID changes
in the victim’s TCP connection by monitoring its own ICMP connection. More
details about IPID can be found in Appendix 10.1.

3 Bijack: Hijacking Bitcoin TCP Connections

3.1 Attack Model

The goal of our Bijack attack is to hijack the Bitcoin connections of the victim
node. Fig. 1 shows the attack model of Bijack, in which three types of nodes are
involved, including the victim node V , the list of peers connected to the victim
P = {p1, p2, · · · , pn}, and an off-path attacker A.

Peers

Victim Node

off-path
Send malicious
packagesHijack the connections

Attacker

Internet

Fig. 1. The off-path attack model

We assume the off-path attacker is unable and does not necessarily need
to monitor any inbound or outbound network traffic of the victim node. The



6 Shaoyu Li, et al.

attacker also has no information about any internal operating parameters and
configurations of the victim node except the victim node’s IP address, which is
used as the public identifier of the victim node. We assume the attacker is able
to craft and send malicious IP packets to the network, as well as possessing many
IP addresses, following the convention of the existing Bitcoin network attacks
[19]. We assume attacker A has the ability to send forged TCP segments, ICMP
messages, and Bitcoin messages to victim V, without needing to manipulate the
ASes (Autonomous Systems) to relay the forged packets, as over a quarter of
ASes do not discard packets with spoofed source addresses in their networks [31].
In practice, any node in the Bitcoin network, such as a Bitcoin mining node or a
light node, can become an attacker.

3.2 Detailed Procedures of Bijack

Phase-1: Victim Detection Discovering vulnerable Bitcoin nodes that deploy
a vulnerable Linux kernel is necessary for an off-path attacker to perform both
node-level and network-level attacks because the attacker aims to detect the
Bitcoin connections of the vulnerable nodes. Fig. 2 illustrates the workflow of
detecting the vulnerable nodes from the Bitcoin network.

Attacker Bitcoin node

If DF=0:
Hash Collision

Success

Monitor Bitcoin Connection

ICMP Fragmentation Needed

Establish Bitcoin Connection

Identify a 
vulnerable node

Fig. 2. Discovering a victim node

The attacker first establishes a Bitcoin connection with the target node to
test if it is vulnerable. The attacker attempts to downgrade the IPID assignment
method of the Bitcoin connection by sending an ICMP “Fragmentation Needed”
message to the tested node. Only the vulnerable Bitcoin node will reply to the
attacker with Bitcoin messages whose DF field changed from one to zero. After
monitoring this, the attacker conducts the hash-collision as we have described in
Section 2.2, and if it succeeds, it confirms that the current node is a vulnerable
one.



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 7

For each address in it

Attacker Victim

GETADDR

ADDR
GETADDR

ADDR
…

Hold a super set of 
potential peers

ICMP Fragmentation Needed

Tested node

If they connect, DF=0

Find a peer

Hash Collision
Success

Fig. 3. Finding the victim’s peer IP address

Phase-2: Connection Detection For each victim node, the attacker attempts
to reveal the details of the victim’s existing Bitcoin connections established with
peers. Each Bitcoin connection can be treated as a four-tuple vector, i.e., [victim
node’s IP address, victim node’s port number, peer’s IP address, peer’s
port number]. The attacker only knows the victim node’s IP and it will infer
the other three components.

Step 1: Finding Victim’s Peer IP Addresses The workflow of this
IP detection process is shown in Fig. 3. To begin with, the attacker sends
GETADDR messages to the victim node and collects the addresses in the replied
ADDR messages, which may contain the connected peers as described in Section
2.1. Then each IP address in the ADDR messages will be tested to see if it
connects to the victim nodes. The attacker sends a forged ICMP “Fragmentation
Needed” message with the tested IP address to the victim node. If the victim
node does have a connection with the tested IP, the connection will be triggered
to downgrade the IPID assignment to the hash-based method, which will be
detected by the attacker through hash-collision mentioned in Section 2.2.

Step 2: Inferring Port Numbers of the Victim and Peers In this
step, the attacker infers the port numbers between the victim and its peers. The
attacker will first assume one node uses the destination port (typically 8333, while
it can be detected by network scanning) and infer the other one’s port number. If
unsuccessful, swap the assumption. As a bonus, after the port inferring process,
the attacker obtains knowledge about whether the current Bitcoin connection is
inbound or outbound.

The workflow of port inference is illustrated in Fig. 4. For each of the identified
peers, the attacker starts with continuous monitoring of the IPID increment
between the victim node and the peer. The attacker can do so by continuously
sending hash-collided ICMP messages (already succeed in the previous phase) to
the victim and observing the returned messages. To infer the port number, the
attacker sends forged TCP SYN/ACK segments to victim nodes with different



8 Shaoyu Li, et al.

Fig. 4. Inferring the port numbers between the victim and its peer

port numbers across the range (from 1024 to 65535). When the port number is
correct, the victim will send a TCP Challenge ACK segment [41] to the peer,
and if not, the victim responds with a TCP RST segment to the peer with a 0
value of the IPID [1, 30]. Because this TCP Challenge ACK segment uses one or
more additional IPIDs shared between the victim and attack connections, the
attacker can observe a non-linear IPID increment, which is the indicator of the
success of our inferring process. Note that this inferring process can be finished
in a short time, we do assume there is no other TCP connection between the
victim and its peer.

Attacker Victim

Try different sequence
numbers (or ACK

numbers)
Forged TCP RST(or ACK)

Peer

TCP Challenge ACK
(Use one IPID)

Observe a non-linear 
IPID increment

Continuously Monitoring
IPID Increment

Find the acceptable
sequence number (or
Challenge ACK value)

When the sequence
number is acceptable

(or ACK number in
Challenge ACK window)

Fig. 5. Inferring acceptable sequence and ACK numbers

Step 3: Inferring Sequence Number and Acknowledgment Num-
ber The attacker infers the exact sequence number and acceptable acknowledg-
ment number in order to gain full knowledge of the victim’s connection. The
attacker achieves this in serial steps including first inferring an acceptable
sequence number, then an acknowledgment number located in the Chal-



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 9

lenge ACK window, and finally the exact sequence number as well as the
acceptable ACK number.

The workflow and related terms of inferring an acceptable sequence number
and an ACK number located in the Challenge ACK window are illustrated in
Fig. 5. To infer an acceptable sequence number, the attacker sends the forged TCP
RST segments with their guessed sequence numbers to the victim node, which
will respond with a Challenge ACK segment to its peer if and only if the guessed
sequence numbers fall in an acceptable window. Similar to the previous step,
this Challenge ACK segment triggers a non-linear increment on the shared IPID
counter between the attacker and the victim node, detectable by the attacker as
the signal of finding an acceptable sequence number. Then with this acceptable
sequence number, the attacker can infer an ACK number located in the Challenge
ACK window (ranging from 1G to 2G [6, 9, 10]) by sending forged ACK segments
and monitoring the IPID increment in the same fashion [41]. After that, the
attacker infers the exact sequence number with a well-known method [17] as to
sending forged ACK segments to the victim with decreasing sequence numbers
from the acceptable sequence number and monitoring the reply rate of the TCP
segments (or the IPID non-linear incremental rate). In the beginning, there is
a burst of challenge ACK segments sent by the victim at the limited speed of
500 ms per segment by the protocol design of TCP. Once the sequence number
reaches the lower bound, the sequence number is the exact one and the victim
nodes will send ACK segments to its peer without any speed limitation. When
inferring the acceptable ACK number, the lower bound of the challenge ACK
window can be inferred in the same way and then the attacker uses it to calculate
the sequence number of the first unacknowledged octet (the lower bound value
adding 2G), which can be used with the known typical size of the send window
to finally calculate the acceptable ACK number.

Phase-3: Hijack and Manipulation With the correct inference of the
underlying TCP layer information of the victim’s Bitcoin connections, the off-path
attacker is able to send spoofed traffic to the victim nodes to influence the victim’s
normal Bitcoin activities. The connections could be forcefully terminated by the
attacker, using the knowledge of either the TCP or Bitcoin protocol. Moreover, the
attacker can inject malicious Bitcoin data including fake transactions and blocks
into the connections, which will disrupt the victim node from understanding the
blockchain ledger, further influencing the integrity and stability of the Bitcoin
consensus. We will explore these vulnerabilities in the next two sections.

4 Compromising Bitcoin Network Nodes

Hijacking Bitcoin connections can pose significant security risks to both
Bitcoin nodes and the Bitcoin network. In this section, we have demonstrated
two Bitcoin node manipulation attacks based on Bijack: (i) Bitcoin topology
inference and (ii) eclipse attack. We will demonstrate how they are launched and
their consequences on the Bitcoin network.



10 Shaoyu Li, et al.

4.1 Bitcoin Topology Inference

Compared to the previous Bitcoin topology inference attack [5, 12, 28, 32, 36],
Bijack can directly infer the inbound and outbound connections of the victim node
through message feedback directly obtained from the network traffic without
the requirement of collecting and analyzing detailed Bitcoin transactions or
blocks. The attacker can detect all or at least most of the inbound and outbound
connections of a targeted node.

In practice, to infer more connections, the attacker can repeatedly request
ADDR messages as long as it does not exceed the limitation set by the Bitcoin
system to gain as many potential peer IP addresses as possible. This allows the
attacker to build up a superset of all the IP addresses it receives, up to 1,000
addresses per day. According to Bitcoin’s design rules, the victim will randomly
select peers to establish connections from their known IP addresses, which are
highly likely to be within the IP superset, provided that the superset is large
enough.

The attacker acquires the topology information of the victim nodes by launch-
ing this attack, which can be further exploited to conduct more severe Bitcoin
attacks. For example, the attacker can identify the most connective nodes as the
key or super nodes, and place corrupted nodes in these key locations or attack the
super nodes to disrupt data transmission in the network. The attacker may even
infer the complete topology of a local (e.g. in a certain network domain) or global
Bitcoin network through mathematical modeling and analyzing the inbound and
outbound relationships of the nodes [32], leaving space for the attacker to conduct
the eclipse attack that isolates the victims. Moreover, the attacker is able to
perform the 0-confirming double-spending attacks on the victim. After inferring
the connections of the victim merchant, the attacker sends the double-spend
transaction only to the victim’s peers and sends others the legal transaction. The
merchant will confirm the double-spending transaction after receiving it from
most of its peers, while the legal transaction will be selected in the blockchain.

4.2 Eclipse Attack

The eclipse attack is a severe Bitcoin attack that aims to isolate the victim
nodes from the rest of the network. It can render the victim nodes vulnerable
to a double spending attack because the attacker controls the propagation
of transactions to the victim nodes. It can also waste the mining power by
manipulating the victim’s view of the blockchain. Moreover, if the attacker is
able to isolate a large number of Bitcoin nodes, the whole Bitcoin network may
be partitioned. Unfortunately, Bijack can help the attacker to accomplish this in
the following way.

The attacker first continuously sends Bitcoin ADDR messages to the victim
node with multiple malicious IP addresses controlled by it. Because the current
Bitcoin protocol lets the node accept all the received IP addresses without any
verification, the attacker can gradually pollute the local IP database of the
victims by increasing the portion of malicious IP addresses, from where the



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 11

victim nodes establish outbound connections. In practice, to increase the number
of nodes stored in the victim’s database, the attacker can inject IP addresses
with different prefixes to circumvent the built-in address discarding mechanism
in the database—the database allocates a limited quota for IP addresses with
the same prefix, and any exceeding ones will be discarded [29, 43].

After this, the attacker attempts to manipulate all the victim node’s connec-
tions through the Bijack. Once the attacker finds that the victim node is shut
down and restarted, it immediately occupies all the inbound connections with
its controlled IP addresses. This is achievable because the Bitcoin system does
not specify its nodes to verify or authenticate the inbound connection requests.
Moreover, existing work has shown that the Bitcoin nodes may restart for several
reasons such as software updating, power failure, and DDoS attacks [11, 40, 42,
44]. For the outbound connections, even if the attacker has polluted the local
addresses database of the victim node, the benign IP addresses still constitute
a large fraction and the victim may still establish connections with them. To
terminate these benign connections and allow the attacker to fully control the
victim’s connections, the attacker needs to first detect and hijack all the benign
connections with Bijack. The attacker then impersonates the corresponding peers
of these connections to disrupt them by either sending forged TCP RST segments
to trigger connection termination or sending malicious Bitcoin messages to the
victim nodes, which causes ban scores of the benign peers to increase until they
reach 100, resulting in a one-day blacklisting [15, 16].

As a result, the attacker disconnects all the benign nodes from the victims
and fully controls all their inbound and outbound connections, accomplishing
the eclipse attack.

5 How Vulnerable is Bitcoin to Bijack?

Evaluating the impact of our Bijack attack requires a good knowledge of
the vulnerable nodes in the Bitcoin network. In this section, we conduct a
measurement of the Bitcoin network to explore the number of vulnerable nodes
as well as their mining power in the network and analyze Bijack potential impact.

5.1 Measurement on Real Bitcoin Network

We utilized one scanner Bitcoin node running Bitcoin Core version v24.99.0,
with the IP address of 38.68.237.175. Our scanner node was installed with Ubuntu
18.04 (Linux kernel version 4.15) and was capable of sending ICMP messages to
other nodes using spoofed IP addresses with the Python Scapy package.

The victim detection phase (following Section 3.1) was carried out on the
entire Bitcoin network for 10 days, from April 27th, 2023, to May 7th, 2023
(the detailed procedure is shown in Appendix 10.2). During this time period, we
discovered and successfully established Bitcoin connections with 6405 Bitcoin
nodes and we found that 27.14% of connected nodes (1738 nodes) are vulnerable
to the Bijack. We show our experiment results in Table 1, in which we present



12 Shaoyu Li, et al.

the geo-location, the number of vulnerable and reachable nodes, as well as the
total scanning time.

Table 1. The top ten countries with the highest number of vulnerable nodes

Location Victim Clients Total Clients Scan Time(min)

USA 332 1200 711.5
Germany 300 726 396.9

Netherlands 119 264 142.3
France 102 266 148.4
Finland 95 210 113.1
Canada 65 195 111.6

Singapore 53 114 61.0
United Kingdom 46 137 80.6

Japan 43 83 43.8
Switzerland 43 135 78.5

We measured the vulnerable mining nodes from the Bitcoin network during
the same time period. We collected all the nodes that first relay new blocks,
considering them as gateways of mining pools. We also collected the IP addresses
of the mining devices by scanning the IPv4 network. We found that over 90% of
the vulnerable nodes are associated with mining activities, with approximately
40% being mining nodes and the remaining portion belonging to mining pool
gateways.

5.2 Bitcoin Impact Analysis

Our measurement found more than 27% Bitcoin nodes are vulnerable to our
attack, spreading across different geographical locations. Therefore, these nodes
are directly exposed to the threats we have mentioned in the previous section
such as topology leakage, eclipse, and even double-spending. From the network’s
perspective, the attacker can cause more severe consequences as it can partition
the whole Bitcoin network considering that 27% is a considerably large fraction
and over 90% of the detected victim nodes belong to the mining nodes or mining
pool nodes. These nodes possess a significant amount of computational power
within the Bitcoin system. After partitioning the network, the attacker gains
control over these nodes, and its computation power increases significantly, giving
him a huge advantage to perform the selfish-mining attacks [14, 21, 35], in which
the attacker may strategically conceal and release newly mined blocks to realize
unfair mining gain when the attacked-controlled mining power exceeds a certain
threshold β. Assuming the attacker’s released block wins the fork competition
of 50% chance, the threshold β becomes 25%. There is a non-negligible chance
that the mining power of the 27% victim population may well exceed 25% of the
total.



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 13

6 Experiment and Evaluation

We conducted the topology inference attack and eclipse attack on the
real Bitcoin network to evaluate the effectiveness of Bijack. By launching the
topology inference attack, we can infer all of the connected peers of the victim
nodes (from the list of 46262 potential peers) in 25.68 hours. By launching the
eclipse attack, we isolate the victim node in 11.6 hours.

Ethical Considerations In order to prevent any potential harm or negative
repercussions on the Bitcoin network and market, we only conduct the vulnerable
detection phase of our attack without the following steps, which will jeopardize the
operation of Bitcoin. For these steps that may cause actual harmful consequences,
we implemented them only on our own machines. Our experimental activities do
not pose any threat to other Bitcoin nodes. We did not send a large number of
IP packets in the public Bitcoin network in order to not increase the burden on
the network, and we maintain confidentiality regarding the list of nodes that are
susceptible to the vulnerability.

6.1 Experiment Setup

We deployed one victim node with Bitcoin Core version v24.99.0 on the
Amazon cloud by using an AWS EC2 virtual machine with Ubuntu 20.04 (Linux
kernel version 5.5) located in the US East. Before our experiment, we ran the
victim Bitcoin client on the node for 65 days to get it to fit into the environment
of the Bitcoin system. We deployed twenty attacker nodes with Bitcoin Core
version v24.99.0 equipped with Ubuntu 20.04 (kernel version 5.5). The prefix of
the IP addresses for these nodes is 38.68.237.0/24. We own over 5000 addresses
with the prefix of 71.178.0.0/16, 96.231.0.0/16, and 38.68.160.0/20 for hash
collision and eclipse attack.

6.2 Experimental Results

Bitcoin Topology Inference Attack We first conducted a 110-day experiment
to evaluate the effectiveness of our peer detection process, i.e., the number of
victim’s connections that can be inferred from the address list collected from the
ADDR messages. In our experiment, we continuously sent GETADDR messages
to the victim node each day and collected the addresses returned by the victim
nodes. The experimental results are shown in Fig. 6(a). Our experiment shows
that after collecting addresses for a continuous period of 110 days, the attacker
obtains the list that contains over 70% of the victim’s outbound connected
peers and over 50% of inbound connected peers. In total, the list contains 46242
addresses and 57 of them are connected peers. Subsequently, we executed our
attack based on the list collected before and assessed the efficiency of the Bijack-
based topology inference attack. The experimental results are shown in Fig. 6(b).
In total, it took us 25.68 hours to find all 57 connections from the 46242 addresses.
More specifically, the average time cost to examine one address in the list was
39.98 seconds and the average time cost to discover one connected peer was 23.94
seconds.



14 Shaoyu Li, et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 22 44 66 88 110
Time (days)

R
at

io
 o

f l
is

te
d 

pe
er

s 
to

 to
ta

l p
ee

rs

outbound

inbound

(a) Ratio of connected peers in the
list to all connected peers

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25
Time (hours)

R
at

io
 o

f i
nf

er
re

d 
co

nn
ec

tio
ns

(b) Ratio of inferred connections in
topology inference attack

Fig. 6. Topology Inference Attack Results

0

2

4

6

8

10

0 35 70 105 140 175
Time (minutes)

In
fe

rr
ed

 o
ut

bo
un

d 
co

nn
ec

tio
n 

nu
m

be
r

(a) Number of inferred outbound
connections in eclipse attack

0

100

200

300

400

500

0 600 1200 1800 2400 3000
Number of injected IP in victim's database

N
um

be
r 

of
 h

ija
ck

ed
 o

ut
bo

un
d 

co
nn

ec
tio

ns ban score

TCP RST

(b) The relationship between in-
jected address and the hijacked con-
nections

Fig. 7. Eclipse Attack Results

Eclipse Attack We first scanned the whole Bitcoin network and found 5222
active nodes on May 10th, 2023. Then we checked each node to detect if the
victim node built a connection with it. We used 5000 addresses (controlled by
us) to conduct the hash-collision with each node and if we fail, we consider that
node does not have a connection with the victim node. The average time cost
of checking an unconnected node is 39.98 seconds by attempting all the 5000
addresses. For connected nodes, we utilized an average of 3461 addresses to
discover their connection with a time cost of 27.40 seconds. In total, we spent
168 minutes finding all ten outbound connections of the victim, and Fig. 7(a)
illustrates the results of discovering all outbound connections.

Afterward, we kept sending ADDR messages to the victim nodes to inject
the malicious IP addresses into the victim’s database. Each time we sent 1000 IP
addresses to the victim node in 6 TCP segments with a total payload of 17495
bytes. Finally, we sent TCP RST segments or fake Bitcoin blocks (ban-score-
based method) to reset the Bitcoin connections. We disrupted each outbound
connection until all of the connections were established to our attacker nodes.



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 15

Fig. 7(b) illustrates the relationship between the number of injected malicious
IP addresses and the number of required hijacked connections to complete the
attack. We found that the number of required hijacked connections decreases
when the number of polluted IP addresses increases and in general the ban-score-
based method requires fewer hijacked connections than the TCP RST-based
method. In our experiment, the average timing overhead for resetting a Bitcoin
connection was 163 seconds for the TCP RST-based method and 247 seconds
for the Bitcoin ban-score-based method. Specifically, when 200 IP addresses
were injected into the database, we used 11.6 hours to break the required 248
connections to accomplish our attack by sending TCP RST segments.

7 Discussion and Countermeasures

7.1 Discussion

The Bitcoin system transmits transactions and blocks in plaintext with the
underlying TCP protocol and does not offer any encryption and authentication
mechanism in order to reduce the payload of the network. Many other blockchain
networks have similar properties including Litecoin [39], and Ripple [4]. Unfortu-
nately, this makes them vulnerable to Bijack as the prerequisite requirement for
successfully launching our attack is that the network traffic is not encrypted. For
the blockchain networks that offer authenticated and encrypted traffic such as
Ethereum [8], our attack fails to break their systems.

7.2 Countermeasures

The Bitcoin system may use the following feasible countermeasures to defend
itself against Bijack.

Deploy a Customized Designed Intrusion Detection System Bijack
introduces some extra abnormal traffic to the system that can be detected by an
intrusion detection system (IDS). For example, the IDS can monitor the IPID
increment of the Bitcoin connections, or carefully check the ICMP ”Fragmentation
Needed” messages.

Refuse Unsolicited ADDR Messages The node could choose to refuse the
unsolicited ADDR messages with a large number of IP addresses, especially from
incoming peers. This will prevent attackers from polluting the victim’s address
database, making it difficult to carry out an Bijack-based eclipse attack.

Encrypt the Traffic If Bitcoin traffic is transmitted using encryption, our
attack’s impact will be significantly reduced. It would be challenging for attackers
to send spoofed messages. Considering the impact of encryption on network
performance, we can allow nodes to choose whether to encrypt based on their
own circumstances.

Using Tor Network Our attack cannot target the Tor network because our
attack is based on the IPv4 network and we first need to identify the victim’s IP
address. Tor is anonymous by design and most existing Bitcoin attacks are not
effective against the Tor network. Therefore, using the Tor network can mitigate
network attacks.



16 Shaoyu Li, et al.

8 Related Work

Bitcoin Network Attacks The security of the Bitcoin network has gained a
lot of attention from the academic community. The well-known eclipse attack [29,
20] exploits the vulnerabilities of Bitcoin’s built-in peer-selecting procedure by
injecting the address database of victims with the attacker-controlled to isolate
the victim Bitcoin nodes from the major Bitcoin network. BGP hijacking attack
[3] and EREBUS attack [43] exploits the advantage of an AS-level attacker to
delay messages received by nodes or partition nodes. The Topology Inference
attacks [5, 12, 28, 32, 36] infer connections by analyzing the transmitted Bitcoin
data or timestamps. On-path Bitcoin network attacks [15, 16] hijack the Bitcoin
connections to disrupt the operation of the system. The delay attack [7, 22, 45]
exploits network timing as the attack vector and impedes the reception time of
certain Bitcoin messages of the victim nodes. The data received and stored by
the victim node differs from that of the remaining nodes in the network within a
certain period, resulting in wasted computing power and defaming the victim
node to be susceptible to double-spending attackers. Lastly, the deanonymization
attack [2, 5] reveals the real IP addresses of the victim nodes by analyzing the
Bitcoin traffic, making every transaction associated with the victim’s IP address
public.

Off-path TCP Vulnerabilities Side-channel attack in the challenge ACK
mechanism [9, 10] can infer the TCP utilization for one specific connection and
then hijack it by inferring its sequence numbers and ACK numbers. Global IPID
counter vulnerability is exploited to infer TCP connections and help attackers
inject malicious data into the TCP connections to poison the HTTP and Tor
traffic [23–26]. Mixed IPID assignment off-path attack [17, 18] leverages a new
side channel vulnerability to downgrade the TCP connections of IPID assignment
to the 2048-hash-based method, which helps the attacker infer the source port
number and the destination port number of the connection, inferring the sequence
numbers and the acknowledge numbers to hijack the TCP connection.

9 Conclusion

In this paper, we propose Bijack, a new off-path Bitcoin TCP hijacking attack
against the Bitcoin network by exploiting a TCP protocol vulnerability of the
Linux system. We also demonstrate two Bitcoin network attacks—the topology
inference attack and the eclipse attack—to show the impact of our attack on the
Bitcoin network. We measure the number of vulnerable nodes in the real Bitcoin
network and analyze the influence of our attack. We evaluate the efficiency of
our attacks. Our experiments show that the off-path attackers can successfully
carry out the topology inferring attack and eclipse attack effectively.

Acknowledgement

This work was supported in part by the US National Science Foundation
under grants 2247560, 2154929, 1916902, and 2247561.



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 17

References

1. Alexander, G., Espinoza, A. M., and Crandall, J. R. Detecting tcp/ip
connections via ipid hash collisions. Proceedings on Privacy Enhancing Technologies
2019, 4 (2019).

2. Apostolaki, M., Maire, C., and Vanbever, L. Perimeter: A network-layer
attack on the anonymity of cryptocurrencies. In Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual Event, March 1–5, 2021,
Revised Selected Papers, Part I 25 (2021), Springer, pp. 147–166.

3. Apostolaki, M., Zohar, A., and Vanbever, L. Hijacking bitcoin: Routing
attacks on cryptocurrencies. In 2017 IEEE symposium on security and privacy
(SP) (2017), IEEE, pp. 375–392.

4. Armknecht, F., Karame, G. O., Mandal, A., Youssef, F., and Zenner,
E. Ripple: Overview and outlook. In Trust and Trustworthy Computing: 8th
International Conference, TRUST 2015, Heraklion, Greece, August 24-26, 2015,
Proceedings 8 (2015), Springer, pp. 163–180.

5. Biryukov, A., Khovratovich, D., and Pustogarov, I. Deanonymisation of
clients in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security (2014), pp. 15–29.

6. Borman, D., Braden, B., and Jacobson, V. Rfc 7323: Tcp extensions for high
performance, 2014.

7. Boverman, A. Timejacking & bitcoin. Culubas blog (2011).
8. Buterin, V., et al. A next-generation smart contract and decentralized application

platform. white paper 3, 37 (2014), 2–1.
9. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S. V., and Marvel,

L. M. Off-path tcp exploits: Global rate limit considered dangerous. In USENIX
Security Symposium (2016), pp. 209–225.

10. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S. V., and Marvel,
L. M. Off-path tcp exploits of the challenge ack global rate limit. IEEE/ACM
Transactions on Networking 26, 2 (2018), 765–778.

11. Core, B. Cve-2018-17144. https://bitcoincore.org/en/2018/09/20/notice/

Accessed May 2023.
12. Delgado-Segura, S., Bakshi, S., Pérez-Solà, C., Litton, J., Pachulski, A.,

Miller, A., and Bhattacharjee, B. Txprobe: Discovering bitcoin’s network
topology using orphan transactions. In Financial Cryptography and Data Security:
23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February
18–22, 2019, Revised Selected Papers 23 (2019), Springer, pp. 550–566.

13. Dierks, T., and Allen, C. Rfc2246: The tls protocol version 1.0, 1999.
14. Eyal, I., and Sirer, E. G. Majority is not enough: Bitcoin mining is vulnerable.

Communications of the ACM 61, 7 (2018), 95–102.
15. Fan, W., Chang, S.-Y., Zhou, X., and Xu, S. Conman: A connection

manipulation-based attack against bitcoin networking. In 2021 IEEE Confer-
ence on Communications and Network Security (CNS) (2021), IEEE, pp. 101–109.

16. Fan, W., Wuthier, S., Hong, H.-J., Zhou, X., Bai, Y., and Chang, S.-Y.
The security investigation of ban score and misbehavior tracking in bitcoin network.
In 2022 IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS) (2022), IEEE, pp. 191–201.

17. Feng, X., Fu, C., Li, Q., Sun, K., and Xu, K. Off-path tcp exploits of the
mixed ipid assignment. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (2020), pp. 1323–1335.



18 Shaoyu Li, et al.

18. Feng, X., Li, Q., Sun, K., Fu, C., and Xu, K. Off-path tcp hijacking attacks
via the side channel of downgraded ipid. IEEE/ACM Transactions on Networking
30, 1 (2021), 409–422.

19. Franzoni, F., and Daza, V. Sok: Network-level attacks on the bitcoin p2p
network. IEEE Access 10 (2022), 94924–94962.

20. Gervais, A., Karame, G. O., Capkun, V., and Capkun, S. Is bitcoin a
decentralized currency? IEEE security & privacy 12, 3 (2014), 54–60.

21. Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., and
Capkun, S. On the security and performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security (2016), pp. 3–16.

22. Gervais, A., Ritzdorf, H., Karame, G. O., and Capkun, S. Tampering with
the delivery of blocks and transactions in bitcoin. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (2015),
pp. 692–705.

23. Gilad, Y., and Herzberg, A. Off-path attacking the web. In WOOT (2012),
pp. 41–52.

24. Gilad, Y., and Herzberg, A. Spying in the dark: Tcp and tor traffic analysis.
In Privacy Enhancing Technologies: 12th International Symposium, PETS 2012,
Vigo, Spain, July 11-13, 2012. Proceedings 12 (2012), Springer, pp. 100–119.

25. Gilad, Y., and Herzberg, A. Off-path tcp injection attacks. ACM Transactions
on Information and System Security (TISSEC) 16, 4 (2014), 1–32.

26. Gilad, Y., Herzberg, A., and Shulman, H. Off-path hacking: The illusion of
challenge-response authentication. IEEE Security & Privacy 12, 5 (2013), 68–77.

27. Goode, B. Voice over internet protocol (voip). Proceedings of the IEEE 90, 9
(2002), 1495–1517.

28. Grundmann, M., Neudecker, T., and Hartenstein, H. Exploiting transaction
accumulation and double spends for topology inference in bitcoin. In Financial
Cryptography and Data Security: FC 2018 International Workshops, BITCOIN,
VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected
Papers 22 (2019), Springer, pp. 113–126.

29. Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. Eclipse attacks on
bitcoin’s peer-to-peer network. In 24th {USENIX} Security Symposium ({USENIX}
Security 15) (2015), pp. 129–144.

30. John, P. Transmission control protocol. RFC 793 (1981).

31. Luckie, M., Beverly, R., Koga, R., Keys, K., Kroll, J. A., and Claffy,
K. Network hygiene, incentives, and regulation: deployment of source address
validation in the internet. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (2019), pp. 465–480.

32. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N.,
and Bhattacharjee, B. Discovering bitcoin’s public topology and influential
nodes. et al (2015).

33. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized
business review (2008), 21260.

34. Naumenko, G. Pr 18991: Cache responses to getaddr 3420 to prevent topology
leaks. https://github.com/bitcoin/bitcoin/pull/18991 Accessed May 2020.

35. Nayak, K., Kumar, S., Miller, A., and Shi, E. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P) (2016), IEEE, pp. 305–320.



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 19

36. Neudecker, T., Andelfinger, P., and Hartenstein, H. Timing analysis for
inferring the topology of the bitcoin peer-to-peer network. In 2016 Intl IEEE Con-
ferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Internet
of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/Smart-
World) (2016), IEEE, pp. 358–367.

37. of Standards, N. I., and Technology. Cve-2020-36516. https://nvd.nist.

gov/vuln/detail/CVE-2020-36516 Accessed May 2023.
38. Postel, J. Internet control protocol. RFC 792 (1981).
39. project, L. Litecoin. https://litecoin.org Accessed May 2023.
40. Raikwar, M., and Gligoroski, D. Dos attacks on blockchain ecosystem. In Euro-

Par 2021: Parallel Processing Workshops: Euro-Par 2021 International Workshops,
Lisbon, Portugal, August 30-31, 2021, Revised Selected Papers (2022), Springer,
pp. 230–242.

41. Ramaiah, A., Stewart, R., and Dalal, M. Rfc 5961: Improving tcp’s robustness
to blind in-window attacks, 2010.

42. Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A.,
and Zamboni, D. Analysis of a denial of service attack on tcp. In Proceedings.
1997 IEEE Symposium on Security and Privacy (Cat. No. 97CB36097) (1997),
IEEE, pp. 208–223.

43. Tran, M., Choi, I., Moon, G. J., Vu, A. V., and Kang, M. S. A stealthier
partitioning attack against bitcoin peer-to-peer network. In 2020 IEEE symposium
on security and privacy (SP) (2020), IEEE, pp. 894–909.

44. Vasek, M., Thornton, M., and Moore, T. Empirical analysis of denial-of-service
attacks in the bitcoin ecosystem. In Financial Cryptography and Data Security:
FC 2014 Workshops, BITCOIN and WAHC 2014, Christ Church, Barbados, March
7, 2014, Revised Selected Papers 18 (2014), Springer, pp. 57–71.

45. Walck, M., Wang, K., and Kim, H. S. Tendrilstaller: Block delay attack in
bitcoin. In 2019 IEEE international conference on Blockchain (Blockchain) (2019),
IEEE, pp. 1–9.

46. Xiao, Y., Zhang, N., Lou, W., and Hou, Y. T. A survey of distributed consensus
protocols for blockchain networks. IEEE Communications Surveys & Tutorials 22,
2 (2020), 1432–1465.

47. Yeow, A. Bitnodes. https://bitnodes.io/nodes/#network-snapshot, Accessed
April 2023.

10 Appendix

10.1 IPID Assignment

IPID Assignment The identification field (IPID) in the Internet Protocol
(IP) serves as a unique identifier for each IP packet and it occupies 16 bits in
the IP packet. The IPID is assigned by the sender to aid in assembling the
fragments of a datagram because IP datagrams may be fragmented into multiple
fragments for transmission over the network during the transmission process.
The generation of the IPID can employ different algorithms or strategies, but it
must be unique within the sender’s context. In certain versions, Linux employs
a mixed IPID assignment method for packets [1]. There are two fundamental



20 Shaoyu Li, et al.

IPID assignment policies: the per-socket-based IPID assignment method and the
2048-globally-hash-based IPID assignment method, the former being specific to
socket-based protocols such as TCP and UDP.

Per-socket-based IPID Assignment This policy is specifically used for
socket-based protocols such as TCP and UDP. A unique random value is initialized
for each connection, and the counter is incremented by 1 each time it is used
for transmitting a packet. This random counter makes it difficult for off-path
attackers to infer the IPID value.

Hash-based IPID Assignment It involves assigning the IPID based on a
hash counter. Linux has a total of 2048 hash counters, and the IPID is selected
from one of these counters based on the hash value of four variables: the source
IP address, destination IP address, the protocol number of the packet, and a
random value generated by the Linux system. After the IPID value is copied
from the selected counter, the counter is incremented by a uniform distribution
value between 1 and the number of system ticks that have elapsed since the last
packet transmission using the same counter.

Linux uses the Don’t Fragment (DF) flag in the IP protocol to differentiate
between the two methods. Normally the TCP and UDP use per-socket-based
IPID assignment and the DF’s value is one. For other network protocols (like
ICMP), the DF is set as 0. For TCP, DF is set as 1 for TCP non-RST segments,
enabling the MTU discovery (PMTUD) mechanism and signaling the use of
the per-socket-based IPID assignment method, which is considered more secure.
The IP examines the DF flag value set by the TCP protocol. If DF is 0, the
hash-based IPID assignment method is used. If DF is 1 and the packet is not
for a TCP SYN/ACK segment with both SYN and ACK flags set to 1 (assigned
IPID of 0), the IP assigns the IPID using the per-socket-based method.

10.2 Bitcoin Network Measurement Procedure

We first scan all connectable nodes in the network based on the method in
[47]. Then, we establish Bitcoin connections with these nodes for further testing.
To reduce the bandwidth load on our node, we test only one Bitcoin node at a
time and establish a connection with only that one Bitcoin node. Initially, we
send malicious ICMP ”Fragmentation Needed” messages to attempt to clear
the DF flag. As for hash collision, we first observe the average rate m at which
the tested node sends Bitcoin information to our node and the average IPID
increment k between each message. Then, our scanner node sends forged ICMP
messages with different source IP addresses to the tested node. For each source
IP address, we will send the forged packets at a rate of n ∗m for the time period
of 1/m. If we found that the IPID of a received Bitcoin message increased by
n ∗m+ k compared to the most recent previous one, we considered the tested
node collided. To minimize errors caused by network latency or the randomness
of the IPID increment, when we observe the IPID increment value in the range
of n ∗m+ k, we repeat the test with the source IP address used for the collision
to verify whether the collision really occurred.


