
Telecommunication Systems 17:1,2, 135–160, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Per-Flow Based Node Architecture for Integrated
Services Packet Networks

DAPENG WU
Carnegie Mellon University, Pittsburgh, PA, USA

YIWEI THOMAS HOU ∗ thou@fla.fujitsu.com
Fujitsu Laboratories of America, 595 Lawrence Expressway, Sunnyvale, CA 94085, USA

BO LI
Hong Kong University of Science and Technology, Kowloon, Hong Kong

H. JONATHAN CHAO
Polytechnic University, Brooklyn, NY, USA

Received 1 November 1999; Revised 1 June 2000

Abstract. As the Internet transforms from the traditional best-effort service network into QoS-capable
multi-service network, it is essential to have new architectural design and appropriate traffic control algo-
rithms in place. This paper presents a network node architecture and several traffic management mecha-
nisms that are capable of achieving QoS provisioning for the guaranteed service (GS), the controlled-load
(CL) service, and the best-effort (BE) service for future integrated services networks. A key feature of our
architecture is that it resolves the out-of-sequence problem associated with the traditional design. We also
propose two novel packet discarding mechanisms called selective pushout (SP) and selective pushout plus
(SP+). Simulation results show that, once admitted into the network, our architecture and traffic manage-
ment algorithms provide, under all conditions, hard performance guarantees to GS flows and consistent (or
soft) performance guarantees to CL flows, respectively; minimal negative impact to in-profile GS, CL and
BE traffic should there be any out-of-profile behavior from some CL flows.

Keywords: integrated services (IntServ) networks, per-flow queueing, guaranteed service (GS), controlled-
load (CL) service, best-effort (BE) service, shaped virtual clock (SVC), weighted round robin (WRR),
deficit round robin (DRR), call admission control (CAC), packet discarding, quality of service (QoS)

1. Introduction

One of the most challenging problems for the next generation Internet is to support di-
verse multimedia applications with quality of service (QoS) guarantees. To address this
issue, the IETF integrated services (IntServ) working group has specified theguaran-
teed service(GS) [6], thecontrolled-load service(CL) [9], in addition to the traditional
best-effort(BE) service. The GS guarantees that every packet will arrive within the guar-

∗ Corresponding author.



136 WU ET AL.

anteed delivery time, and will not be discarded due to buffer overflow, provided that the
flow’s traffic conforms to its specified traffic parameters. The CL service is intended
to support a broad class of applications which have been developed for use in today’s
best-effort Internet, but are sensitive to heavy load conditions. The CL service does
not specify any target QoS parameters. Instead, acceptance of a request for CL service
implies a commitment by the network to provide the requester with a serviceclosely
approximatingthe QoS the same flow would receive under lightly loaded conditions.
Finally, the BE service will continue to be a major service under IntServ networks.

To support the diverse QoS requirements from IntServ networks, new network ar-
chitecture and traffic management algorithms must be in place. Such architecture and
algorithms must meet the following performance evaluation criteria.

Criterion.

(C1) For the GS, the IETF requires that the architecture and algorithms must ensure
that the end-to-end delay bounds are never violated and packets are not lost if a
source’s traffic conforms to its traffic profile [6].

(C2) For the CL service, an architecture and algorithms should provide a flow, under all
load conditions, with a QoS closely similar to the QoS that the same flow would
receive under lightly loaded network conditions [9].

(C3) The network architecture and traffic managements algorithms must be capable of
controlling non-conforming GS/CL flows by minimizing their negative impact on
other conforming GS/CL flows and BE flows [6,9].

Previous work on IntServ networks (e.g., [3,5]) has been focused on class-based
queueing architecture. However, when class-based approach is used to support CL ser-
vice, the following problems may arise.

Problem.

(P1) First of all, it is not clear, under class-based approach, how to effectively isolate
out-of-profile packets and minimize their negative impact on other in-profile GS
and CL packets (i.e., C3).

(P2) Second, under class-based approach, in-profile GS/CL packets have higher prior-
ity and are serviced before any out-of-profile packet. This may result in out-of-
sequence problem for packets arriving at the destination, which is undesirable for
real-time applications.

(P3) It is impossible for a class-based approach to enforce fair rate allocation among CL
flows.

Recent market demand on high performance switches and routers has put QoS
support as the key feature in differentiating networking products among various ven-
dors. Furthermore, due to advances in silicon technology, hardware implementation of



A PER-FLOW BASED NODE ARCHITECTURE 137

sophisticated per-flow based traffic management algorithms no longer poses any major
cost constraint [1]. Such market demand and hardware capabilities enable us to design
per-flow based traffic management mechanisms to control quality of service with much
more improved performance than traditional class-based approach for the next genera-
tion switches and routers. This paper presents a novel architecture and several traffic
management algorithms based on per-flow queueing that not only satisfy the three crite-
ria to support integrated traffic of the GS, the CL, and the BE services, but also resolve
the several problems associated with the traditional class-based approach.

Our network architecture strives to offer a good balance between traffic isolation
and buffer sharing. We make three separate buffer partitions for the GS, the CL, and
the BE flows. Per flow queueing with shaped virtual clock (SVC) scheduling is em-
ployed for GS and CL flows while per-flow queueing with deficit round robin (DRR) is
employed for BE flows. We introduce anAdaptive Rate allocation for Controlled-load
(ARC) algorithm to provide soft bandwidth allocation to CL flows while enforcing a
guaranteed rate allocation to each GS flow. We present a hybrid call admission control
(CAC) algorithm consisting of model-based CAC for GS flows and measurement-based
CAC for CL flows. Finally, we design two packet discarding algorithms, calledselective
pushout(SP) for GS flows andselective pushout plus(SP+) for CL flows, respectively,
to control out-of-profile packets and achieve fairness among the flows. Our simulation
results show that once admitted into the network, our architecture offers hard perfor-
mance guarantees to GS flows under all conditions (C1), consistent performance to CL
flows under both light and heavy load conditions (C2), and minimal negative impact on
conforming flows should there be any misbehaving flows (C3). Furthermore, our archi-
tecture and traffic management algorithms resolve the three problems associated with
the traditional class-based approach.

The remainder of this paper is organized as follows. Section 2 presents our network
node architecture for supporting the GS, the CL, and the BE services. In section 3,
we present our traffic management algorithms. Section 4 shows the simulation results.
Section 5 concludes this paper.

2. Architecture

This section presents our network node architecture using per-flow queueing for sup-
porting QoS provisioning in IntServ networks.

In our model, an IntServ network is constructed by interconnecting switches or
routers with a set of links. We assume that each switch employs output port buffering.
Figure 1 shows our architecture for the GS, the CL, and the BE traffic at each output port
of a network node. Under our architecture (figure 1), we partition each output port buffer
pool into three parts: one for GS flows, one for CL flows, and one for BE traffic. Within
the same buffer partition for GS/CL/BE flows, we employ per-flow queueing for each



138 WU ET AL.

Figure 1. A per-flow based node architecture.

individual flow.1 Furthermore, flows within the same buffer partition share the buffer
pool of that partition while there is no buffer sharing across partitions. We believe this
approach offers an excellent balance between traffic isolation and buffer sharing.

Under the above buffering architecture, we design our per-flow based traffic man-
agement algorithms with the aim of achieving the three criteria for the GS, the CL, and
the BE services and solve the several problems associated with the class-based approach.
For clarity, we briefly summarize our traffic management algorithms here, all of which
will be elaborated in section 3.

The first part of our architecture includes rate and buffer allocation, as well as
packet scheduling, which we will present in detail in section 3.1. For GS traffic, we
employ a simple calculation to allocate rate and buffer requirements, which provides a
deterministic QoS guarantee (i.e., hard delay bound for each packet and zero packet loss
rate) for each flow. On the other hand, for CL flows, we can choose a much less conser-
vative approach, since it only requires soft QoS guarantees. We show how to estimate
the effective bandwidth of a CL flow by measuring the entropy of such flow. To support

1 We employ per-flow queueing for BE traffic since it has been shown that TCP applications can achieve
better performance under per-flow queueing than those under a common FIFO shared queue [8].



A PER-FLOW BASED NODE ARCHITECTURE 139

Figure 2. Packet processing at a node.

the link sharing between the GS and the CL flows, we present a rate assignment strat-
egy called ARC (short for Adaptive Rate allocation for Controlled-load) to provide hard
bandwidth guarantee to GS flows under all conditions and consistent (or soft) bandwidth
allocation to CL flows.

Also shown in figure 1 is a hierarchical packet scheduling architecture where a
priority link scheduler is shared among a shaped virtual clock (SVC) for GS flows, a
second SVC for CL flows, and a weighted round robin (WRR) for aggregate traffic from
BE flows and out-of-profile GS/CL packets,2 where BE flows and out-of-profile GS/CL
packets are each serviced by a deficit round robin (DRR) scheduler, respectively. Service
priority is first given to the SVC scheduler for GS flows, and then to the SVC scheduler
for CL flows. The WRR scheduler has the lowest priority in receiving service.

Note that the architecture shown in figure 1 is conceptual. Actually, physical pack-
ets do not pass the schedulers. The implementation architecture is shown in figure 2. In
the implementation architecture, packets are kept in the buffer. The packet selected by
the packet scheduler is directly transmitted to the output link without physically passing
through the scheduler.

An incoming GS/CL packet may already be marked as out-of-profile by an up-
stream node. At a node that implements our architecture, each GS/CL flow is reshaped.
That is, the out-of-profile status of a GS/CL packet is re-determined by the shaper (em-
bedded in SVC scheduler) [7], regardless of whether the packet is marked or not by an
upstream node. The GS/CL packets scheduled by an SVC are all considered in-profile
at this node. Thus, these GS/CL packets are unmarked (see figure 1). The GS/CL pack-
ets, which are scheduled by DRR, are considered out-of-profile at this node. Therefore,
these GS/CL packets are marked (see figure 1). As a result, an in-profile GS/CL packet
at the input link may become out-of-profile packet at the output link due to reshaping.
Similarly, an out-of-profile GS/CL packet at the input link may become in-profile packet
at the output link after reshaping. The reason why we use per-flow queueing and SVC
scheduler for in-profile GS/CL packets is based on the results in [7], where it has been
shown that SVC scheduling is able to provide bounds on the burstiness of session traf-

2 How to assign weight for WRR depends on the policy of network operators. If the network operators
favor GS/CL users, they may intend to assign a larger weight for out-of-profile GS/CL packets and assign
a smaller weight for BE traffic.



140 WU ET AL.

fic (delay bounds) and enforce bandwidth allocation for each individual flow. In other
words, per-flow queueing with a SVC scheduler in our architecture solves problem P3
associated with the class-based approach.

Note that the packet scheduler SVC/DRR does not distinguish in-profile and out-
of-profile GS/CL packets. The SVC or DRR scheduler always serves the Head-of-Line
GS/CL packet in the buffer. In other words, the sequence of a flow’s packets sent out to
the output link is exactly the same as the sequence of the flow’s packets arriving at the
input link. Thus, there is no out-of-sequence problem at the node. On the other hand, the
buffer management scheme (SP+) does distinguish in-profile and out-of-profile GS/CL
packets to make discarding/pushout decision. That is, out-of-profile status of a packet is
only useful for buffer management but not useful for the scheduler.

The second part of our traffic management algorithms is on call admission control
(CAC), which is presented in section 3.2. The objective of CAC is to maximize network
utilization (i.e., admit as many flows as possible) and, at the same time, guarantee QoS
requirements of all admitted flows (i.e., hard QoS guarantees to GS flows and consistent
(or soft) performance to CL flows). We design a simple hybrid CAC algorithm which
consists of a model-based CAC for GS flows and a measurement-based CAC for CL
flows.3

The last part of our architecture is on buffer management, or more specifically,
packet discarding strategies when some buffer partition is full.

For GS buffer partition, since the CAC algorithm for an incoming GS flow in-
cludes buffer allocation, an admitted flow will have buffer space reservation throughout
its path. Therefore, if all the GS packets are in profile, there should not be any buffer
overflow. But some upstream nodes may transmit out-of-profile GS packets if there is
left-over bandwidth at those nodes. To deal with out-of-profile GS packets, we pro-
pose a packet discarding mechanism calledselective pushout(SP), which will be pre-
sented in section 3.3.SP employs an embedded linked list structure, which cleverly
resolves the out-of-sequence problem (P2) associated with the traditional class-based
approach.

For CL flows, the buffer partition could also overflow since the traffic behavior of
such flows is unpredictable and therefore it is impossible to reserve any buffer space for
each CL flow. We propose another mechanism, calledselective pushout plus(SP+)
for CL flows. UnderSP+, when the free buffer cannot accommodate the incoming in-
profile CL packet, out-of-profile packets will be pushed out first; if the free buffer is still
not enough after all out-of-profile packets are discarded, then in-profile packets from
the quasi-longest queue will be pushed out.SP+ can control non-conforming behavior
from CL flows and, at the same time, achieve fair buffer sharing among competing flows.
The details ofSP+ algorithm is given in section 3.3.

For BE buffer partition, we use the dynamic threshold algorithm proposed in [2] to
achieve fairness among BE flows.

3 There is no admission control for BE traffic and such type of flows are always admitted.



A PER-FLOW BASED NODE ARCHITECTURE 141

3. Traffic control algorithms

In this section, we give details on scheduling, call admission control, and buffer man-
agement algorithms.

3.1. Resource allocation and scheduling for GS and CL flows

3.1.1. Model-based rate calculation for GS flows
According to [6], the end-to-end queueing delay bound for a GS flowj is given as
follows.

Dj 6


σj − Lmax

j

pj − ρj ·
(
pj

Rj
− 1

)
+ L

max
j + Ctotj

Rj
+Dtotj if ρj 6 Rj < pj ,

Lmax
j + Ctotj

Rj
+Dtotj if ρj 6 pj 6 Rj ,

(1)

whereσj is the leaky bucket size for flowj , ρj is the token generating rate for flowj ,
pj is the peak rate of flowj , Rj is the allocated rate for flowj , Lmax

j is the maximum
packet size of flowj , Ctotj is the rate-dependent error term for flowj , Dtotj is the rate-
independent error term for flowj .

Therefore, for a given delay requirement for a GS flowj ∈ FGS, its required rateRj
can be easily derived from the above formula, which is a linear function of 1/Rj . Note
that the rateRj for the flowj ∈ FGS is derived from a leaky bucket model, which is a
conservative approach for bandwidth allocation. It is appropriate for GS service since
such flows have hard delay requirements [6].

3.1.2. Buffer allocation for GS flows
To guarantee zero packet loss for GS flows, appropriate buffer must be allocated for each
GS flow. In [4], Georgiadis et al. derived an upper bound on the buffer requirement for a
GS flow. Based on this result, we allocate to flowj ∈ FGS at thelth switch with buffer
space

b
(l)
j = Lmax

j +
(pj −X)(σj − Lmax

j )

(pj − ρj ) +
l∑

k=1

[
C
(k)
j

Rj
+D(k)

j

]
X, (2)

where

X =



ρj if
σj − Lmax

j

pj − ρj 6
l∑

k=1

[
C
(k)
j

Rj
+D(k)

j

]
,

Rj if
σj − Lmax

j

pj − ρj >

l∑
k=1

[
C
(k)
j

Rj
+D(k)

j

]
andpj > Rj ,

pj otherwise.



142 WU ET AL.

In the above equations,C(k)j andD(k)
j are the rate-dependent error term and the

rate-independent error term at thekth switch for flowj ∈ FGS, respectively.Ctotj and
Dtotj are the respective sum ofC(k)j andD(k)

j along the path of flowj ∈ FGS.

3.1.3. Measurement-based rate estimation for CL flows
Unlike GS flows, CL flows cannot be modeled with a set of simple parameters. Further-
more, they do not have hard delay requirements. We can adapt more efficient bandwidth
allocation based on the measurement of a CL flow’s actual traffic behavior (instead of
using a set of rigid parameters).

To measure the effective bandwidth for CL flows, we divide time axis into small
fixed intervald and denotetY the time required to accumulant a total ofY bits for a
particular CL flow. Clearly,tY is a variable depending on the particular incoming CL
flow traffic behavior. We also introduce a thresholdTmax to set up an upper bound on
the measurement interval and take the minimum oftY and Tmax as our measurement
windowT . That is,T = min{tY , Tmax}.

DenoteM the total number ofd ’s within a measurement windowT , i.e.,M =
dT /de. Let ATi (k), 1 6 k 6 M, be the number of bits arrived in thekth measurement
interval. We first estimate the scaled cumulant generating function (SCGF)3(δ).

3T (δi) = 1

T
log

1

M

M∑
k=1

eδiA
T
i (k),

whereδi = −(logεi − logγi)/BCL, BCL is the size of the CL buffer partition,εi is the
packet loss rate requested by sourcei ∈ FCL, andγi is the probability that flowi ∈ FCL

is non-empty. Letλi be the peak rate of flowi. Then, we can obtain the effective
bandwidth of CL flowi by

α(δi) = min

{
λi,

3T (δi)

δi

}
. (3)

In our measurement, we only measure the number of packets in bits that have
successfully entered the buffer partition,excludingdiscarded packets. This is because
that discarded packets will not be served by the scheduler, and thus it is only necessary
to consider the packets that have successfully entered the buffer and allocate appropriate
rate for their service. Furthermore, we find that such measurement technique has the
additional advantage of preventing out-of-profile flows from unfairly increasing their
rate share in the scheduler by sending more packets (albeit their rates are limited by their
peak rates in equation (3)).

We assume the requirement for packet loss rate is available in order to calculate the
required bandwidth. For CL flows, users are not required to explicitly request such QoS
parameter. But for engineering purpose (i.e., to estimate required bandwidth), we may
assign a value for packet loss rate suitable for the particular CL service.



A PER-FLOW BASED NODE ARCHITECTURE 143

3.1.4. Rate assignment for GS and CL flows
To provide hard rate guarantee to each GS flow and soft rate guarantee to each CL flow,
we employ the following rate assignment strategy in the SVC scheduler. When the sum
of guaranteed rates from GS flows (calculated from equation (1)) and the estimated rates
from CL flows is less than the link capacity, we use these rates directly in the SVC for
the corresponding GS or CL flows and the delay requirement for each GS flow is always
guaranteed. On the other hand, if the sum of calculated GS rates and measured CL rates
is greater than the link capacity, we shall still use the calculated rate forj ∈ FGS flow
as the rate for such flow in the SVC scheduler but use a down-scaled version of the
estimated rate fori ∈ FCL flow (by a factor of remaining capacity divided by the sum of
estimated CL rates) as the rate for the corresponding CL flow in the SVC scheduler. We
name this rate assignment ARC, for Adaptive Rate assignment for Controlled-load.

Algorithm 1 (Adaptive Rate allocation for Controlled-load flows – ARC). For an ad-
mitted CL flowi ∈ FCL, its rateRi is given by

Ri =


α(δi) if

∑
i∈FCL

α(δi)+
∑
j∈FGS

Rj 6 C,

α(δi) ·
C −∑j∈FGS

Rj∑
i∈FCL

α(δi)
if
∑
i∈FCL

α(δi)+
∑
j∈FGS

Rj > C,

whereC is the link rate.

Once we use theRj , j ∈ FGS, andRi, i ∈ FCL as the rate for the respective GS or
CL flow in our SVC scheduler, we have the following property. The rate allocation for
each GS flow is no less than its calculated guaranteed rate while the rate allocation for
each CL flow may have occasional fluctuations (due to on-line measurement of each CL
flow traffic behavior), which is understood to be a soft bandwidth guarantee.

3.1.5. Shaped virtual clock scheduling for in-profile GS/CL packets
Figure 3 shows the conceptual structure of the buffer and the SVC scheduler. In the
buffer, each flow has a logical queue. When a packet of flowi arrives, the packet is put

Figure 3. Structure of a shaped virtual clock (SVC) scheduler.



144 WU ET AL.

into queuei in the buffer. Only the HOL packet of each queue will be stamped with
a virtual start timeS and a virtual finish timeF . An HOL packet occurs in either one
of the following two cases: (1) An incoming packet of flowi joins empty queuei and
immediately becomes the HOL; or (2) A packet in queuei departs and its next packet in
non-empty queuei immediately becomes the HOL. The information, i.e.,(S, F ) pairs,
will be used by the SVC for scheduling HOL packets. Note that only HOL packets
are stamped with(S, F ) while other packets (non-HOL packets) are not stamped with
(S, F ) upon arrival at the buffer [1].

A SVC scheduler maintains a virtual system timeV (t), virtual start timesSi(t) (i ∈
{1, . . . , N}), and virtual finish timesFi(t) (i ∈ {1, . . . , N}), whereN is the maximum
number of flows that the system can support.Si(t) andFi(t) are updated upon the arrival
of the HOL packet of flowi as follows:

Si(t) = max
{
V (t), Fi

(
t−
)}
, (4)

and

Fi(t) = Si(t)+ L
HOL
i

ri
, (5)

whereFi(t−) is the finish time of queuei before the update, andLHOL
i is the length of

the HOL packet for queuei. The informationV (t), Si(t), andFi(t) are all represented
with finite bits in implementation. Thus, without loss of generality, we supposeW is the
maximum ofV (t), Si(t), andFi(t) that the system can represent. The basic operations
of the SVC are described as follows.

(i) When a new HOL packet (its session index, sayi) comes, the SVC computes the
virtual start timeSi(t) and virtual finish timeFi(t) for this packet according to
equations (4) and (5). Then its(F,FID) pair is placed in the shaper queue, where
FID denotes the flow identification of the HOL packet. In this way, all the HOL
packets are represented in the shaper queue.

(ii) The shaper maintains a logical queue for each discrete start timeS. At every time
slot, the shaper performs the eligibility test, and sends the(F,FID) pair(s) of those
eligible packet(s), if any, to the scheduler queue. Specifically, if the current system
time (moduloW ) is equal toS, all the (F,FID) pairs in queueS, if any, will be
moved to the virtual clock scheduler queue. In other words, only those that are
eligible can be stored in the virtual clock scheduler queue.

(iii) The virtual clock scheduler prioritizes all eligible(F,FID) pairs based on their
finish timesF and chooses the packet with the smallest finish time to transmit first.

(iv) When an HOL packet (its session index, sayi) is chosen to be transmitted and leaves
the system, the scheduler queue removes its(F,FID) pair and selects another HOL
packet, if any, to serve. In the meantime, if queuei in the buffer is not empty, this
session can have another packet (regarded as a new HOL packet arrival) to join the
shaper queue.



A PER-FLOW BASED NODE ARCHITECTURE 145

(v) When an out-of-profile GS/CL packet is sent out by the DRR scheduler, its associ-
ated pair(F,FID) will be deleted in the shaper queue.4

Note that packets do not pass the SVC but are kept in the buffer before being sent
out to the output link. The packet selected by the SVC is directly transmitted to the
output link without physically passing the SVC.

3.2. Call admission control

The objective of call admission control (CAC) is to maximize network utilization (i.e.,
admit as many flows as possible) and, at the same time, guarantee QoS requirements
of all admitted flows. We design a simple hybrid CAC algorithm which consists of a
model-based CAC for GS flows and a measurement-based CAC for CL flows. There is
no admission control for BE traffic and such type of flows are always admitted.

The following is our CAC algorithm for the GS and CL flows, whereµ is target
utilization andBGS is the size of GS buffer partition.

Algorithm 2 (CAC algorithm for GS and CL traffic).
Upon receiving a new GS flow (ν) request with rateRν and buffer sizebν

if (
∑

j∈FGS
Rj +∑i∈FCL

α(δi)+ Rν 6 µ · C) and(
∑

j∈FGS
bj + bν 6 BGS)

admit the new GS flowν and stop;
else

reject the new GS flowν and stop.
Upon receiving a new CL flow (υ) request with peak ratepυ

if (
∑

j∈FGS
Rj +∑i∈FCL

α(δi)+ pυ 6 µ · C)
admit the new CL flowυ and stop;

else
reject the new CL flowυ and stop.

In algorithm 2, we use the peak rate of a CL for admission control rather than the
token generating rateρ. This is because that our previous experience in [10] has shown
that theρ parameter can be less than the required rate and, therefore, the targeted QoS
could be violated if we only reserve a bandwidth ofρ.

3.3. Packet discarding mechanisms

An arriving packet is allowed to enter the particular buffer partition if there is enough
remaining space for the buffer partition. Otherwise, we have to either discard the incom-
ing packet or discard some other packet(s) in the buffer in order to make room for the
incoming packet. In this section, we present two packet discarding mechanisms: one

4 The(F,FID) pair of an out-of-profile GS/CL packet could not be placed in the scheduler queue since all
packets in the scheduler queue are in-profile and will be scheduled with a higher priority than that for the
DRR scheduler.



146 WU ET AL.

is calledselective pushout(SP), which is employed for the GS partition; the other is
calledselective pushout plus(SP+), which is employed for the CL partition.

3.3.1. Selective pushout (SP) for GS flows
Figure 4 shows the flow chart of theSP mechanism. According to figure 4, when an
unmarked packet arrives at the node,SP makes every effort to let it enter the GS buffer.
Specifically, if the remaining buffer space is not enough and total buffer occupancy by
marked packets is larger than the size of the incoming packet, we randomly choose a
queue with marked packets and push out enough marked packets from this queue; if all
the marked packets in this queue have been discarded while the free space is still not
enough, we randomly choose another queue which has marked packets; we continue
discarding marked packets in this manner until there is enough free buffer space to ac-
commodate the incoming unmarked packet. On the other hand, when a marked packet
arrives at the GS buffer,SP will let it join the buffer only if there is enough buffer space.
Therefore,SP achieves the highest possible loss protection for in-profile (unmarked) GS
packets.

In our implementation, we maintain the following data structure foreachGS flow
to achieveSP mechanism (see figure 5). Each data unit in the GS buffer consists of a

Figure 4. Flow chart ofSP discarding mechanism for the GS buffer partition.



A PER-FLOW BASED NODE ARCHITECTURE 147

Figure 5. Linked list structure for packets of each GS or CL flow in the buffer.

physical IP packet and three pointers, of which two pointers are used for doubly linked
list Ltotal and the third is used for linked listLmark as follows.

Linked list Ltotal: is a doubly linked list of all packets from a GS flow (both marked and
unmarked).Ltotal is updated whenever an incoming packet is appended to the tail of
the queue of the GS flow or a packet is served at the front of the queue of the GS flow
by the output link.

Linked list Lmark: is the linked list of the marked packetsembeddedin the linked list
Ltotal. Lmark is updated whenever an incoming marked packet is appended to the tail
of the queue of the GS flow or a marked packet is either served by the output linkor
discarded by pushout mechanism.

By using the embedded linked list structure, out-of-profile GS packets can be easily
found and discarded while the doubly linked list forLtotal is able to preserve the connec-
tivity of Ltotal when the packet at the head ofLmark is discarded. The introduction of the
embedded linked list structure also solves out-of-sequence problem (P2) associated with
the class-based approach, which puts out-of-profile GS packets into a separate queue and
service these packets with a lower priority.

3.3.2. Selective pushout plus (SP+) for CL flows
Figure 6 shows the flow chart of theSP+ mechanism, where the queue length of flow
i, QL[i], is in the unit of bits. In ourSP+ mechanism, a register is used to estimate the
longest queue (LQ) in the CL buffer partition and is only updated upon the arrival and/or
departure of a packet. How to updateLQ upon the arrival of a packet is included in the
flow chart of figure 6 (arrival updating). Similarly, when a packet from flowi ∈ FCL

departs from the output port, ifQL[LQ] is less thanQL[i], LQ will be updated toi
(departure update).

Like SP mechanism,SP+makes every effort to let the unmarked CL packet enter
the CL buffer. The difference betweenSP+ andSP occurs when the remaining buffer



148 WU ET AL.

Figure 6. Flow chart ofSP+ discarding mechanism for the CL buffer partition.

space is not enough and total buffer occupancy by marked packets is less than the size of
the incoming unmarked packet. In this case, if the incoming unmarked packet does not
belong to the quasi-longest queue, we push out enough packets from the head of queue
LQ till the free buffer space could accommodate the incoming packet. This mechanism
is calledQuasi-PushOut Plus(QPO+) [11]. The merit of QPO+ is that QPO+ tends to
punish the user with quasi-longest queue when the network is congested. This helps to
achieve fairness and to control any non-conforming behavior.

In our implementation, we maintain the same data structure for each CL flow as
that for each GS flow (see figure 5). Note that we perform pushout on all marked packets
before we check if flowi is the quasi-longest queue in figure 6. This is because previous
quasi-longest queue may no longer be the quasi-longest queue after pushout.

4. Simulation results

In this section, we implement our IntServ architecture and traffic management algo-
rithms on our network simulator and perform simulations on various benchmark network
configurations and traffic conditions.



A PER-FLOW BASED NODE ARCHITECTURE 149

4.1. Simulation settings

The network configurations that we use are thepeer-to-peer(figure 7), theparking-
lot (figure 10), and thechain (figure 13) network configurations. All switches in the
simulations are assumed to have output port buffering with internal switching capacity
equal to the aggregate rates of its input ports. At each output port of a switch, we
implement our architecture and traffic management algorithms.

On the connection level, we assume that a GS or CL flow’s inter-arrival times is
exponentially distributed with an average of 50 s, with the holding time exponentially
distributed with an average of 100 s.

The simulation parameters for the GS, the CL, and the BE services are shown in
table 1. For GS flows, we use the simple constant bit rate as their traffic pattern. This
helps to simplify our simulations without any loss of generality in demonstrating the per-
formance of our architecture and traffic management algorithms. For each BE flow, we
use persistent TCP data traffic. For CL flows, we use an exponentially distributed on/off
model with averageE(Ton) andE(Toff) for on and off periods, respectively. During each
on period, the packets are generated at its peak ratepi, i ∈ FCL. The average bit rate for
a CL flow i ∈ FCL is, therefore,pi ·E(Ton)/(E(Ton)+E(Toff)). Delay bound is obtained
by the ratio ofσ overρ. In our simulations, the requested packet loss ratioε for all CL
flows is set to 10−3.

In table 2, we list the simulation parameters at each end system (i.e., sender and
receiver) and network components (i.e., link and switch). Buffer size in table 2 is the
size of the entrance buffer before the leaky bucket. In our simulations, for GS flow
j ∈ FGS, Ctotj is assumed to be zero andDtotj only consists of the packet processing

Table 1
Simulation parameters for three types of services.

GS Peak rate 1.5 Mbps
Packet size 1 Kbits
Delay bound 10 ms

CL Peak rate 1.5 Mbps
E(Ton) 2 ms
E(Toff) 2 ms
Packet size 1 Kbits
Packet loss ratio requirement 10−3

Delay bound 20 ms

BE (TCP) Peak rate (light load) 1 Mbps
Peak rate (heavy load) 10 Mbps
Mean packet processing delay 300µs
Packet processing delay variation 10µs
Packet size 1 Kbits
Maximum receiver window size 64 Kbytes
Default timeout 500 ms
Timer granularity 500 ms
TCP version Reno



150 WU ET AL.

Table 2
Simulation parameters at an end system and network components.

End system GS σ 15 packets
ρ 1500 packets/s
Buffer size 10 packets

CL σ 20 packets
ρ 1000 packets/s
Buffer size 10 packets

TCP Packet processing delay 500µs
Buffer size 500 packets

Switch Buffer size GS 500 packets
CL 500 packets
BE 1000 packets

Packet processing delay 4µs
Bits required for CL measurement window 100 Kbits

Link Link speed 10 Mbps
Distance End system to switch 1 km

Switch to switch 1 km

delays at all the switches along its path,5 i.e.,Dtotj = h ·D(k)
j = h · 4 µs, whereh is the

number of switches along the path for flowj . We assume the propagation delay is 5µs
per kilometer. Therefore, the end-to-end delay bound is determined by the end-to-end
queueing delay (see (1)) and the total propagation delay. The leaky bucket parameters
(σ , ρ) in table 2 are chosen based on the following requirements: the dropped ratio is
zero for GS flows and less than 10−3 for CL flows;6 the ratioσ/ρ is equal to the target
delay bound.

In our simulations, we set the link capacity to be 10 Mbps and set the target link
utilizationµ to be 0.90 in order to cushion any traffic fluctuation and measurement error.

We ran our simulator for 300 s simulation time and found that 50 simulated seconds
are sufficient for our simulator to warm up. In order to obtain 95% confidence interval,
we repeat each simulation eight times, each of which with a different seed.

4.2. Simulation results

We organize our presentation as follows. Section 4.2.1 presents the performance of the
GS, the CL, and the BE traffic under light and heavy load conditions and show that
criteria C1 and C2 are satisfied. In section 4.2.2, we show that our architecture and
algorithms can effectively control non-conforming flows by minimizing their negative
impact on other conforming flows (criterion C3). Section 4.2.3 compares ourSP+
packet discarding with the tail-dropping mechanism.

5 The reason whyDtotj does not include the propagation delay is that the propagation delay does not
contribute to the buffer requirement in (2).

6 Dropped ratio is the ratio of the dropped packets at the entrance buffer over the total generated packets.



A PER-FLOW BASED NODE ARCHITECTURE 151

4.2.1. Performance under light and heavy load conditions
We investigate the QoS experienced by the GS, the CL, and the BE traffic under light and
heavy load conditions using various benchmark network configurations. The purpose of
the simulations is to demonstrate that our network architecture and traffic management
algorithm can achieve criteria C1 and C2.

(i) The peer-to-peer network.For this network (figure 7), the output port link of SW1
is the only bottleneck link for all flows. Figure 8 shows the link utilization on Link12
under light and heavy load conditions. Table 3 shows the number of flows under light
and heavy load conditions in our simulation. Note that only the GS and the CL flows
requires admission control while there is no admission control for BE traffic.

Figure 7. A peer-to-peer network.

Figure 8. Link12 utilization under light and heavy load in the peer-to-peer network.

Table 3
Number of flows under light and heavy load conditions

in the peer-to-peer network.

Load conditions Number of flows

GS CL BE (TCP)

Light 3 3 3
Heavy 4 8 5



152 WU ET AL.

Figure 9. End-to-end delays for packets of a GS flow and a CL flow under (a) light load and (b) heavy load
in the peer-to-peer network.

Table 4
Performance of BE (TCP) traffic under light and heavy load

conditions in the peer-to-peer network.

Performance of BE (TCP) traffic Load conditions

Light Heavy

Throughput (Kbps) TCP1 325 62.4
TCP2 291 64.6
TCP3 312 61.2
TCP4 − 63.1
TCP5 − 62.5

Packet loss rate (%) Link 12 0 2.5

Under light load, the 95% confidence intervals for the maximum end-to-end delay
(in ms) for GS and CL flows are (0.792, 0.846) and (7.35, 9.21), respectively; under
heavy load, they are (0.801, 0.852) and (12.66, 14.34), respectively. We find that the
delays experienced by each GS and CL flows are bounded and are less than the delay
requirements for GS and CL flows, respectively. For illustration, we randomly pick up a
GS flow and a CL flow among admitted GS and CL flows and plot their delay behavior
under light and heavy load conditions in figure 9. As shown in figure 9, the delays
experienced by this GS flow are bounded under both light and heavy load conditions
and is much less than the delay bound requirement (10 ms). For the CL flow, its delays
are also bounded under both conditions and are less than its delay requirements (20 ms).
As expected, there is a delay increase for this CL flow under heavy load than under light
load. But such increase is normal and the specific application supported by this CL flow
should operate properly without any significant performance degradation.

Under both light and heavy load conditions, there is no packet loss from any GS or
CL flow. In addition, we observe no out-of-sequence phenomena for each flow.

Table 4 shows the performance of BE flows under light and heavy load. We observe
that the throughput of TCP1, TCP2, and TCP3 decrease under heavy load as expected.
Unlike GS and CL traffic, there is packet loss for BE traffic under heavy load conditions.



A PER-FLOW BASED NODE ARCHITECTURE 153

Figure 10. A parking-lot network.

Figure 11. Link utilization of Link45 under light and heavy load in the parking-lot network.

(ii) The parking-lot network. The parking-lot network is shown in figure 10, where
path G1 consists of multiple flows and traverse from the first switch (SW1) to the last
switch (SW5), path G2 starts from SW2 and terminates at the last switch (SW5), and so
forth. Clearly, Link45 is the potential bottleneck link for all flows.

Figure 11 shows the link utilization at Link45 under light and heavy load con-
ditions. Table 5 shows the number of flows on each path under light and heavy load
conditions in our simulation. Under light load, the 95% confidence intervals for the
maximum end-to-end delay (in ms) for GS and CL flows are (1.586, 1.691) and (8.32,
9.28), respectively; under heavy load, they are (1.718, 1.784) and (15.11, 15.83) for GS
and CL flows, respectively. We also find that the delays experienced by each GS and
CL flows are bounded and are less than the delay requirements for GS and CL flows,
respectively. In figure 12, we plot the delays experienced by the GS flow and the CL
flow traversing SW1 to SW5 (path G1) under light and heavy load. As shown in both
figures, the delays experienced by this GS flow are bounded and are much less than its
delay bound requirement (10 ms). For the CL flow, its delays are also bounded under



154 WU ET AL.

Table 5
Number of GS, CL, and BE flows on each path under light

and heavy load conditions in the parking-lot network.

Path Traffic type Number of flows

Light load Heavy load

G1 GS 1 1
CL 1 2
BE (TCP) 1 2

G2 GS 1 1
CL 1 2
BE (TCP) 1 2

G3 GS 1 1
CL 1 2
BE (TCP) 1 2

G4 GS 1 1
CL 1 2
BE (TCP) 1 2

Figure 12. End-to-end delays for packets of a GS flow and a CL flow under (a) light load and (b) heavy
load in the parking-lot network.

both conditions and are less than the delay requirements (20 ms). As expected, there is
some occasional delay increase for this CL flow under heavy load than under light load.
Again, such increase is normal and is considered satisfying our performance objective
for CL flows. Under both light and heavy load conditions, there is no packet loss from
any GS or CL flow. In addition, we observe no out-of-sequence phenomena for each
flow.

Table 6 shows the performance of BE flows under light and heavy load. We observe
that the throughput of TCP1, TCP2, TCP3, and TCP4 all decrease under heavy load as
expected. In contrary to GS and CL traffic, there is packet loss for BE traffic under heavy
load conditions. We find such loss occurs at Link34 (output port of SW3) and Link45
(output port of SW4), respectively.



A PER-FLOW BASED NODE ARCHITECTURE 155

Table 6
Performance of BE (TCP) traffic under light and heavy load

conditions in the parking-lot network.

Performance of BE (TCP) traffic Load conditions

Light Heavy

Throughput (Kbps) TCP1 33.2 11.2
TCP2 32.8 10.9
TCP3 32.5 10.5
TCP4 31.7 10.1
TCP5 − 11.2
TCP6 − 10.9
TCP7 − 10.5
TCP8 − 10.1

Packet loss ratio (%) Link12 0 0
Link23 0 0
Link34 0 2.5
Link45 0 15.2

Figure 13. A chain network.

(iii) The chain network. This is one of the benchmark network configurations used to
examine traffic behavior under the impact of traversing interfering traffic. The specific
chain configuration that we use is shown in figure 13 where path G1 consisting of mul-
tiple flows and traverses from the first switch (SW1) to the last switch (SW4), while all
the other paths traverse only one hop and “interfere” the flows in G1. Figure 14 shows
the link utilization of each link during (a) light load and (b) heavy load conditions, re-
spectively. Table 7 shows the number of flows under light and heavy load conditions.

Under light load, the 95% confidence intervals for the maximum end-to-end delay
(in ms) for GS and CL flows are (1.524, 1.556) and (8.01, 8.83), respectively; under
heavy load, they are (1.566, 1.603) and (13.07, 14.11) for GS and CL flows, respectively.
We find that the end-to-end delays experienced by each GS and CL flow satisfy their
respective delay requirements. Furthermore, we find that the packet loss is zero for both
GS and CL flows. As an illustration, figure 15 shows the delay experienced by the GS



156 WU ET AL.

Figure 14. Link utilization under (a) light load and (b) heavy load in the chain network.

Table 7
Number of flows on each path under light and heavy load con-

ditions in the chain network.

Path Traffic type Number of flows

Light load Heavy load

G1 GS 1 1
CL 1 2
BE (TCP) 1 3

G2 GS 0 1
CL 1 2
BE (TCP) 1 3

G3 GS 1 1
CL 1 2
BE (TCP) 1 3

G4 GS 1 1
CL 1 2
BE (TCP) 1 3

Figure 15. End-to-end delay of a GS flow and a CL flow under (a) light load and (b) heavy load in the chain
network.



A PER-FLOW BASED NODE ARCHITECTURE 157

Table 8
Performance of BE (TCP) traffic under light and heavy load

conditions in the chain network.

Performance of BE (TCP) traffic Load conditions

Light Heavy

Throughput (Kbps) TCP1 33.1 30.3
TCP2 32.6 28.9
TCP3 32.9 29.6
TCP4 32.2 24.9
TCP5 – 30.3
TCP6 – 28.9
TCP7 – 29.6
TCP8 – 25.8
TCP9 – 30.3
TCP10 – 28.9
TCP11 – 29.6
TCP12 – 24.9

Packet loss ratio (%) Link 12 0 0
Link 23 0 0.69
Link34 0 5.37

and the CL flows traversing from SW1 to SW4 (path G1) under (a) light and (b) heavy
load conditions. Table 8 lists the throughput and packet loss ratios for BE flows under
light and heavy load conditions.

4.2.2. Control of non-conforming CL flows
For those nodes that have policing mechanism, non-conforming GS/CL flows can be ef-
fectively controlled by marking out-of-profile GS/CL packets and discarding them when
the corresponding buffer partition is full.

On the other hand, according to [9], network elements must not assume that each
CL source or upstream elements have policing mechanism in place. Under such circum-
stances, the CL packets that are actually out-of-profile may not be marked at upstream
elements/sources. We show that our architecture and algorithms can effectively control
such non-conforming CL flows and thus achieve criterion C3.

We use the parking-lot configuration under heavy traffic load for demonstration.
The non-conforming flow is on path G4, which shares the bottleneck link (Link45) with
all other flows on paths G1, G2 and G3. The non-conforming flow submits a peak rate
of 1.5 Mbps as its traffic parameter for admission control but actually transmits at a peak
rate of 10 Mbps. Since there is no policing mechanism for this flow at the entrance to
the network, all out-of-profile packets from this flow are not marked.

Our simulations show that in the presence of such non-conforming CL flow, the
contracted QoS to those conforming GS/CL flows can still be guaranteed while the non-
conforming flow can be effectively isolated (due to per-flow queueing) and suffers from



158 WU ET AL.

Figure 16. (a) End-to-end delay for conforming GS and CL flows; and (b) packet loss ratio for the non-
conforming CL flow in the parking-lot network.

Table 9
Throughput of TCP connections under the presence of a non-conforming CL flow in the parking-

lot configuration.

Flow TCP1 TCP2 TCP3 TCP4 TCP5 TCP6 TCP7 TCP8
Throughput (Kbps) 8.2 7.8 7.6 7.1 8.2 7.8 7.6 7.1

large packet loss rate (due toSP+ packet discarding). In particular, we plot the de-
lays for a conforming GS and CL flows on path G1 in figure 16(a), which shows that
the delays experienced by these conforming GS and CL flows are bounded and meet
their respective delay requirements. Furthermore, we find that the packet loss rate for
these conforming flows remains zero during the simulation run. On the other hand, fig-
ure 16(b) shows that the packet loss ratio experienced by the non-conforming CL flow
suffers from heavy packet loss during the simulation.

The throughput of TCP connections (see table 9) are comparable to those under
heavy load in table 6. So the non-conforming CL flow does not starve BE traffic.

We have just demonstrated that our node architecture and traffic management al-
gorithms are capable of controlling non-conforming CL flows. Such effective control is
credited mostly to per-flow queueing basedSP+ algorithm. In the following subsection,
we further examineSP+ algorithm.

4.2.3.SP+ vs. tail-dropping
We compare the performance ofSP+ with tail-dropping packet discarding scheme.
Again, we use the same simulation settings in section 4.2.2, except we discard the in-
coming packet when the buffer partition is full (tail-dropping) instead ofSP+. Poisson
call arrival is not used, and instead, we just run the simulation for 300 s.

Figure 17 shows that under tail-dropping, even conforming CL flow experiences
large packet loss. On the other hand, the same conforming CL flow experienced zero
packet loss underSP+ packet discarding mechanism in section 4.2.2.



A PER-FLOW BASED NODE ARCHITECTURE 159

Figure 17. Packet loss ratio for conforming and non-conforming CL flows in the parking-lot network under
tail-dropping packet discarding mechanism.

5. Conclusions

This paper presents a per-flow based node architecture and traffic management algo-
rithms, which have been demonstrated, to offer QoS provisioning for integrated traffic
of the guaranteed service, the controlled-load, and the best-effort services for the IntServ
networks. Our main contribution is that our architecture and traffic management algo-
rithms not only meet the three criteria for IntServ networks, but also resolve several
problems associated with the traditional class-based approach.

References

[1] H.J. Chao, Y.R. Jenq, X. Guo and C.H. Lam, Design of packet-fair queueing schedulers using a
RAM-based searching engine, IEEE Journal on Selected Areas in Communications 17(6) (June 1999)
1105–1126.

[2] A.K. Choudhury and E.L. Hahne, Dynamic queue length thresholds in a shared memory ATM switch,
in: Proc. of IEEE INFOCOM’96,San Francisco, CA, USA, March 1996, pp. 679–687.

[3] D. Clark, S. Shenker and L. Zhang, Supporting real-time applications in an integrated services packet
network: architecture and mechanism, in:Proc. of ACM SIGCOMM’92,Baltimore, MD, USA, Au-
gust 1992.

[4] L. Georgiadis, R. Guerin, V. Peris and R. Rajan, Efficient support of delay and rate guarantee, in:
Proc. of ACM SIGCOMM’96,Stanford, CA, USA, August 1996.

[5] S. Jamin, P.B. Danzig, S. Shenker and L. Zhang, A measurement-based admission control algo-
rithm for integrated services packet networks, IEEE/ACM Transactions on Networking 5(1) (February
1997) 56–70.

[6] S. Shenker, C. Partridge and R. Guerin, Specification of guaranteed quality of service, RFC 2212,
Internet Engineering Task Force (September 1997).

[7] D. Stiliadis and A. Varma, A general methodology for designing efficient traffic scheduling and shap-
ing algorithms, in:Proc. of IEEE INFOCOM’97,Kobe, Japan, April 1997.

[8] B. Suter, T.V. Lakshman, D. Stiliadis and A.K. Choudhury, Design considerations for supporting TCP
with per-flow queueing, in:Proc. of IEEE INFOCOM’98,San Francisco, CA, USA, March 1998,
pp. 299–306.

[9] J. Wroclawski, Specification of the controlled-load network element service, RFC 2211, Internet En-
gineering Task Force (September 1997).



160 WU ET AL.

[10] D. Wu and H.J. Chao, Efficient bandwidth allocation and call admission control for VBR service
using UPC parameters, in:Proc. of IEEE INFOCOM’99,New York, NY, USA, March 1999.

[11] D. Wu, Y.T. Hou, Z.-L. Zhang, H.J. Chao, T. Hamada and T. Taniguchi, On implementation archi-
tecture for achieving QoS provisioning in integrated services networks, in:Proc. of IEEE ICC’99,
Vancouver, BC, Canada, June 1999, pp. 461–468.


