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ABSTRACT
With the increasing popularity of cloud computing, huge
amount of documents are outsourced to the cloud for re-
duced management cost and ease of access. Although en-
cryption helps protecting user data confidentiality, it leaves
the well-functioning yet practically-efficient secure search
functions over encrypted data a challenging problem. In
this paper, we present a privacy-preserving multi-keyword
text search (MTS) scheme with similarity-based ranking to
address this problem. To support multi-keyword search and
search result ranking, we propose to build the search in-
dex based on term frequency and the vector space model
with cosine similarity measure to achieve higher search re-
sult accuracy. To improve the search efficiency, we propose
a tree-based index structure and various adaption methods
for multi-dimensional (MD) algorithm so that the practical
search efficiency is much better than that of linear search. To
further enhance the search privacy, we propose two secure
index schemes to meet the stringent privacy requirements
under strong threat models, i.e., known ciphertext model
and known background model. Finally, we demonstrate the
effectiveness and efficiency of the proposed schemes through
extensive experimental evaluation.

Categories and Subject Descriptors
E.3 [Data Encryption]; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval
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1. INTRODUCTION
Cloud computing is a new model of enterprise IT infras-

tructure that enables ubiquitous, convenient, and on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) [8]. Due to the centralized management of elastic
resources, all players in this emerging X-as-a-service (XaaS)
model, including the cloud provider, application developers,
and end-users, can reap benefits. Especially, for the end-
users, they can outsource large volumes of data and work-
loads to the cloud and enjoy the virtually unlimited com-
puting resources in a pay-per-use manner. Indeed, many
companies, organizations, and individual users have adopt-
ed the cloud platform to facilitate their business operations,
research, or everyday needs [24].

Despite the tremendous business and technical advantages,
privacy concern is one of the primary hurdles that prevents
the widespread adoption of the cloud by potential users, e-
specially if their sensitive data are to be outsourced to and
computed in the cloud. Examples may include financial and
medical records, and social network profiles. Cloud ser-
vice providers (CSPs) usually enforce users’ data security
through mechanisms like firewalls and virtualization. How-
ever, these mechanisms do not protect users’ privacy from
the CSP itself since the CSP possesses full control of the
system hardware and lower levels of software stack. There
may exist disgruntled, profiteered, or curious employees that
can access users’ sensitive information for unauthorized pur-
poses [14, 26]. Although encryption before data outsourc-
ing [15, 33] can preserve data privacy against the CSP, it
also makes the effective data utilization, such as search over
encrypted data, a very challenging task. Without being able
to extract useful information from the outsourced data in a
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secure and private manner, the cloud will merely be a remote
storage which provides limited value to all parties.

One fundamental and common form of data utilization
is the search operation, i.e., to quickly sort out informa-
tion of interest from huge amount of data. The informa-
tion retrieval community has the state-of-the-art techniques
that are readily available to achieve rich search function-
alities, such as result ranking and multi-keyword queries,
on plaintext. For example, cosine measure in the vector s-
pace model [30] is a state-of-the-art similarity measure wide-
ly used in plaintext information retrieval community, which
incorporates the “term frequency (TF) × inverse documen-
t frequency (IDF)” weight to evaluate the similarity be-
tween a document and a particular query, and yield accurate
ranked search result. However, implementing a secure ver-
sion of such techniques over outsourced encrypted data in
the cloud is not straightforward, and is susceptible to pri-
vacy breach [29]. Although inverted index (a.k.a. inverted
file) is the most popular and efficient index data structure
used in document retrieval systems, it is not directly ap-
plicable in TF-based multi-keyword encrypted text search
environment [28,29,34].

In the literature, searchable encryption (SE) techniques
can partially address the need for secure outsourced da-
ta search. Many researchers have developed SE schemes
that allow searches over encrypted keyword indexes, either
based on public key cryptography (PKC) [3,4,12,13] or sym-
metric key cryptography (SKC) [6, 10, 11, 16, 27]. In gener-
al, although the PKC-based schemes allow more expressive
queries than SKC-based ones, they are much less efficient.
Thus, there has been significant interest in developing ef-
ficient SKC-based SE mechanisms. Curtmola et al. were
the first to propose a symmetric SE scheme with securi-
ty guarantees under rigorous definitions [10]. Other work-
s [28, 29, 34] targeted on providing ranked search. These
schemes only support single-keyword queries which is too
restrictive for practical use. To enrich search functionality,
Cao et al. [5] attempted privacy-preserving multi-keyword
ranked search over encrypted cloud data. Nevertheless, the
search complexity is linear to the number of documents in
the dataset, which becomes undesirable and inefficient when
a huge amount of documents are present. In addition, the
heuristic ranking function, i.e., “coordinate matching”, failed
to yield more accurate search result, compared to the state-
of-the-art multi-keyword search over plaintext. Thus, the
quest for secure data search mechanisms that can simulta-
neously achieve high efficiency and functionality (such as
expressive/usable queries) still remains open up to date.

In this paper, we address the challenges of constructing
practically efficient and flexible encrypted search functional-
ities that support result ranking and multi-keyword queries.
In particular, to support multi-keyword queries and search
result ranking functionalities, we propose to build the search
index based on the vector space model , i.e., cosine mea-
sure, and incorporate the TF × IDF weight to achieve high
search result accuracy. To improve the search efficiency, we
propose a tree-based index structure, where each value in
a node is a vector of term frequency related information.
We then apply the search algorithm, adapted from the MD-
algorithm [19], so as to realize efficient search functionali-
ty. Our basic scheme for multi-keyword text search with
similarity-based ranking (BMTS) is secure under the known
ciphertext model. In order to further enhance the search

Cloud server

Data userData owner
Search control (encrypted queries)

Access control (data decryption keys)

Secure index tree Search request

Top k ranked result
Encrypted documents

...

Figure 1: Framework of the search over outsourced
encrypted cloud data

privacy, we propose another enhanced secure index scheme
(EMTS) against sensitive frequency information leakage to
meet more stringent privacy requirements under a stronger
threat model, i.e., known background model. Finally, we
demonstrate the effectiveness and efficiency of the proposed
schemes through extensive experimental evaluation.

Our contributions are summarized as follows:

1. By incorporating the state-of-the-art information re-
trieval techniques, we propose a privacy-preserving multi-
keyword text search scheme supporting similarity-based
ranking, which enjoys the same flexibility and search
result accuracy as the existing state-of-the-art multi-
keyword search over plaintext.

2. We propose a randomization (phantom terms) approach
in the enhanced scheme to prevent sensitive frequency
information leakage thus achieving better privacy of
keywords. We show that with the proposed methods,
user can balance between search precision and privacy.

3. With improved security guarantee, EMTS is still com-
parable in search time to BMTS. In addition, we in-
vestigated various index building methods to speed up
the search of common cases. The results demonstrate
much improved search efficiency compared with [5].

2. PROBLEM FORMULATION

2.1 System Model
The system model considered in this paper consists of

three entities: the data owner, the data user, and the cloud
server, as illustrated in Fig. 1. The data owner outsources
a huge size of document collection DC in the encrypted for-
m C, together with an encrypted searchable index tree I
generated from DC, to the cloud server. We assume that
the data user has the mutual authentication capability with
the data owner. As such, search control mechanisms can be
applied here, e.g., broadcast encryption [10], through which

the data user obtains the encrypted search query Q̃. Upon

the receipt of Q̃, the cloud server starts searching the index
tree I and will return the corresponding set of encrypted
documents, which have been well-ranked by our frequency
based similarity measures (as will be introduced shortly).
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An additional feature is that the data user may not want to
receive all the relevant documents. Instead, the data user
may send a search parameter k along with the search query

Q̃ such that the cloud server only returns the top-k most
relevant documents. The capability of the user to decrypt
the received documents [15,33] is a separate issue and is out
of the scope of this paper.

2.2 Threat Model
We assume that the data user is honest but that the cloud

server acts in an “honest-but-curious” manner, which is al-
so employed by related works on secure cloud data search
[5, 29]. In other words, the cloud server honestly follows
the protocol execution, but curiosity propels him/her to the
speculation and analysis over the data and searchable in-
dex tree available at the server. Depending on the available
information to the cloud server, two threat models are con-
sidered here.

Known Ciphertext Model: Only the encrypted docu-
ment set C, searchable index tree I and encrypted query

vector Q̃, all of which are outsourced from the data owner,
are available to the cloud server. Specifically, we intend to
protect the plaintext query/index information against the
cloud server and keep the dictionary T as secret that was
used to build the searchable index tree I.
Known Background Model: In this stronger model, the
cloud server is equipped with more knowledge than what can
be accessed in the known ciphertext model. In particular,
the attacker may extract the statistical information from a
known comparable dataset which bears the similar nature to
the targeting dataset, e.g., the TF distribution information
of a specific keyword. Given such statistical information,
the cloud server is able to launch statistical attack to de-
duce/identify specific keywords in the query [28,29,34].

2.3 Design Goals
To enable effective, efficient and secure multi-keyword ranked

search over encrypted cloud data under the aforementioned
models, our mechanism is aiming to achieve the following
design goals.

Accuracy-improved Multi-keyword Ranked Search:
To design an encrypted cloud data search scheme which not
only supports the effective multi-keyword search functionali-
ty, but also, by adoption of the vector space model, achieves
the accuracy-improved similarity-based search result rank-
ing.

Search Efficiency: Instead of linear search [5], we explore a
tree-based index structure and an efficient search algorithm
to achieve better practical search efficiency.

Privacy Goals: The general goal is to protect user privacy
by preventing the cloud server from learning information of
the document set, the index tree, and the queries. In par-
ticular, search privacy requirements that we are concerned
with are 1) Index Confidentiality : the underlying plaintex-
t information pertaining to the encrypted index tree, e.g.,
keywords and TF of keywords; 2) Query Confidentiality :
the plaintext information regarding the encrypted query,
e.g., keywords in the query and document frequency (DF)
of these keywords; 3) Query Unlinkability : whether two or
more encrypted queries are from the same search request; 4)
Keyword Privacy : the identification of specific keyword in
the index tree, in the query or in the document set. Note
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Figure 2: Illustration of the MD-algorithm on the
MDB-tree

that protecting access pattern, i.e., the sequence of returned
documents, is extremely expensive since the algorithm has
to “touch” the whole document set [7]. We do not aim to
protect it in this work for efficiency concerns.

2.4 Notations
For the sake of clarity, we introduce the main notations

used in this paper.

• DC – the plaintext document collection, denoted as a
set of m documents DC = {d|d1, d2, . . . , dm}.
• C – the encrypted form ofDC stored in the cloud server,

denoted as C = {c|c1, c2, . . . , cm}.
• T – the dictionary, composed of n keywords, denoted

as T = {t|t1, t2, . . . , tn}.
• T̄ – a subset of T , indicating the keywords in a search

request.

• I – the h-level searchable index tree for the whole
document set DC. Each level corresponds to an exclu-
sive subset of keywords. Documents ci’s are associated
with the leaf nodes.

• Ti – a subset of T , which constitutes the ith level of I,
i = 1, . . . , h.

• Dd – the index vector of document d for all the key-
words in T .
• Q – the query vector for the keyword set T̄ .
• D̃d – the encrypted form of Dd.

• Q̃ – the encrypted form of Q.

2.5 Preliminaries
Vector Space Model: Among many similarity measures
in plaintext information retrieval, vector space model [30] is
the most popular one, supporting both conjunctive search
and disjunctive search. Specifically, document rankings are
realized by comparing the deviation of angles, i.e., cosine
values, between each document vector and the query vec-
tor. The cosine measure allows accurate rankings due to the
“TF×IDF rule”, where TF denotes the occurrence count of
a term within a document (it is used to measure how impor-
tant a specific term is to a particular document), and IDF
is obtained by dividing the total number of documents in
the collection by the number of documents containing the
term (it implies that this frequency of a term tends to be
inversely proportional to its ranking). We adopt the similar-
ity evaluation function for cosine measure from [30], where
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Figure 3: Overview of secure index scheme

the calculation methods for TF weight and IDF weight are
equally effective compared to others [35]. The following sta-
tistical values are used in our similarity evaluation function:

• fd,t, the TF of the keyword t within the document d;

• ft, the number of documents containing the keyword
t;

• N , the total number of documents in the document
set;

• wd,t, the TF weight for fd,t;

• wq,t, the IDF weight (query weight);

• Wd, the Euclidean length of wd,t;

• Wq, the Euclidean length of wq,t.

The definition of the similarity function is as follows:

Cos(Dd, Q) =
1

WdWq

∑
t∈Q∩Dd

wd,t · wq,t (1)

whereWd =
√∑

t∈Q∩Dd
w2

d,t,Wq =
√∑

t∈Q∩Dd
w2

q,t, wd,t =

1 + ln(fd,t), wq,t = ln(1 + N
ft
), and hence, the index vector

Dd and query vector Q are both unit vectors.

MD-algorithm: The MD-algorithm [19] is used to find
the k-best matches in a database that is structured as an
MDB-tree [22], as shown in Fig. 2. In the database scenario,
each level of the MDB-tree represents an attribute domain
and each attribute in that domain is assigned an attribute
value. All the attributes sharing the same value in the upper
domain forms a child node. As such, a set of objects is
allowed to be indexed in one data structure. An important
search parameter, the prediction threshold value P̂i for each
level i, is obtained from the maximum attribute value Pi

at each level, for example, in Fig. 2, P̂i = Pi = 1.0. In
a depth-first manner, MD-algorithm starts from the root
node with a recursive procedure upon this tree. Specifically,
search process selects the unused maximum attribute value
when it enters a node, and based on P̂i’s below this level,
predicts the maximum possible final score to be obtained.
The criteria for node selection is that if this predicted final
score is less than or equal to the minimum score of the top-k
objects which have been selected, search process returns to
the parent node, otherwise, it goes down to the child node at
the next level. This procedure is executed recursively until
the objects with top-k scores are selected. The search can
be done very efficiently due to the relatively accurate final
score prediction, and thus only part of the objects in the tree

are accessed. Fig. 2 shows an example that, when k = 3, the
set of objects, E, K, and J, are returned to the user and the
cross signs in the figure indicate that it is not necessary to
access the nodes below. More details of the MD-algorithm
and MDB-tree can be found in [19].

3. SECURE INDEX SCHEME
To achieve accurate multi-keyword ranked search, we adop-

t the cosine measure to evaluate similarity scores. In par-
ticular, we divide the original long document index vector
Dd into multiple sub-vectors such that each sub-vector Dd,i

represents a subset of keywords Ti of T , and becomes a
part of the ith level of the index tree I, as shown in Fig. 3.
The query vector Q is divided in the same way Dd is done.
Let Qi be the query sub-vector at the ith level. As such,
the final similarity score for document d can be obtained
by summing up the scores from each level. Based on these
similarity scores, the cloud server determines the relevance
of document d to the query Q and sends the top-k most
relevant documents back to the user. By using the level-
wise secure inner product scheme, similar to the techniques
applied in [5, 31], the document index vector Dd,i and the
query vector Qi are both well protected, and we show that
this basic scheme is secure in the known ciphertext model.
To further protect the sensitive frequency information from
leakage, we also propose an enhanced scheme in the known
background model.

3.1 BMTS in Known Ciphertext Model
In order to facilitate the relevance rankings, the similarity

scores, i.e., cosine values, are revealed to the cloud server,
which differs from the schemes adopted in [5, 31]. In other
words, we do not apply the dimension extension technique
to our basic scheme in the known ciphertext model. For each
level i of I, our basic secure index scheme can be described
as follows:

• Setup In this initialization phase, the secret key SKi

is produced by the data owner, including: 1) a |Ti|-bit
randomly generated vector Si, where |Ti| is the length
of Ti; 2) two (|Ti| × |Ti|) invertible random matrices
{M1,i,M2,i}. Hence, SKi can be denoted as a 3-tuple
{Si,M1,i,M2,i}.

• GenIndex (DC, SKi) For each document d, the data
owner generates an index vector Dd,i according to Ti,
and each dimension is a normalized TF weight wd,t.
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Next, the splitting procedure is applied to Dd,i, which
splits Dd,i into two random vectors as {Dd,i

′, Dd,i
′′}.

Specifically, with the |Ti|-bit vector Si as a splitting
indicator, if the jth bit of Si is 0, Dd,i

′[j] and Dd,i
′′[j]

are set as the same as Dd,i[j]; if the jth bit of Si is 1,
Dd,i

′[j] and Dd,i
′′[j] are set to two random numbers so

that their sum is equal to Dd,i[j]. Finally, the encrypt-

ed index vector D̃d,i is built as {MT
1,iDd,i

′,MT
2,iDd,i

′′}.

• GenQuery(T̄ , SKi) With the keywords of interest in
T̄ , the query vector Qi is generated, where each di-
mension is a normalized IDF weight wq,t (wq,t = 0 for
any keyword t not present in Qi). Subsequently, Qi is
split into two random vectors as {Qi

′, Qi
′′} with the

similar splitting procedure. The difference is that if
the jth bit of Si is 0, Qi

′[j] and Qi
′′[j] are set to two

random numbers so that their sum is equal to Qi[j]; if
the jth bit of Si is 1, Qi

′[j] and Qi
′′[j] are set as the

same as Qi[j]. Finally, the encrypted query vector Q̃i

is yielded as {M−1
1,i Qi

′,M−1
2,i Qi

′′}.

• SimEvaluation (D̃d,i, Q̃i) The cloud server executes

similarity evaluation with query vector Q̃i as in Eq. 2.

The similarity score at the ith level is computed as follows:

Cos(D̃d,i, Q̃i)

={MT
1,iDd,i

′,MT
2,iDd,i

′′} · {M−1
1,i Qi

′,M−1
2,i Qi

′′}
=Dd,i

′ ·Qi
′ +Dd,i

′′ ·Qi
′′

=Dd,i ·Qi.

(2)

Hence, the final similarity score for document d is
∑h

i=1 Dd,i ·
Qi = Dd ·Q.

Security AnalysisWe analyze BMTS concerning the search
privacy requirements as described in section 2.

1) Index confidentiality and Query confidentiality:

In BMTS, D̃d,i and Q̃i are obfuscated vectors. As long as the
secret key SKi is kept confidential, the cloud server cannot
infer the original vectors Dd,i or Qi. Neither can it deduce
the keywords nor the TF and IDF information included in
the documents or queries from the result similarity scores,
which appear to be random values to the server. This has
been proven in the known ciphertext model in [31]. There-
fore, index confidentiality and query confidentiality are well
protected.

2) Query unlinkability: The adopted vector encryption
method provides non-deterministic encryption, in light of
the random vector splitting procedure. Thus the same search
request (e.g. same search keywords) will be encrypted to dif-

ferent query vector Q̃. The non-linkability of search requests
can be provided to this extent. However, if a cloud server is
capable of tracking the nodes visited and the intermediate
similarity results, it is possible for the cloud server to link
the same search request based on the same similarity scores.
In this case the search pattern or the access pattern will be
leaked even in the known ciphertext model.

3) Keyword privacy: In the known background model,
the cloud server may have the knowledge of not only the TF
distributions, but also the normalized TF distributions of
some sensitive keywords from a known comparable dataset.
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Figure 4: Distribution of similarity score when a
single keyword in a query vector with our basic
scheme. (a) For keyword “network”. (b) For key-
word “search”.

It is worth noting that these distributions are keyword spe-
cific respectively, as shown in Fig. 4, such that the corre-
sponding keywords can be differentiated by the slope and
value range of these distributions [28, 29, 34]. In the worst
case, where only one keyword t appears in the query vector
Q (the normalized wq,t is 1), the normalized TF distribution
of this keyword is exposed directly.

In order to enhance security and boost search efficien-
cy, search evaluation may be only executed at certain levels
where the user-intended keywords reside; for the other levels,
we can render these similarity scores some fixed values, e.g.,
0, during the execution of both similarity score prediction
and evaluation in the search process.

3.2 EMTS in Known Background Model
The previous security analysis shows that in the known

background model, keyword privacy breach is possible, due
to the distance-preserving property of BMTS, i.e., the co-

sine value calculated from D̃d,i and Q̃i is equal to the one
from Dd,i and Qi. In order to break such equality, we in-
troduce some tunable randomness into the similarity score
evaluation, by which the cloud server cannot differentiate
keywords from the particular similarity score distributions.
In addition, this randomness can be calibrated by the us-
er to represent the user’s preference for the more accurate
ranked search result versus better-protected keyword priva-
cy. Specifically, Ui phantom terms are added into the query
vector Qi, and we extend the index vector Dd,i from |Ti|
dimensions to |Ti|+Ui dimensions. We denote the subset of
h levels where the keywords of interest reside as w and its
size |w| ≤ h.

Our EMTS scheme is performed almost the same as BMT-
S, except that at the ith level: 1) in Setup phase, Si becomes
(|Ti|+Ui)-bit long. M1,i and M2,i are (|Ti|+Ui)×(|Ti|+ Ui)
dimensional matrices; 2) in GenIndex phase, by choosing Vi

out of Ui phantom terms, the corresponding entries in the
(|Ti|+Ui)-dimensional index vectorDd,i are set to 1; 3) when
generating encrypted query, the (|Ti|+j)th entry in Qi where
j ∈ [1, Ui] is set to a random number εi,j ; 4) The cloud server
executes similarity evaluation and obtains the final similari-
ty score for document d equal to (Dd ·Q+

∑
i∈w

∑
j∈V̄i

εi,j),

where V̄i is the set of the Vi selected phantom terms, and it
is different for each index vector at level i.
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Figure 5: Distribution of similarity score for key-
word “network” with different standard deviations,
3500 documents, only one keyword “network” in the
query, in our enhanced scheme. (a) σ = 0.05. (b)
σ = 0.03.

Security Analysis We analyze EMTS again with respect
to the aforementioned search privacy requirements.

1) Index confidentiality and Query confidentiality:
EMTS can protect index confidentiality and query confiden-
tiality in both the known ciphertext model and the known
background model, which is inherited from BMTS.

2) Query unlinkability: The introduction of randomly
generated εi,j will allow EMTS to produce different simi-
larity scores even for the same search request. The value
of εi,j can be adjusted to control the level of variance thus
the level of unlinkability. It is worth noting that this query-
side randomization technique significantly differs from [5],
where randomization occurs on the index vector side and is
not possible to be tweaked as an effective privacy-preserving
parameter for users. Query unlinkability is thus much en-
hanced compared with BMTS to the extent that there is no
easy way for the attacker to link the queries. However, since
we do not intend to protect access pattern for efficiency rea-
sons, the returned results from the same request will always
bear some similarity which could be exploited with powerful
statistical analysis by the very motivated cloud server. This
is a trade-off that one has to make between efficiency and
privacy.

3) Keyword privacy: At level i, the number of the index
vectors is denoted as li. On one hand, to render separate∑

j∈V̄i
εi,j of this level the different values for one search re-

quest, we set (Ui
Vi
) ≥ li. On the other hand,

∑
j∈V̄i

εi,j for
the same Dd,i is different with multiple search requests, s-
ince εi,j is generated uniformly at random upon each search
request. The cloud server cannot eliminate the impact of
these phantom terms from the final similarity scores with-
out the exact values of them. Furthermore, every εi,j follows
the same uniform distribution M(μ′ − c, μ′ + c), where the

mean is μ′ and the variance as σ′2 is c2/3. According to the
central limit theorem, the

∑
i∈w

∑
j∈V̄i

εi,j follows the Nor-

mal distribution N(μ, σ2), where the mean as μ is
∑

i∈w Viμ
′

and the variance as σ2 is
∑

i∈w Vic
2/3. Therefore, we may

generate εi,j with the value of μ′ as μ/
∑

i∈w Vi and the val-

ue of c as
√

3/
∑

i∈w Vi ·σ. As shown in Fig. 5, with larger σ

selected by the user, it is more difficult for the cloud server
to infer the corresponding statistical information, and fur-

ther reverse-engineer the keyword, from the well-obfuscated
distribution of the similarity score. However, it does not suf-
fice to protect keyword privacy. For simplicity, we assume
that there are 2 levels, i.e., only one keyword t at level 1 and
two or more other keywords at level 2. At level 1,

∑
j∈V̄1

ε1,j
does not follow the Normal distribution with σ selected by
the user, in that with the smaller V1, the value of σ1

2 as
V1c

2/3 is smaller than the value of σ2 as (V1+V2)c
2/3. It is

possible that σ1 is too small to obfuscate the distribution of
the similarity score, so that the cloud server may identify the
keyword t at level 1. For better protecting keyword privacy,
the user chooses an appropriate σ1, i.e., large enough to ob-
fuscate the distribution, to generate ε1,j accordingly, while σ
remains as the overall search parameter. Hence, the variance
σ2

2 for level 2 can be set as σ2 − σ1
2 and ε2,j is generated

accordingly, as the normal random variables
∑

j∈V̄1
ε1,j and∑

j∈V̄2
ε2,j are independent to each other. Finally, keyword

privacy can be well protected by these phantom keywords.

Remarks Recently Yao et al. [32] find that this underlying
encryption method [31] is susceptible to chosen plaintext at-
tack. However, it is not applicable under our defined threat
models, since in order to launch such attack, the cloud serv-
er has to acquire plaintext query information, i.e., the nor-
malized IDF weights, which are only possessed by the data
owner and protected by BMTS and EMTS.

4. EFFICIENCY OF THE TREE-BASED
SEARCH ALGORITHM

In the plaintext information retrieval community, many
well-developed techniques have been adopted to accelerate
the search process, e.g., inverted index [18], B-tree [9], etc.
However, in the ciphertext scenario, they cannot be im-
plemented in a straightforward manner. In [10, 28, 29, 34],
the inverted index based search methods are employed to
achieve an extremely efficient search process. However, these
schemes are only designed for single keyword search. Effi-
cient range search in database [17] can be realized by using
B+-tree, but it is not applicable to the text search scenari-
o. The similarity score in our scheme is a value depend-
ing on the query and has to be evaluated in the runtime,
which makes the fixed tree structures, such as B-tree or
B+-tree, not suitable here. In this paper, we propose a
tree-based search algorithm, which is adapted from MDB-
tree based MD-algorithm, to enable efficient multi-keyword
ranked search. In what follows, we briefly introduce our
tree-based search algorithm and present some experimental
results from our implementation of the proposed tree-based
search algorithm on a real-world document set: the recent
ten years’ INFOCOM publications. We identify key factors
that affect the search efficiency and propose strategies in
building the index tree that effectively speed up the search
process.

4.1 Tree-based Search Algorithm
The MD-algorithm is originally designed for plaintext database

search. In the case of privacy-preserving similarity-based
multi-keyword ranked text search, it cannot be applied in a
straightforward manner. Instead of a numerical “attribute
value” for each attribute in the MDB-tree, our index tree
structure has to be built on vectors. The secure index scheme
described in section 3 is for this purpose and it enables the
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Figure 6: Comparison of search efficiency with dif-
ferent efficiency-improving strategies

search algorithm to take the inputs of the encrypted search-
able index tree and the encrypted query, and ensures that
the search algorithm is conducted in a secure way to protect
important search privacy in the whole search process.

Another remarkable difference between our search algo-
rithm and MD-algorithm is that we cannot set P̂i to Pi as
running the MD-algorithm in database scenario, since Pi

varies for queries in our scenario and has to be securely e-
valuated (as described in section 3) in the runtime. The
pseudo code for our tree-based search algorithm is present-
ed in Appendix.

4.2 Impact of Prediction Threshold Value
An important factor that affects the search efficiency is

the prediction threshold value P̂i at each level i. To ensure
the search precision, P̂i ≥ Pi should hold where Pi is the
maximum similarity score at level i. As shown in Tab. 1,
the tighter the prediction value of P̂i, the higher the search
efficiency. The reason is that the search process can be ter-
minated earlier without going into unnecessary nodes. On
the other hand, when P̂i < Pi, the search precision (a quan-
titative measure for search accuracy, cf. section 5) drops
below 100% while the rank privacy (a privacy measure. cf.
section 5) increases.

Strategy 1 Based on this observation, our first efficiency
enhancement aims to produce a better estimation of P̂i that
approximates to its ideal value Pi. We propose the follow-
ing strategy to achieve this. During the index tree genera-
tion phase, the data owner retains a vector Ei for each level
i. This vector consists of the maximum values at each di-
mension among all the indexes at this level. Subsequently,
during the query generation phase, P̂i is equal to the inner
product of Ei and Qi, and P̂i will be set to 1 if it is greater
than 1, thus Pi ≤ P̂i ≤ 1. P̂i can be taken as an additional

search parameter to be sent with Q̃i to the cloud server. As
for EMTS, we add the maximum

∑
j∈V̄i

εi,j from Qi to P̂i,
and refer to this sum as the final prediction threshold value.
In Fig. 6, it is shown that the search efficiency is improved
with this strategy, compared to the baseline search, in which
P̂i is always set to 1, the upper bound of cosine function.

4.3 Impact of Intended Keyword Position
Another factor we observed that affects the search efficien-

cy is the position of the search keywords on the index tree.
As shown in Tab. 2, the higher level the intended keywords

Table 1: Impact of prediction threshold
P̂i Time (ms) # of accessed nodes Precision Rank privacy
1 33 17007 100% 0%

0.05 32 15012 100% 0%
0.02 28 14326 90.3% 6.5%
0.01 11 6410 10.6% 87.2%

Table 2: Impact of keyword position
Keyword position Time (ms) # of accessed nodes

1st 5 491
15th 32 13304
30th 33 23844
50th 36 49001

Table 3: Impact of clustering
Ed Time (ms) # of accessed nodes Precision Rank privacy
0.02 7.4 7062 100% 0%
0.05 6.24 6728 97.00% 2.1%

reside, the higher the search efficiency. This is very different
from using the MD-algorithm in database scenario where all
the attributes are involved in searching the relevant objects.
In the text search scenario, people are likely to complete a
search with a query only comprising five keywords or less [1].
Consequently, the search algorithm needs to go through a
larger number of nodes to evaluate an intended keyword if
it resides at a lower level.

Strategy 2 The insight from this observation is that the
average search time can be improved by strategically arrang-
ing keyword position in the index tree – the most frequently
searched keywords on the top levels. In our experiment,
we collected a set of 100 search requests from the volun-
teering users of this prototype secure search system. We
then build the index tree where keywords are re-ordered by
their search popularity. In practice, the information on the
search keyword distribution can be extracted from the us-
er search history. As shown in Fig. 6, the efficiency of the
search algorithm is ameliorated significantly when applying
this strategy.

4.4 Impact of Index Vector Clustering
Another idea for improving the search efficiency is to clus-

ter “similar” index vectors, as shown in Tab. 3. The im-
proved efficiency comes from the reduced number of accessed
nodes in the index tree, but at the expense of lower search
precision. The bigger each cluster is, the higher the search
efficiency, but the lower the search precision.

Strategy 3 To maximize the possibility of clustering, the
length of the index vector at each level should be as short
as possible (but at least achieve 80-bit symmetric key secu-
rity [31]) in order to group the “similar” indexes. Inspired
by the k-means method, which is the most widely used clus-
tering technique in the data mining community [21], we use
Euclidean distance (Ed) as a metric to cluster“close enough”
vectors, e.g., when Ed < 1. For EMTS, we may first cluster
original index vectors, and then execute dimension exten-
sion. The time cost for the search scheme after combining all
the three efficiency-improving strategies, where Ed = 0.02,
is shown in Fig. 6 as well.

Remarks The original combination of the MD-algorithm
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Figure 7: By choosing different standard deviation
σ, the trade-off, between (a) Precision, and (b) Rank
privacy, can be achieved.

and the MDB-tree is not directly applicable for efficient
search over vector indexes. From the extensive experiments
on our prototype implementation of the search algorithm,
we identified three efficiency-crucial factors and proposed
effective strategies to improve the practical search efficien-
cy with our vector indexes. Although the worst case search
complexity is no better than linear search that is the state-
of-the-art search efficiency in the multi-keyword encrypted
text search scenario, this much less time-consuming tree-
based search algorithm represents a solid step forward on
the utilization of encrypted cloud data in practice. From
the security point of view, the entire search process does
not introduce new privacy vulnerability when used with our
secure index scheme. In particular, our scheme is secure
against search time analysis, i.e., the cloud server cannot in-
fer specific keyword by the difference of search time, even if
he/she knows that the keyword resides at a certain level. In
fact, for efficiency, the cloud server performs level-selected
similarity evaluation (see section 3), such that he/she has
already possessed the keyword position information. There
are at least 80 dimensions in an index vector at each level,
and all the words falling into this level have almost the same
search time. This effectively blinds one keyword within at
least 79 other keywords at the same level. In addition, the
cloud server has no knowledge about which concrete set of
keywords are selected to build this level without the dictio-
nary T . Therefore, it is not possible to differentiate these
keywords or identify a particular keyword of interest.

5. PERFORMANCE ANALYSIS
To evaluate the overall performance of our proposed tech-

niques, we implemented the entire secure search system us-
ing JAVA on a Linux Server with Intel Core i3 Processor
3.3GHz. The document set is built from the recent ten years’
IEEE INFOCOM publications, including about 3600 publi-
cations, from which we extract about 9000 keywords. In
this section we present the detailed performance result. The
documents and keywords used in the evaluation are selected
randomly from the created document sets.

5.1 Precision and Privacy
To evaluate the impact on the accuracy of search result

introduced by phantom terms in EMTS, we adopt the defi-
nition of “precision” in [5]. Namely, the“precision”of a top-k
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Figure 8: Time cost for building index tree. (a)
For the different size of document set with the same
dictionary, n = 4000. (b) For the different size of
dictionary with the same document set, m = 1000.

Table 4: Size of index tree
Size of dictionary 2000 4000 6000 8000

BMTS (MB) 23.16 46.34 69.51 92.68
EMTS (MB) 26.87 53.77 80.66 107.54

search is defined as Pk = k′/k where k′ is the number of the
real top-k documents that are returned by the cloud server.
Fig. 7(a) shows that with a small σ, the effectiveness of the
search scheme is not affected much. The user can still en-
joy almost the same search result as BMTS. On the other
hand, we evaluate the “rank privacy” obtained from intro-
ducing phantom terms. The definition of “rank privacy” is
also adopted from [5], i.e., the rank privacy at point k is

calculated as P̃k =
∑

p̃k/k
2. For every document d in the

returned top-k documents, let the rank perturbation p̃k be
|ud−ud

′|, where ud is the rank number of document d in the
returned top-k documents and it is set to k if greater than
k, and ud

′ is its rank number in the real ranked documents.
As shown in Fig. 7(b), large σ provides better protection of
rank information in EMTS.

It is worth noting that σ is a tunable search parameter
at the discretion of the user. The selection of different σ
reflects his/her predilection for the better effectiveness of
the search scheme or the better protected rank privacy and
keyword privacy (see section 3.2).

5.2 Construction for Index Tree
Apparently, the time cost for generating the proposed in-

dex tree structure mainly depends on the size of the docu-
ment set DC and dictionary T . At a particular level i, the
major computation is the encryption of the divided index
vectors, which involves the splitting process and two multi-
plications of an ni×ni matrix and an ni-dimensional vector
where ni = |Ti| in BMTS and ni = |Ti| + Ui in EMTS.
Fig. 8(a) shows that the time cost for building the index
tree is nearly linear to the number of the documents, given
the same dictionary, i.e., ni is fixed at each level i when the
tree structure has a predefined h levels. Fig. 8(b) shows that
with the same document set, the index construction time is
proportional to the number of keywords in the dictionary.
Besides, building the index tree for EMTS is slightly more
time-consuming than BMTS due to the dimension exten-
sion, which is shown in both Fig 8(a) and Fig 8(b). Note
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Figure 9: Time cost for generating encrypted query,
when |Ti| = 80. (a) For the different number of levels
where user intended keywords reside. (b) For the
different number of keywords of interest in one level.

that this computation is a one-time cost on the data own-
er side. On the other hand, the storage overhead, listed in
Tab. 4, of the index tree with the fixed size of document set
m=3000 is determined by the number of keywords in the
dictionary. EMTS is very close to BMTS in the size of the
index tree, and considering the massive storage capacity and
low storage cost in the cloud, it is practical and completely
affordable.

5.3 Query Generation
Typical search requests only consist of a few keywords [1].

Therefore, it is inefficient to generate a query that involves
all the keywords in the dictionary, which not only makes
the search process costly (similarity evaluation needs to be
carried out on long vectors) but also brings some unneces-
sary computation overhead into query generation procedure.
Fig. 9(a) demonstrates that when |Ti| is fixed, the time cost
for generating an encrypted query is only linear to the num-
ber of levels where the searched keywords reside. Further-
more, the strategy to place the most frequently searched
keywords on the top levels of the index tree will lead to the
result that a good portion of queries are only generated for
a few limited levels. As such, when |Ti| is chosen proper-
ly, the average query generation can be extremely efficient,
as shown in Fig. 9(b). The major computation overhead
stems from the vector encryption process, and due to the
dimension extension, the time cost in EMTS is a bit more
expensive than that in BMTS.

5.4 Search Efficiency
The search process executed at the cloud server is com-

prised of computing and ranking the similarity scores of rel-
evant documents. The search algorithm terminates after
the top-k documents have been selected. We evaluate the
search efficiency of BMTS and EMTS with our proposed
efficiency-improving strategies. Fig. 10(a) shows the search
time for BMTS and EMTS, compared with [5] and baseline
search with respect to the size of document set. In the base-
line search, all the keywords in the dictionary are dispersed
uniformly at random within the index tree, but it is still
far efficient than [5] due to our proposed search algorithm
and the tree-based index structure. It is noteworthy that
the time cost of our proposed encrypted cloud data search is
much more efficient than [5] and baseline search. In addition,
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Figure 10: Search efficiency, with the same 10 key-
words of interest. (a) For the different size of
document set with the same dictionary, n = 4000,
k = 10. (b) For the different number of retrieved
documents with the same document set and dictio-
nary, m = 1000, n = 4000.

with the increased size of document set, our two proposed
schemes enjoy almost the same and nearly constant search
time. Fig. 10(b) demonstrates that when user requests more
relevant documents, our search algorithm is still extremely
efficient.

6. RELATED WORK

6.1 Searchable Encryption with Single Key-
word

Song et al. [27] propose the first SE scheme, where, to
search a certain keyword in a document, user has to go
through the whole document. After this work, many im-
provements and novel schemes [6, 10, 11, 16] have been pro-
posed. Curtmola et al. [10] propose an inverted index based
SE scheme with extremely efficient search process, but the
keyword privacy will be revealed if the corresponding key-
words have been searched. Frequency information is not
involved in the similarity evaluation processes of the above
techniques to provide accurate search functionality. In [28,
29, 34], the order-preserving techniques are utilized to pro-
tect the rank order. Due to the index and query built from
frequency related information and the inverted index as the
underlying index structure, they can achieve accurate and
efficient search at the same time. Boneh et al. [3] propose the
first PKC-based SE scheme, where anyone with public key
can write to the data stored on server but only authorized
users with private key can search. However, all of the afore-
mentioned solutions only support single keyword search.

6.2 Searchable Encryption with Multiple Key-
words

In the public key setting, a lot of works have been done
to realize the conjunctive keyword search, subset search,
or range queries [4, 12, 13], but they are too computation-
ally intensive to be implemented for practical use. Predi-
cate encryption is another promising technique to fulfill the
search over encrypted data [2,23,25]. In [17], a logarithmic-
time search scheme is presented to support range queries,
which is orthogonal to our text search scenario. Further-
more, no similarity measure is adopted in these works to
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provide multi-keyword ranked search functionality. In text
retrieval scenario, Pang et al. [20] also propose a vector s-
pace model based secure search scheme. An access manager
is supposed to exist in their protocol except for a documen-
t server, and additional overhead occur on the user side,
which is apparently not applicable to cloud environment.
Without the security analysis for frequency information in
their scheme, it is not clear whether such sensitive informa-
tion disclosure could lead to keyword privacy infringement.
Besides, the practical search performance is absent from the
demonstration of their experiment. Cao et al. [5] propose
a privacy-preserving multi-keyword ranked search scheme.
Although with “coordinate matching”, this scheme can pro-
duce the ranked search result by the number of matched
keywords, more accurate ranked search result is not consid-
ered there, and the search complexity is constant in that the
cloud server has to traverse all the indexes of the document
set for each search request.

7. CONCLUSION
In this paper, as an initial attempt to achieve practical

and effective multi-keyword text search over encrypted cloud
data, we make contributions in two major aspects, support-
ing similarity-based ranking for more accurate search result
and a tree-based search algorithm that achieves better-than-
linear search efficiency. For the accuracy aspect, we first
exploit the popular similarity measure, i.e., vector space
model with cosine measure, to effectively procure the accu-
rate search result. We propose two secure index schemes to
meet various privacy requirements in the two threat model-
s. Eventually, the leakage of sensitive frequency information
can be avoided. To boost search efficiency, we propose a tree-
based index structure for the whole document set. From the
utilization of the prototype of our secure search system, we
identify three essential efficiency-related factors, by which
the efficiency of the search algorithm upon our index tree
can be significantly improved. Finally, thorough analysis on
the real-world document set demonstrates the performance
of BMTS and EMTS in terms of search effectiveness, effi-
ciency and privacy.
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APPENDIX
The Proposed Tree-based Search Algorithm
The following notations are used in the pseudo code of the
algorithm:

• O – it is denoted as a subtree of the searched index
tree, or as a document array residing in the leaf node.
For the subtree O at the ith level, it can be defined by

the tree identifier (D̃d,1, D̃d,2, ..., ˜Dd,i−1).

• x – an encrypted document in a document array O. For
simplicity, it could be a document ID.

• Si – the similarity score that is equal to Cos(D̃d,i, Q̃i)
as Eq. 2.

• PF (D̃d,i) – the function for predicting the maximum

possible final similarity score from index vector D̃d,i.

PF (D̃d,i) =
∑i

t=1 St +
∑h

j=i+1 P̂j , where h is the total
number of levels of the index tree.

• F (·) – the final similarity score of a document, e.g.,

F (x) =
∑h

i=1 Si.

• Lk – the list for selected top-k documents that are s-
tored in descending order according to F (x).

• DLi – the list for index vectors D̃d,i’s stored in a node
at the ith level of a subtree of the index tree.

• Mk – the similarity score of the kth document in Lk.

Algorithm 1 Proposed Search Algorithm for Top-k Rank-
ing on Index Tree

begin
for (i = 1→ h) do

if (Q̃i does not exist in the search request) then

P̂i ← 0 and all Si ← 0 at the ith level;
else

use the received P̂i with the search request;
end if

end for
findTopK(I, (∅), F (.), k);
return Lk;
end

procedure findTopK(IndexTree I, Identifier (D̃d,1,

D̃d,2, ..., ˜Dd,i−1), Score F (·), int k);
if (O is a document array) then

while (there is next document in O) do
if (|Lk| < k) then

insert document x into Lk according to F (x);
else

if (F (x) > Mk) then
delete kth document from Lk;
insert x into Lk according to F (x);

end if
end if

end while
else

DLi = getIndexList(I, (D̃d,1, D̃d,2, ..., ˜Dd,i−1));
counter ← 0;
while (there is next index vector in the subtree) do

if (|Lk| = k and FP (DLi(counter)) ≤Mk) then
return;

else
findTopK(I, (D̃d,1, ..., ˜Dd,i−1, D̃d,i), F (·), k);

end if
counter ← counter + 1;

end while
end if
end procedure

procedure getIndexList(IndexTree I, Identifier (D̃d,1,

D̃d,2, ..., ˜Dd,i−1));

if (Q̃i exists in the search request) then

for (each D̃d,i within the node at the ith level in

subtree of I with identifier (D̃d,1, D̃d,2, ..., ˜Dd,i−1))
do

compute Si = Cos(D̃d,i, Q̃i);
end for
sort DLi in descending order according to Si;
return DLi;

else
return the original DLi;

end if
end procedure
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