
Attribute Based Data Sharing with Attribute Revocation

Shucheng Yu
Department of ECE

Worcester Polytechnic Institute
Worcester, MA 01609
yscheng@wpi.edu

Cong Wang
Department of ECE

Illinois Institute of Technology
Chicago, Illinois 60616
cong@ece.iit.edu

Kui Ren
Department of ECE

Illinois Institute of Technology
Chicago, Illinois 60616
kren@ece.iit.edu

Wenjing Lou
Department of ECE

Worcester Polytechnic Institute
Worcester, MA 01609

wjlou@wpi.edu

ABSTRACT
Ciphertext-Policy Attribute Based Encryption (CP-ABE) is
a promising cryptographic primitive for fine-grained access
control of shared data. In CP-ABE, each user is associated
with a set of attributes and data are encrypted with ac-
cess structures on attributes. A user is able to decrypt a
ciphertext if and only if his attributes satisfy the ciphertext
access structure. Beside this basic property, practical appli-
cations usually have other requirements. In this paper we
focus on an important issue of attribute revocation which
is cumbersome for CP-ABE schemes. In particular, we re-
solve this challenging issue by considering more practical
scenarios in which semi-trustable on-line proxy servers are
available. As compared to existing schemes, our proposed
solution enables the authority to revoke user attributes with
minimal effort. We achieve this by uniquely integrating the
technique of proxy re-encryption with CP-ABE, and enable
the authority to delegate most of laborious tasks to proxy
servers. Formal analysis shows that our proposed scheme
is provably secure against chosen ciphertext attacks. In ad-
dition, we show that our technique can also be applicable
to the Key-Policy Attribute Based Encryption (KP-ABE)
counterpart.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory

General Terms
Security, Theory

Keywords
Attribute Based Encryption, Proxy Re-encryption, Revoca-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

1. INTRODUCTION
Today’s computing technologies have attracted more and

more people to store their private data on third-party servers
either for ease of sharing or for cost saving. When people
enjoy the advantages these new technologies and services
bring about, their concerns about data security also arise.
Naturally, people would like to make their private data only
accessible to authorized users. In many cases, it is also de-
sirable to provide differentiated access services such that
data access policies are defined over user attributes/roles.
We can easily foresee that these security concerns and re-
quirements would become more urgent in the coming era
of cloud computing wherein individuals, organizations, and
businesses may outsource their various types of data, includ-
ing the highly sensitive data, into the cloud. Traditional ac-
cess control strategies, such as the reference monitor method
[1], will not be as effective under this new setting because
the service providers and the data owners now very possi-
bly belong to different trusted domains, and the third-party
storage servers themselves may not be fully trustworthy. To
address this problem, in this paper we explore a feasible
solution based on novel cryptographic methods.

Ciphertext-policy attribute based encryption (CP-ABE)
[2] is a public-key cryptography primitive that was proposed
to resolve the exact issue of fine-grained access control on
shared data in one-to-many communications. In CP-ABE,
each user is assigned a set of attributes which are embedded
into the user’s secret key. A public key component is defined
for each user attribute. When encrypting the message, the
encryptor chooses an access structure on attributes, and en-
crypts the message under the access structure via encrypting
with the corresponding public key components. Users are
able to decrypt a ciphertext if and only if their attributes
satisfy the ciphertext access structure. The public key and
ciphertext sizes in CP-ABE are just linear to the number of
attributes and the complexity of the access structure, which
is independent to the number of users. Moreover, CP-ABE
is resistant to collusion attacks from unauthorized users. All
these nice properties make CP-ABE extremely suitable for
fine-grained data access control on untrusted storage.

As promising as it is, there also exist several issues when
directly applying state-of-the-art CP-ABE schemes to prac-
tical applications. These issues can be summarized in two
folds: firstly, existing CP-ABE schemes are not able to si-

261

multaneously achieve provable security, expressiveness of ac-
cess structure, and efficient construction; secondly, user man-
agement, user revocation in particular, is extremely hard
to realize in an efficient way. When current researches are
mainly focusing on solving the former, the later has drawn
less attention. In fact, user revocation is a challenge is-
sue in many one-to-many communication systems. In at-
tribute based systems, this issue is even more difficult since
each attribute is conceivably shared by multiple users. Re-
vocation of any single user would affect others who share
his attributes. Moreover, user revocation in attribute based
systems may be flexible and occur in different granularities.
That is, it may require to revoke either the entire user ac-
cess privilege, or just partial access right of the user, i.e.,
a subset of his/her attributes. Existing CP-ABE schemes
[18, 2] suggest associating expiration time attributes to user
secret keys. However, this type of solutions always have a
trade-off between granularity of user revocation and the load
placed on the system authority, and require interaction be-
tween users and the authority. In addition, the expiration
method is not able to efficiently revoke user attributes on
the fly. In [4], Boldyreva et al. proposed an efficient revo-
cation scheme for IBE, which is also applicable to KP-ABE
[12, 6] and fuzzy IBE [19]. However, it is not clear whether
the proposed scheme is applicable to CP-ABE.

Towards building a full fledged CP-ABE system, this pa-
per focuses on the important yet difficult problem of user re-
vocation. Instead of addressing the issue in general settings,
we particularly focus on practical application scenarios such
as data sharing, as shown by Fig.1, in which semi-trustable
proxy servers are always available for providing various types
of content services. Similar to previous work [11], we can as-
sume these servers to be curious-but-honest. That is, they
will honestly execute the tasks assigned by legitimate parties
in the system. However, they would like to learn informa-
tion of encrypted contents as much as possible. Based on
this assumption, our solution uniquely integrates the proxy
re-encryption technique with CP-ABE, and enables the au-
thority to delegate most laborious tasks of user revocation to
proxy servers without leaking any confidential information
to them. On each revocation event, the authority just gener-
ates several proxy re-encryption keys and transmits them to
proxy servers. Proxy servers will update secret keys for all
users but the one to be revoked. Unlike solutions suggested
by existing CP-ABE schemes, our construction places min-
imal load on the authority upon each revocation event, and
the authority is able to freely revoke any attribute of users at
any time. The only requirement is that proxy servers should
stay online and perform honestly. The former can easily be
satisfied in many systems since servers provide various kinds
of services and should stay online anyway. The later can be
guaranteed by exploiting secure computing techniques such
as auditing, which is out of the scope of this paper.

1.1 Challenges and Our Contributions
The main challenge of our construction is to formulate a

reasonable security model and provide formal security proofs
when combining CP-ABE with proxy re-encryption. Our
contribution can be summarized as follows.

Firstly, we provide the definition for attribute revocation
in CP-ABE with honest-but-curious severs, and formulate
the security model to reflect possible attacks.

Secondly, the proposed scheme enables the authority to

Authority

Semi-trustable

Servers

Encr
ypte

d co
nten

t
Access

User

Content

Provider

M
anagem

ent

Figure 1: An example application scenario of data

sharing.

revoke any attribute of users at any time while placing a
minimal load on him.

Thirdly, the proposed scheme is provably secure under the
Decisional Bilinear Diffie-Hellman (DBDH) assumption.

Last but not least, our method is applicable to the KP-
ABE counterpart in which the authority is able to revoke
any partial access privilege of users.

To the best of our knowledge, this paper is among the first
formally addressing the issue of user/attribute revocation in
ABE although it focuses on a practical setting.

1.2 Related Work
Sahai and Waters [19] first introduced attribute based en-

cryption (ABE) for encrypted access control. In an ABE
system, both the user secret key and the ciphertext are as-
sociated with a set of attributes. Only if at least a threshold
number of attributes overlap between the ciphertext and his
secret key, can the user decrypt the ciphertext. Goyal et al.
[12] first introduced the concept of CP-ABE based on [19].
The idea of a CP-ABE scheme is as follows: the user secret
key is associated with a set of attributes and each cipher-
text is embedded with an access structure. A user is able
to decrypt a ciphertext if and only if his attributes satisfy
the access structure of the ciphertext.The access structure
is generalized as any boolean formula over threshold gates
on positive attributes and negative attributes. Bethencourt
et al. [2] proposed the first CP-ABE construction under
the generic group model. Cheung et al. [9] proposed the
first provably secure CP-ABE under a standard assumption
(the DBDH assumption) while only permitting AND gates
in the access structure. Goyal et al. recently proposed a
bounded CP-ABE scheme with expressive access structure
and provable security under the standard model. However,
complexity of the construction is extremely high and can
just serve as a theoretical feasibility. Further improvements
on CP-ABE can be found in [16, 13, 15, 17] etc.

The issue of attribute revocation, a.k.a. key revocation,
in CP-ABE was first addressed in [18] as a rough idea. This
paper suggests extending each user attribute with an expi-
ration date. This idea, as the authors pointed out, requires
the users to periodically go to the authority for key reissuing
and thus is inefficient. [2] enhances this solution by associ-
ating the user secret key with a single expiration date. As
is compared to [18], this solution places a lower load on the
authority as users need to update their keys less frequently.
However, this method is not able to realize user attribute
change in a timely fashion. These solutions can just dis-

262

able a user secret key at a designated time, but are not able
to revoke a user attribute/key on the ad hoc basis. In [4],
Boldyreva et al. proposed an efficient revocation scheme for
IBE, and the proposed scheme is also applicable to KP-ABE
and fuzzy IBE. However, its applicability to CP-ABE is not
clear.

In 1998, Blaze et al. [3] proposed a cryptographic prim-
itive in which a semi-trustable proxy is able to convert a
ciphertext encrypted under Alice’s public key into another
ciphertext that can be opened by Bob’s private key without
seeing the underlying plaintext. This cryptographic primi-
tive is called Proxy Re-Encryption (PRE). A PRE scheme
allows the proxy, given the proxy re-encryption key rka↔b,
to translate ciphertexts under public key pka into cipher-
texts under public key pkb and vise versa. We refer to [3]
for more details on proxy re-encryption schemes. Enhance-
ments to proxy re-encryption scheme can be found in [10]
etc.

The rest of this paper is organized as follows. Section
2 presents formal definitions and models of our proposed
scheme. Section 3 reviews some technique preliminaries per-
taining to our construction. In section 4, we describe our
construction in detail together with its security proof. Sec-
tion 5 gives a CCA secure construction. In section 6, we
discuss applicability of our method to KP-ABE and some
application considerations. We conclude this paper in Sec-
tion 7.

2. DEFINITIONS AND MODELS
In this section, we first give an overview of our solution

to the issue of attribute revocation. Then, we present our
definition of the proposed scheme and its security model.

2.1 Scheme Overview
Our scheme is proposed to resolve the issue of attribute

revocation for applications such as data sharing as shown
in Fig.1. For example, in a campus data system, each stu-
dent is associated with an attribute set such as (depart-
ment, courses, club memberships, ...). When a student drops
a class or quits from a club, the system needs to remove
the corresponding attribute from the student’s attribute set.
Recall that in CP-ABE [2], the system (the authority) de-
fines a master key component for each attribute in the sys-
tem. With these master key components, the system defines
the public key and user secret key components each of which
corresponds to one of the user’s attributes. Based on this
observation, we propose to resolve the attribute revocation
issue as follows:

Whenever an attribute revocation event occurs, the au-
thority redefines the master key components for involved
attributes. Corresponding public key components are then
updated accordingly. From then on, data will be encrypted
with the new public key. Apparently, user secret keys should
be updated accordingly for data access. For this purpose,
the authority generates proxy re-key’s for updated master
key components. With these proxy re-key’s, the proxy servers
are able to securely update user secret keys to the latest ver-
sion for all but the user for revocation1. This removes the
involved attributes from that user’s attribute set since their

1A user secret key is updated when the user accesses proxy
servers. Aggregate update for successive events is possible
when a user has not accessed the system for a long time.

corresponding secret key components no longer comply with
the new master key. The proxy re-key’s also allow the proxy
servers to re-encrypt existing ciphertexts stored on them2 to
the latest version without disclosing any plaintext informa-
tion as we will discuss later. As compared to previous work,
this solution places minimal load on the authority since most
of the laborious tasks are delegated to proxy servers.

2.2 Algorithm Definition
Our proposed scheme is composed of 7 algorithms: Setup,

Enc, KeyGen, ReKeyGen, ReEnc, ReKey, and Dec. Setup,
KeyGen, and ReKeyGen are performed by the authority
while ReEnc and ReKey are executed by proxy servers.
Enc and Dec are called by encryptors and decryptors re-
spectively. Note that, in our scheme we define a system
wide version information ver indicating the evolution of the
system master key as follows: initially it is set to 1; when-
ever an attribute revocation event occurs and the system
master key is redefined, it increases by 1. The system pub-
lic key, ciphertexts, user secret keys, and proxy re-key’s are
all tagged with the version information indicating which ver-
sion of system master key they comply with.

Setup(1λ) It takes as input the security parameter 1λ and
outputs the system master key MK and public parameters
PK. ver is initialized as 1.

Enc(M, AS, PK) It takes as input a message M , an access
structure AS, and current public parameters PK, and out-
puts a ciphertext CT .

KeyGen(MK, S) It takes as input current system master
key MK and a set of attributes S that describes the key.
It outputs a user secret key SK in the form of (ver, S, D,
D̄ = {Di, Fi}i∈S).

ReKeyGen(γ, MK) It takes as input an attribute set γ that
includes attributes for update, and current master key MK.
It outputs the new master key MK′, the new public key PK′

(computation of PK′ can be delegated to proxy servers),
and a set of proxy re-key’s rk for all the attributes in the
attribute universe U . ver is increased by 1. Note that, for
attributes in set U−γ, their proxy re-key’s are set as 1 in rk.

ReEnc(CT, rk, β) It takes as input a ciphertext CT , the set
of proxy re-key’s rk having the same version with CT , a
set of attributes β which includes all the attributes in CT ’s
access structure with proxy re-key not being 1 in rk. It
outputs a re-encrypted ciphertext CT ′ with the same access
structure as CT .

ReKey(D̄, rk, θ) It takes as input the component D̄ of a user
secret key SK, the set of proxy re-key’s rk having the same
version with SK, and a set of attributes θ which includes all
the attributes in SK with proxy re-key not being 1 in rk. It
outputs updated user secret key components D̄′.

Dec(CT, PK, SK) It takes as input a ciphertext CT , public
parameters PK, and the user secret key SK having the
same version with CT . It outputs the message M if the
attribute set of SK satisfies the ciphertext access structure.

2In practice, this can be done efficiently using the technique
of lazy re-encryption[14] as we will discuss later.

263

Otherwise, it returns ⊥ with an overwhelming probability.

2.3 Security Definition
We first present the requirements of correctness of our

proposed scheme by the following conditions:
(1) Dec(Enc(M, AS, PK), PK, SK) = M , if the attribute

set S of SK satisfies AS.
(2) Let CT ′ = ReEnc(Enc(M, AS, PK), rk, β), and SK′ =

(ver + 1, S, D, D̄′ = ReKey(D̄, rk, θ)), where ver is the ver-
sion number of PK and rk. Dec(CT ′, PK′, SK′) = M , if
S′ = S\(β\θ) satisfies AS.

(3) Let CT ′′ = ReEnc(CT ′, rk′, β′), and SK′′ = (ver +
2, S′, D, ReKey(D̄′, rk′, θ′)). If Dec(CT ′,PK′,SK′) = M
and S′′ = S′\(β′\θ′) satisfies AS, Dec(CT ′′,PK′′,SK′′) =
M .

(4) Inductively we get the statement for (CT (n), PK(n),

SK(n)) of any n.

CPA security of our proposed scheme under the selective-
structure model [9] can be defined by the following game
between an adversary A and a challenger B.

CPA Security Game Let λ be a security parameter.
We say that our scheme is secure against chosen plaintext
attacks under selective-structure model if no PPT adversary
A can win the following game with non-negligible advantage.

Init The adversary A chooses the challenge access structure
AS∗, a version number ver∗, and ver∗ − 1 attribute sets
{γ(1), γ(2), · · · , γ(ver∗−1)}, and submits them to the chal-
lenger B.

Setup The challenger B fist runs Setup(1λ) to obtain MK
and PK for version 1. He then runs ReKeyGen(γi, MK)

from i = 1 to ver∗−1. Finally, B gives (PK, {rk(i)}2≤i≤ver∗)

to A, where rk(i) denotes the proxy re-key set for version i3.
Note that, A is able to derive PK for all the versions with
rk(i)’s.

Phase 1 The adversary A is allowed to issue polynomial
times (in λ) of queries on generation of secret keys of any
version within the range of [1, ver∗]. The only restrict is that
the attribute set that A submits for each secret key query
does not satisfy AS∗.

Challenge The adversary submits two equal length mes-
sages M0 and M1. The challenger flips a random coin b,
and encrypts Mb by executing CT ∗ ← Enc(M, AS∗, PK),
where PK is the public parameter for version ver∗. The
challenge ciphertext CT ∗ is passed to the adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary A outputs his guess b0 of b.

The adversary A is advantage in winning this CPA secu-
rity game is defined as ADVCPA = Pr[b0 = b] − 1

2
.

Note that, In Phase 1, the adversary is also permitted to

3In this paper, the superscript (i) means that the component
is of version i. When there is no confusion, we always remove
the superscript for brevity. For example, we may just use
rk or γ.

issue queries on re-encryption of ciphertexts and on update
of secret keys. In our security game, however, the adversary
has been given all the proxy re-key’s. This means that he
is able to answer the two queries by himself. For this sake,
we do not include the two corresponding oracles in Phase 1.
In fact, the adversary A has at least the same capability as
proxy servers who passively collect secret keys of unautho-
rized users. Since we assume proxy servers are honest, we do
not consider active attacks from proxy servers by colluding
with revoked authorized users.

Definition 1. (CPA SECURITY) We say that our scheme
is CPA secure if ADVCPA is negligible (in λ) for any poly-
nomial time adversary.

3. PRELIMINARIES

3.1 Bilinear Maps
Our design is based on some facts about groups with effi-

ciently computable bilinear maps.
Let G0 and G1 be two multiplicative cyclic groups of prime

order p. Let g be a generator of G0. A bilinear map is an
injective function e : G0 × G0 → G1 with the following
properties:

1. Bilinearity : for all u, v ∈ G0 and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy : e(g, g) 6= 1.
3. Computability : There is an efficient algorithm to com-

pute e(u, v) for ∀ u, v ∈ G0.

3.2 Complexity Assumptions
Decisional Bilinear Diffie-Hellman (DBDH) Assumption Let
a, b, c, z ∈ Zp be chosen at random and g be a generator
of G0. The DBDH assumption [5] states that no proba-
bilistic polynomial-time algorithm B can distinguish the tu-
ples (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple
(A = ga, B = gb, C = gc, e(g, g)z) with non-negligible ad-
vantage.

4. OUR CONSTRUCTION

4.1 Overview
As described previously, our scheme is to enhance CP-

ABE for achieving efficient attribute revocation in terms of
loads placed on the authority and users. The basic idea
of our construction is to combine the proxy re-encryption
technique with CP-ABE. Instead of building a new CP-ABE
scheme from scratch, we intend to enhance an existing con-
struction by extending it with abilities of proxy update of
secret key and proxy re-encryption of ciphertext. Our con-
struction is partially based on but not limited to Cheung et
al’s construction of CP-ABE [9].

Attribute and Access Structure In our construction,
attributes are represented by their index values and the at-
tribute universe is U = {1, 2, · · · , n} for a certain natural
number n. Each attribute would have three occurrences:
positive, negative, and “don’t care”. We just consider access
structures consisting of a single AND gate, i.e., the gate∧

ĩ∈I ĩ, where I denotes the set of attributes of interest and

ĩ is the literal of an attribute i, which can be positive (de-
noted by +i) or negative (denoted by −i). If an attribute
does not appear in the AND gate, its occurrence is “don’t
care”.

264

4.2 The Detailed Construction
As is defined in section 2.2, there are 7 algorithms in our

construction: Setup, Enc, KeyGen, ReKeyGen, ReEnc,
ReKey, and Dec. Now we present the construction for each
of them as follows.

Setup(1λ) First choose a bilinear group G0 of prime order
p with a generator g, and a bilinear map e : G0 × G0 → G1.
Next, select random numbers y, t1, · · · , t3n ∈ Zp. Then, gen-
erate the public parameter as: PK = (e, g, Y, T1, · · · , T3n),
where Y = e(g, g)y and Ti = gti for 1 ≤ i ≤ 3n. Ti, Tn+i,
and T2n+i are for the three occurrences of i, i.e., positive,
negative, and “don’t care”, respectively. The system master
key MK is: MK = (y, t1, · · · , t3n). Finally, initialize ver-
sion number as ver = 1 and publish (ver, PK). (ver, MK)
is witheld by the authority.

Enc(M, AS, PK) Note that AS is a single AND gate of
form AS =

∧
ĩ∈I ĩ, and assume M ∈ G1. The algorithm

chooses a random number s ∈ Zp and outputs the cipher-

text CT as: CT = (ver, AS, C̃, Ĉ, {Ci}i∈U), where ver is

current version number, C̃ = MY s, Ĉ = gs. For each i ∈ I,
Ci is T s

i if ĩ = +i; or T s
n+i if ĩ = −i. If i ∈ U\I, Ci = T s

2n+i.

KeyGen(MK, S) First choose a random number ri ∈ Zp

for each i ∈ U . Let r =
∑n

i=1 ri. User secret key is defined
as SK = (ver, S, D, D̄ = {Di, Fi}i∈U), where ver is current

version number, D = gy−r. For each i ∈ U , Fi = g
ri

t2n+i ,

and Di = g
ri
ti if i ∈ S, or Di = g

ri
tn+i otherwise. Note that

i /∈ S means negative occurrence of attribute i in S.

ReKeyGen(γ, MK) Each item i ∈ γ is defined to be within
the range of [1,2n]. Value less or equal to n means posi-
tive occurrence of the attribute, while value greater than n
represents the negative occurrence of attribute i − n. The
proxy re-key is computed as follows. For each i ∈ γ, ran-

domly choose t′i ∈ Zp and compute rki =
t′i
ti

. For each

i ∈ {1, · · · , 2n}\γ, rki = 1. Output proxy re-key as rk =
(ver, {rki}1≤i≤2n) where ver is current version number. In-
crease the system version number ver by 1 when everything
is done.

ReEnc(CT, rk, β) Denote the access structure of CT as
AS =

∧
ĩ∈I ĩ. Similar to γ, each item in β is also de-

fined to be within the range of [1,2n]. This algorithm di-
rectly outputs CT if CT and rk contain different version
numbers. Otherwise, re-encrypt CT as follows. For each
i ∈ β, C′

i = Crki
i if 1 ≤ i ≤ n, or C′

i−n = (Ci−n)rki

if n < i ≤ 2n. For each i ∈ U , C′
i = Ci if i /∈ β and

i + n /∈ β, or i /∈ I. Ciphertext is output as follows:
CT ′ = (ver + 1, AS, C̃, Ĉ, {C′

i}i∈U), where ver is the ver-
sion number in CT .

ReKey(D̄, rk, θ) Each item in θ is defined to be within
the range of [1,2n]. This algorithm returns with D̄ immedi-
ately if D̄ and rk contain different version numbers. Other-

wise, update D̄ as follows. For each i ∈ θ, D′
i = D

rk−1
i

i if

1 ≤ i ≤ n, or D′
i−n = (Di−n)rk−1

i if n < i ≤ 2n. For each
i ∈ U , D′

i = Di if i /∈ θ and i + n /∈ θ. It outputs as follows:
D̄′ = {D′

i, Fi}i∈U . ver in the corresponding user secret key
SK is increased by 1.

Dec(CT, PK, SK) If any two of CT , PK, and SK have
different version numbers, return ⊥. Otherwise, continue to
decrypt as follows. Suppose CT = (ver, AS, C̃, Ĉ, {Ci}i∈U),
SK = (ver, S, D, D̄ = {Di, Fi}i∈U), and denote AS by
AS =

∧
ĩ∈I ĩ. For each ĩ ∈ I, if ĩ = +i and i ∈ S,

e(Ci, Di) = e(gtis, g
ri
ti) = e(g, g)ris.

if ĩ = −i and i /∈ S,

e(Ci, Di) = e(gtn+is, g
ri

tn+i) = e(g, g)ris.

For each ĩ /∈ I,

e(Ci, Di) = e(gt2n+is, g
ri

t2n+i) = e(g, g)ris.
Ciphertext is decrypted as follows:

M = C̄/(e(Ĉ, D̂)
∏n

i=1 e(g, g)ris).

Its correctness can be verified easily.

4.3 CPA Security Proof
Now we prove the CPA security of our scheme. We show

the CPA security of our scheme by a theorem.

Theorem 1. If a PPT algorithm (the adversary A) wins
our CPA security game with non-negligible advantage ADVCPA,
we can use this algorithm to construct another PPT algo-
rithm B to solve the DBDH problem with advantage 1

2
ADVCPA.

Proof. In the DBDH game, the challenger chooses ran-
dom numbers a, b, c from Zp and flips a fair coin µ. If µ = 0,
set z = abc; If µ = 1, set z as a random value in Zp. B is
given (A, B, C, Z)=(ga, gb, gc, e(g, g)z) and asked to output
µ. To answer this challenge, B then simulates our CPA se-
curity game as follows.

Init The adversary A chooses the challenge access struc-
ture AS∗ =

∧
ĩ∈I ĩ, a version number ver∗, and ver∗ − 1

attribute sets {γ(1), γ(2), · · · , γ(ver∗−1)}, and submits them
to the challenger.

Setup The challenger B first generates the public key
of version 1 for A as follows. Y is defined as e(A, B) =
e(g, g)ab. For each i ∈ U , B randomly chooses δi, ζi, and ηi

from Zp. It outputs public parameters as follows.
For ĩ ∈ I, Ti = gδi , Tn+i = Bζi , and T2n+i = Bηi , if

ĩ = +i;
if ĩ = −i, Ti = Bδi , Tn+i = gζi , and T2n+i = Bηi ;

For ĩ /∈ I, Ti = Bδi , Tn+i = Bζi , and T2n+i = gηi .
Then, B generates ver∗ versions and answers ver∗ − 1

proxy re-key generation requests. Specifically, for each at-
tribute set γ(k), 1 ≤ k ≤ ver∗ − 1, generate a PK for that
version as follows:

for each element j ∈ γ(k), where 1 ≤ j ≤ 2n, randomly

choose rk
(k)
j from Zp. if 1 ≤ j ≤ n,

T
(k+1)
j = (T

(k)
j)rk

(k)
j , T

(k+1)
n+j = T

(k)
n+j , T

(k+1)
2n+j = T

(k)
2n+j ,

if n < j ≤ 2n,

T
(k+1)
j−n = T

(k)
j−n, T

(k+1)
j = (T

(k)
j)rk

(k)
j , T

(k+1)
n+j = T

(k)
n+j ,

where superscripts (k) and (k+1) denote the version num-
ber of each attribute set, re-key, and public key parameter.

For each element 1 ≤ j ≤ 2n, if j /∈ γ(k), set rk
(k)
j = 1,

and calculate public key components in the same way as

above. Finally, B returns rk(k) = (k, rk
(k)
1 , rk

(k)
2 , · · · , rk

(k)
2n)

to A.

265

Phase 1 Without loss of generality, we assume the ad-
versary A submits secret key query on a set S ⊆ U for
version k, 1 ≤ k ≤ ver∗. Since S does not satisfy the chal-
lenge access structure AS∗, we know there is a witness at-
tribute i ∈ I that either i ∈ S and ĩ = −i, or i /∈ S and
ĩ = +i. Without loss of generality, we assume i /∈ S and
ĩ = +i. B first chooses a random number r′j ∈ Zp for each
j ∈ U . Then, it sets rj = r′j · b for every j 6= i (non-
witness attribute), and rj = ab + r′j · b. Finally, it calculates
r = Σj∈Urj = ab + Σj∈Ur′j · b. Secret key components are
then returned as follows:

D = Πn
j=1B

−r′

j = g−Σn
j=1r′

j ·b = gab−r.
Consider that for any j ∈ U ,

T
(k)
j = (T

(1)
j)rk

(2)
j

·rk
(3)
j

···rk
(k)
j = T

Πk
i=2rk

(i)
j

j , and

T
(k)
n+j = (T

(1)
n+j)

rk
(2)
n+j

·rk
(3)
n+j

···rk
(k)
n+j = (Tn+j)

Πk
i=2rk

(i)
n+j ,

we denote R
(k)
j = Πk

i=2rk
(i)
j and R

(k)
n+j = Πk

i=2rk
(i)
n+j . For

each j ∈ U and j 6= i, Dj is calculated as follows.
Case 1. j ∈ S.

1) Dj = B

r′j

δj ·R
(k)
j = g

rj

δj ·R
(k)
j , if j ∈ I and j̃ = +j;

2) Dj = B

r′j

δj ·R
(k)
j = g

rj

δj ·R
(k)
j

·b
, if j ∈ I and j̃ = −j, or

j /∈ I;
Case 2. j /∈ S.

1) Dj = g

r′j

ζj ·R
(k)
n+j = g

rj

ζj ·R
(k)
n+j

·b
, if j ∈ I and j̃ = j, or

j /∈ I;

2) Dj = B

r′j

ζj ·R
(k)
n+j = g

rj

ζj ·R
(k)
n+j , if j ∈ I and j̃ = −j.

Di is calculated as:

Di = A

1

ζi·R
(k)
i · g

r′i

ζi·R
(k)
i = g

ab+r′i·b

ζi·R
k
i
·b = g

ri

ζi·R
(k)
i

·b .
For each attribute j ∈ U , Fj is calculated as follows. If

j 6= i, then

1) Fj = g

r′j
ηj = g

rj
ηj ·b , if j ∈ I;

2) Fj = B

r′j
ηj = g

rj
ηj , if j /∈ I;

Fi is calculated as follows:

Fi = A
1

ηi · g
r′i
ηi = g

ab+r′i·b

ηi·b = g
ri

ηi·b .

Challenge. The adversary submits two equal length mes-
sages M0 and M1. The challenger flips a random coin b, sets
C̃ = Mb · Z, and outputs the ciphertext CT ∗ as follows.

CT ∗ = (ver∗, AS∗, C̃, C, {Cδi·R
(ver∗)
i }i∈I∧ĩ=+i,

{Cζi·R
(ver∗)
n+i }i∈I∧ĩ=−i, {C

ηi}i/∈I).

Phase 2. Phase 1 is repeated.

Guess. A submits a guess b0 of b. If b0 = b, B will output
µ′ = 0, meaning that (A, B, C, Z) is a valid DBDH-tuple;
otherwise, B outputs µ′ = 1, indicating that (A, B, C, Z) is
just a random 4-tuple. In the case of µ= 1, the adversary
obtains no information about b. We thus have Pr[b0 6= b|µ =
1] = 1

2
. B just randomly guesses µ′= 1 when b 6= b0, we have

Pr[µ′ = µ] = 1
2
. In the case of µ= 0, the adversary obtains

an encryption of mb, and his advantage is ADVCPA by def-
inition. We thus have Pr[b = b0|µ = 0] = 1

2
+ ADVCPA.

Since B guesses µ′ = 0 whenever b = b0, we have Pr[µ′ =

µ|µ = 0] = 1
2

+ ADVCPA. The overall advantage of B in

the DBDH game is 1
2
Pr[µ′ = µ|µ = 0] + 1

2
Pr[µ′ = µ|µ =

1] − 1
2

= 1
2
(1
2

+ ADVCPA) + 1
2

1
2
− 1

2
= 1

2
ADVCPA.

5. CCA SECURITY CONSTRUCTION
We now proceed to discuss the construction of the cho-

sen ciphertext secure scheme. For IBE schemes, a common
practice of constructing a CCA secure scheme from a CPA
secure one is to generate one-time signature keys (Kv, Ks)
and sign the ciphertext with Ks with a strongly existentially
unforgeable signature scheme, while Kv is viewed as the mes-
sage receiver’s identity. This technique was proposed by
Canetti, Halvei, and Katz [7]. In [9], Cheung and Newport
applied the similar technique to CP-ABE and constructed
a CCA secure CP-ABE scheme from the CPA secure one.
Their construction defines an attribute for each bit in the
key space of Kv, each attribute having two occurrences for
its binary values. Each user secret key contains two compo-
nents for the both occurrences of each bit. Thereafter, these
attributes are treated similarly as other normal attributes.
For encryption, the encryptor chooses a pair (Kv, Ks) and
encrypts the message with the attributes for Kv in addition
to other normal attributes. The whole ciphertext is then
signed with Ks. The ciphertext along with the signature
is sent to receiver(s), who will verify the signature before
decryption.

In our work, it seems to be a contradiction to construct
a CCA secure scheme since we on one hand require the ci-
phertext to be non-malleable, and on the other hand give
the proxy re-key’s to proxy servers and allow them to re-
encrypt ciphertexts. However, in our scheme ciphertext
re-encryption is just limited to updating partial ciphertext
components to the latest version. Modification of the un-
derlying message or the access structure is not permitted.
In terms of non-malleability, we just need to prevent adver-
saries from modifying the message or the access structure.
Based on this observation, we adopt the same technique as
[9] but just sign on partial ciphertext components.

5.1 CCA Secure Construction
The seven algorithms in the CCA secure construction are

defined as follows, assuming that the signature verification
key Kv has w bits. Denote the set {1, 2, · · · , w} as W .

Setup(1λ) The same as the CPA secure construction ex-
cept that, here 2w extra attributes are defined for Kv. Now
the system master key is: MK = (y, t1, · · · , t3n, t3n+1, · · · ,
t3n+2w), and the public parameters are: PK=(e, g, Y , T1,
· · · , T3n, T3n+1, · · · , T3n+2w). Initialize the system wide
version number ver as 1 and publish (ver, PK). (ver, MK)
is kept by the authority.

Enc(M, AS, PK) AS is defined to be an AND gate as
before. The encryptor first chooses one-time signature key
pair (Kv, Ks), and a random number s ∈ Zp. M is encrypted

as: (ver, AS, C̃, Ĉ, {Ci}i∈U , {Ki}i∈W , Kv), where ver is cur-

rent version number, C̃ = MY s, Ĉ = gs. For each i ∈ I,
Ci = T s

i if ĩ = +i; or Ci = T s
n+i if ĩ = −i. If i ∈ U\I,

Ci = T s
2n+i. For each i ∈ W , Ki = T s

3n+i if the ith bit
of Kv is 0, otherwise, Ki = T s

3n+w+i. The encryptor then

266

signs on tuple (AS, C̃, Ĉ, {Ki}i∈W , Kv) with Ks, and ob-
tains a signature δ. Finally, the ciphertext of M is output
as CT = (ver, AS, C̃, Ĉ, {Ci}i∈U , {Ki}i∈W , Kv, δ).

KeyGen(MK, S) First choose a random numbers ri ∈
Zp for each i ∈ U

⋃
W . Let r =

∑w+n
i=1 ri. The secret

key is defined as SK = (ver, S, D, D̄ = {Di, Fi}i∈U , D̂ =

{D̂i,0, D̂i,1}i∈W), where D and D̄ are the same as the CPA

secure construction. D̂ is defined as: D̂i,0 = g
rn+i
t3n+i and

D̂i,1 = g
rn+i

t3n+w+i for each i ∈ W . Note that this definition
extends the one defined in section 2.2.

ReKeyGen(γ, MK) The same as the CPA secure construc-
tion.

ReEnc(CT, rk, β) Let CT be (ver, AS, C̃, Ĉ, {Ci}i∈U ,
{Ki}i∈W , Kv, δ). The re-encrypted ciphertext is output as

CT ′ = (ver + 1, AS, C̃, Ĉ, {C′
i}i∈U , {Ki}i∈W , Kv, δ), where

each C′
i is generated in the same way as the CPA secure

construction.

ReKey(D̄, rk, θ) The same as the CPA secure construc-
tion.

Dec(CT, PK, SK) The decryptor first verifies the signa-
ture δ. On failure, return ⊥; otherwise, proceed as in the
CPA secure construction.

5.2 CCA Security Proof
We first give a definition on CCA security of our scheme.

Then, we sketch the security proof.

CCA Game Let λ be a security parameter. We say that
our scheme is secure against chosen ciphertext attacks under
selective-structure model if no PPT adversary A can win the
following game with non-negligible advantage.

Init and Setup Same as the CPA security game.

Phase 1 The adversary is allowed to adaptively make poly-
nomial times (in λ) of any combination of secret key and
decryption queries.

Query for Secret Key The adversary submits an
attribute set S. The challenger returns a secret key SK for
S, given that S does not satisfies AS∗.

Query for Decryption The adversary A submits a
ciphertext CT . If CT is not a valid ciphertext, A loses the
game; otherwise, the challenger B returns the plaintext M .

Challenge Same as the CPA security game.

Phase 2 Same as Phase 1. Similar to [8], ciphertexts sub-
mitted for decryption are not allowed to be derivatives of
CT ∗. A derivative of CT ∗ is defined as any CT that can
be used to derive CT ∗ by repeatedly executing algorithm
ReEnc on proxy re-key’s rk(2), rk(3), · · · , rk(ver∗).

Guess The adversary A outputs his guess b0 of b.

The adversary A is advantage in winning this CCA secu-
rity game is defined as ADVCCA = Pr[b0 = b] − 1

2
.

Definition 2. (CCA SECURITY) We say that our scheme
is CCA secure if ADVCCA is negligible (in λ) for any poly-
nomial time adversary.

CCA security of our scheme can be shown by the following
theorem.

Theorem 2. If a PPT algorithm (the adversary A) wins
our CCA security game with non-negligible advantage ADVCCA,
we can use this algorithm to construct another PPT algo-
rithm B to solve the DBDH problem with advantage 1

2
ADVCCA,

assuming that the signature scheme is strongly existentially
unforgeable.

Proof. The challenger of the DBDH game generates the
tuple (A, B, C, Z) exactly as in the CPA security proof, and
then sends it to B. To answer this challenge, first choose
a signature key pair (K∗

v , K∗
s) and then simulates our CPA

security game as follows.

Init The same as the CPA security proof.

Setup In this phase, B generates (Y, T1, · · · , T3n) and (rk(2),

rk(3), · · · , rk(ver∗)) exactly the same as the CPA security
proof. B generates (T3n+1, · · · , T3n+2w) as follows. For
each i ∈ W , select random numbers φi, ψi ∈ Zp, and set
T3n+i = gφi and T3n+w+i = Bψi if the ith bit of K∗

v is
0, denoted by K∗

v,i = 0; otherwise, set T3n+i = Bφi and

T3n+w+i = gψi .

Phase 1. B answers queries for secret key and for decryp-
tion.

Case 1. Query for secret key. B executes in the same
way as Phase 1 of the CPA security game. When generat-
ing (Dj,0, Dj,1) for each j ∈ W , B deals in the same way as
non-witness attributes in U except that, Rk

j or Rk
n+j are no

longer needed when computing Dj,0 and Dj,1 since D̂ part
of a user secret key never needs update.

Case 2. Query for decryption. A submits a cipher-
text CT = (ver, AS, C̃, Ĉ, {Ci}i∈U , {Ki}i∈W , Kv, δ) for de-
cryption. B first verifies the signature δ with Kv. If the
signature is not valid, B terminates the DBDH simulation
game without answering the DBDH challenger and start
a new game. Otherwise, proceed. In this case, we know
Kv 6= K∗

v with overwhelming probability. Otherwise, Kv

can be used to successfully verify δ and the signature con-
tained in the challenge ciphertext, which is assumed to hap-
pen with negligible probability since the signature scheme
is strongly existentially unforgeable. In case of Kv 6= K∗

v ,
we can assume the jth bits of them are different. With-
out loss of generality, we assume that the bit of K∗

v is 0.
Therefore, Kj = T s

3n+w+j = gb·ψj ·s. B then calculates

e(Kj , A) = e(g, g)absψj = Y sψj . Since ψj is known to B,

he gives C̃/(e(Kj , A)
1

ψj) to A as the message M .

Challenge. The adversary submits two equal length mes-
sages M0 and M1. The challenger flips a random coin b, sets
C̃ = Mb · Z, and outputs the ciphertext CT ∗ as follows.

CT ∗ = (ver∗, AS∗, C̃, C, {Cδi·R
(ver∗)
i }i∈I∧ĩ=+i, {C

ηi}i/∈I ,

{Cζi·R
(ver∗)
n+i }i∈I∧ĩ=−i, {C

φi}i∈W∧K∗

v,i
=0, {C

ψi}i∈W∧K∗

v,i
=1).

Phase 2. Repeat Phase 1. The only restriction is that,
ciphertexts submitted for decryption are not allowed to be

267

derivatives of CT ∗. B is able to verify this by running algo-
rithm ReEnc on proxy re-key’s and CT ∗, and compare the
results with the ciphertexts he received from A.

Guess. The same as the CPA security proof.

6. DISCUSSION

6.1 Applicability to KP-ABE
Key Policy Attribute-Based Encryption (KP-ABE) [12]

is a sister technique of CP-ABE but the situation is re-
versed: In KP-ABE, ciphertexts are associated with at-
tributes, while user secret keys are defined with access struc-
tures on attributes. If only the ciphertext attributes satisfy
a user’s access structure, can he decrypt. When CP-ABE
is applicable in Role-Based Access Control like scenarios,
KP-ABE is suitable for applications such as pay-per-view
TV systems, in which user access privileges are defined over
content attributes and could be based on the prices they
paid. In these application scenarios, the issue of key revo-
cation also exists. Fig. 2. shows such an example, in which
a user currently is allowed to access any series with name
“Hero”, “Lost”, or “Dexter”’ provided by channel 4. The sys-
tem administrator now wants to disable the user’s access
privilege on series with name“Lost” for some reason (maybe
late payment). For this purpose, it is necessary to revoke
the corresponding component of the user’s secret key.

AND

Channel: 4

OR

Name: Hero

Name: Lost

AND

Channel: 4

OR

Name: Hero Name: DexterName: Dexter

Figure 2: An example application scenario of KP-

ABE.

Similar to CP-ABE, the basic construction of current KP-
ABE scheme [12] also defines a system master key compo-
nent ti for each attribute i. The corresponding public key
component is defined as Ti = gti . Encrypting a message
with attribute i means including a component T s

i into the
ciphertext, where s is a random number for this ciphertext.
In user secret key, the component for attribute i has the

form of g
qx(0)

ti , where qx(·) is a polynomial uniquely defined
for the user. Therefore, we can revoke a secret key com-
ponent in the same way as we did for CP-ABE, i.e., the
authority redefines the master key component as t′i and give
t′i
ti

to proxy servers as the proxy re-key. In the same way

as our CP-ABE scheme, proxy servers, which are honest by
our assumption, will use these proxy re-key’s to re-encrypt
ciphertexts stored on them and update secret keys for all but
the user for revocation. Proof of the new KP-ABE scheme
is similar to that of our CP-ABE scheme.

Large Universe Construction In addition to the ba-
sic construction, [12] also provides a KP-ABE construction
for large universe cases. One significant advantage of this
construction is that the number of public parameter compo-

nents is constant, no matter how many attributes the system
may have. In this construction, however, our technique of
generating proxy re-key’s for CP-ABE and the basic KP-
ABE scheme is not applicable any more. This is because
the definitions of public parameter components and user se-
cret key components are no longer in the same format as
before. In this construction, it selects n + 1 random points
from G1

4 and defines a function T to calculate the public
key component for attribute X 5 as:

T (X) = gXn

2 ·
∏n+1

i=1 t
∆i,N (X)

i ,
where g2 is another group element in G1, N = {1, 2, · · · , n+

1}, and ∆i,N (X) is the Lagrange coefficient. Ciphertext
component for each attribute i is still in the form of T s

i as
before. Each attribute has two components in user secret
key:

Di = g
qx(0)
2 · T (i)ri , and Ri = gri ,

where ri ∈ Zp is a random number of attribute i in the
user secret key. We refer to [12] for the detailed construction.

In this construction, we can not simply redefine the sys-
tem master key component ti to update the attribute i for
key revocation as before. Instead, we need to change the
construction of the Setup() algorithm of the original scheme
as follows. We assume the bit string for each attribute is
defined in a fixed format “(attribute description, version j)”.
The version number j of each attribute in the universe will
be published.

Setup(n) Choose a random number y ∈ Zp and let g1 =
gy. Next, choose a random element g2 from G1. Then, select
random numbers w1, w2, · · · , wn+1 from Zp. Define ti = gwi

2

for 1 ≤ i ≤ n + 1. Define function T as:

T (X) = gXn

2 ·
∏n+1

i=1 t
∆i,N (X)

i = g
Xn+p(X)
2 ,

where p(·) is a n degree polynomial defined by points
(1, w1), (2, w2), · · · , (n + 1, wn+1). The public parameters
are output as: PK = (g1, g2, t1, · · · , tn+1). The master key
MK = (y, w1, w2, · · · , wn+1).

Algorithms Encryption, Key Generation, and Decryption
are defined exactly the same as the original scheme. To en-
able the authority to generate proxy re-key’s, we define al-
gorithm ReKeyGen as follows.

ReKeyGen(γ,MK) γ is the set of attributes needing re-
definition. For each attribute X ∈ γ, assuming its pre-image
is a bit string “(attribute description, version j)”, now rede-
fine it as bit string “(attribute description, version j + 1)”.
We hence obtain H(attribute name, version j + 1) = X ′

6, where H() is a cryptographic hash function. Since hash
function H(·) is collision free, X ′ can not be used for any
other attributes. The proxy re-key for attribute X will be

output as rkX = (X′)n+p(X′)
Xn+p(X)

. The set of proxy re-key’s rk

for attributes in γ are sent to proxy servers.

Proxy servers, on receiving the proxy key’s, re-encrypt ex-
isting ciphertexts stored on them as follows.

4Following the definition of [12], we assume the bilinear map
is from G1 to G2, i.e., e : G1 × G1 → G2.
5X is generated by applying a collision resistant hash func-
tion H : {0, 1}∗ → Z

∗
p on the bit string representation of the

attribute.
6When the new version j+1 is published, encryptors will use
T (X ′) as the public component for encryption thereafter.

268

ReEnc(E, rk, β) For each attribute i ∈ β, update Ei as

Erki
i .

To update user secret key, proxy servers update Ri com-
ponents for users as follows.

ReKey(Ri, rki) Update Ri as R
(rki)

−1

i .

It is easy to verify that the updated user secret key will
be able to decrypt ciphertexts encrypted with updated at-
tributes if the ciphertext attributes satisfy the access struc-
ture of the secret key. Formal security reduction of this
scheme will be presented in the extended version of this pa-
per.

As compared to [4], our scheme places a minimal compu-
tation overhead on the authority, and is more suitable for ap-
plication scenarios in which the content provider, e.g., an in-
dividual person who himself/herself serves as the authority,
outsources contents on powerful but semi-trustable servers
such as cloud servers, and would like to manage his/her re-
sources via resource constrained devices, e.g., iPhone, any-
where and at any time. On the other hand, [4] is more
efficient in terms of the overall system overhead and is more
suitable for traditional applications in which most compu-
tational tasks are executed locally.

6.2 Application Considerations
Our scheme considers application scenarios of data shar-

ing in which data are encrypted and stored on semi-trustable
servers for sharing. In this scheme, the authority generates
proxy re-key’s whenever an attribute revocation event oc-
curs. Proxy re-key’s are then transmitted to proxy servers,
who will re-encrypt existing ciphertexts stored on them and
update user secret key components if necessary. For sim-
plicity of description, our scheme just considers one revoca-
tion event. Multiple revocation events are assumed to be
handled by repeatedly executing these operations. When
this assumption is convenient for theoretical analysis of the
scheme, it will cause efficiency issue in practice since proxy
servers have to re-encrypt ciphertexts stored upon each re-
vocation event. In practical systems, there could be a huge
number of files stored on servers, and the computation load
for re-encrypting them could be extremely heavy. On the
other hand, users are not necessary available for key update
upon each revocation event. In practical scenarios, users
may have missed many revocation events before they come
back to access the servers. To deal with attribute revocation
efficiently, we propose to enable proxy servers to handle re-
vocation events in an aggregative way, which further makes
lazy re-encryption [14] possible. For this purpose, proxy
servers keep a copy of a table for proxy re-key’s of historical
events as shown in Fig.3.

Version # att 1 att 2 · · · att n

k rk
(k)
1 rk

(k)
2 · · · rk

(k)
n

k − 1 rk
(k−1)
1 rk

(k−1)
2 · · · rk

(k−1)
n

· · · · · · · · · · · · · · ·

k − N rk
(k−N)
1 rk

(k−N)
2 · · · rk

(k−N)
n

Figure 3: Proxy re-key list

With this table, proxy servers do not need to re-encrypt
data files upon each revocation event. Instead, they can
just re-encrypt the data files when the files are accessed by
some user, i.e., in the fashion of lazy re-encryption. As-
suming the version number associated with the ciphertext
of a data file is k − i, updating it to the latest version k
just needs to call the ReEnc algorithm once with proxy re-

key (
∏i−1

j=0 rk
(k−j)
1 ,

∏i−1
j=0 rk

(k−j)
2 , · · · ,

∏i−1
j=0 rk

(k−j)
n). Unac-

cessed data files will never get re-encrypted. This modifica-
tion can aggregate operations for multiple revocation events
into one and save a lot of computation overload for proxy
servers from statistical point of view. One issue with this
method is that the storage overhead could be high if proxy
servers keep all the proxy re-key’s. In practical systems, we
can just keep the list for a reasonable time period and release
the storage burden on proxy servers.

User secret key update can be addressed in the same way.
However, proxy servers need to keep a revoked user identity
list for each attribute since a user may come back asking
for update of secret key components of attributes that were
previously revoked. Having these lists, proxy servers will
just update secret key components of attributes that are
still associated with the user. Recovering an attribute for a
user can also be realized by removing the user’s ID from the
list.

Att i IDi IDj · · · IDk

Figure 4: Revoked user ID list of attribute i

7. CONCLUSION AND FUTURE WORK
In this paper we addressed an important issue of attribute

revocation for attribute based systems. In particular, we
considered practical application scenarios in which semi-
trustable proxy servers are available, and proposed a scheme
supporting attribute revocation. One nice property of our
proposed scheme is that it places minimal load on author-
ity upon attribute revocation events. We achieved this by
uniquely combining the proxy re-encryption technique with
CP-ABE and enabled the authority to delegate most labori-
ous tasks to proxy servers. Our proposed scheme is provably
secure against chosen ciphertext attacks. In addition, we
also showed the applicability of our method to the KP-ABE
scheme. One interesting future work is to combine a secure
computation technique with our construction to guarantee
the honesty of proxy servers. Another direction for future
work is to allow proxy servers to update user secret key
without disclosing user attribute information.

8. ACKNOWLEDGMENTS
This work was supported in part by the US National Sci-

ence Foundation under grants CNS-0716306, CNS-0831628,
CNS-0746977, and CNS-0831963.

9. REFERENCES
[1] J. Anderson. Computer Security Technology Planning

Study. Air Force Electronic Systems Division, Report
ESD-TR-73-51, 1972.
http://seclab.cs.ucdavis.edu/projects/history/.

269

[2] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-Policy Attribute-Based Encryption. In
Proc. of SP’07, Washington, DC, USA, 2007.

[3] M. Blaze, G. Bleumer, and M. Strauss. Divertible
Protocols and Atomic Proxy Cryptography. In Proc.
of EUROCRYPT ’98, Espoo, Finland, 1998.

[4] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based
Encryption with Efficient Revocation. In Proc. of
CCS’08, Alexandria, Virginia, USA, 2008.

[5] D. Boneh and M. Franklin. Identity-Based Encryption
from The Weil Pairing. In Proc. of CRYPTO’01,
Santa Barbara, California, USA, 2001.

[6] S. Yu, K. Ren, W. Lou, and J. Li. Defending Against
Key Abuse Attacks in KP-ABE Enabled Broadcast
Systems. In Proc. of Securecomm’09, Athens, Greece,
2009.

[7] R. Canetti, S. Halevi, and J. Katz. Chosen Ciphertext
Security from Identity Based Encryption. In Proc. of
EUROCRYPT’04, Interlaken, Switzerland, 2004.

[8] R. Canetti and S. Hohenberger. Chosen-Ciphertext
Secure Proxy Re-Encryption. In Proc. of CCS’07, New
York, NY, USA, 2007.

[9] L. Cheung and C. Newport. Provably Secure
Ciphertext Policy ABE. In Proc. of CCS’07, New
York, NY, USA, 2007.

[10] R. H. Deng, J. Weng, S. Liu, and K. Chen.
Chosen-Ciphertext Secure Proxy Re-encryption
without Pairings. In Proc. of CANS’08, Berlin,
Heidelberg, 2008.

[11] S. D. C. di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Over-encryption:
Management of Access Control Evolution on
Outsourced Data. In Proc. of VLDB’07, Vienna,
Austria, 2007.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-Based Encryption for Fine-grained Access
Control of Encrypted Data. In Proc. of CCS’06,
Alexandria, Virginia, USA, 2006.

[13] S. Yu, K. Ren, and W. Lou. Attribute-Based
On-Demand Multicast Group Setup with Membership
Anonymity. In Proc. of SecureComm’08, Istanbul,
Turkey, 2008.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable Secure File Sharing on
Untrusted Storage. In Proc. of FAST’03, Berkeley,
California, USA, 2003.

[15] J. Li, K. Ren, B. Zhu, and Z. Wan. Privacy-Aware
Attribute-Based Encryption with User Accountability.
In Proc. of ISC’09, Pisa, Italy, 2009.

[16] X. Liang, Z. Cao, H. Lin, and J. Shao. Attribute Based
Proxy Re-encryption with Delegating Capabilities. In
Proc. of ASIACCS’09, Sydney, Australia, 2009.

[17] S. Yu, K. Ren, and W. Lou. Attribute-Based Content
Distribution with Hidden Policy. In Proc. of
NPSEC’08, Orlando, Florida, USA, 2008.

[18] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters.
Secure Atrribute-Based Systems. In Proc. of CCS’06,
New York, NY, USA, 2006.

[19] A. Sahai and B. Waters. Fuzzy Identity-Based
Encryption. In Proc. of EUROCRYPT’05, Aarhus,
Denmark, 2005.

270

