
Ad Hoc Networks 9 (2011) 788–798
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
R-Code: Network coding-based reliable broadcast in
wireless mesh networks q

Zhenyu Yang ⇑, Ming Li, Wenjing Lou
Dept. of ECE, Worcester Polytechnic Institute, Worcester, MA 01609, United States
a r t i c l e i n f o

Article history:
Received 8 October 2009
Received in revised form 17 June 2010
Accepted 8 September 2010
Available online 29 September 2010

Keywords:
Wireless mesh networks
Network coding
Reliable broadcast
1570-8705/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.adhoc.2010.09.009

q The preliminary version of this paper appeared i
⇑ Corresponding author. Tel.: +1 508 831 5649.

E-mail addresses: zyyang@ece.wpi.edu (Z. Yang)
(M. Li), wjlou@ece.wpi.edu (W. Lou).
a b s t r a c t

Broadcast is an important communication primitive in wireless mesh networks (WMNs).
Applications like network-wide software updates require reliable broadcast to ensure that
every node in the network receives the information completely and correctly. With under-
lying unreliable wireless links, a key challenge in implementing reliable broadcast in
WMNs is to achieve 100% information reception rate at every node with high communica-
tion efficiency and low latency. Recently, network coding has emerged as a promising
coding scheme in terms of communication efficiency especially for one to many communi-
cation patterns. In this paper, we put forward R-Code, a network coding-based reliable
broadcast protocol. We introduce a guardian–ward relationship between neighboring
nodes that effectively distributes the responsibility of reliable information delivery – from
the global responsibility of the source to the localized responsibilities of guardians to their
corresponding wards. We use a link quality-based minimum spanning tree as a backbone
to guide the selection of guardians adaptively and the transmission of coded packets
accordingly. Opportunistic overhearing is also utilized to improve the performance of the
protocol. Extensive simulation results show that R-Code achieves 100% packet delivery
ratio (PDR), while enjoying significantly less transmission overhead and shorter broadcast
latency, compared with a state-of-the-art reliable broadcast protocol, AdapCode.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Wireless mesh network (WMN) emerges as a promising
technique to provide high-bandwidth Internet access to a
large number of mobile devices in a specific area. Broad-
cast is an important function in WMNs. For example, it is
necessary for software updates which may happen at the
initial deployment and maintenance period, or is used in
multimedia services like video/audio downloading. A key
requirement of these applications is to strictly guarantee
100% packet delivery ratio (PDR), which means every node
has to download every bit of the broadcasted file. In
addition, efficiency is another important concern. Since
. All rights reserved.

n Globecom 2009 [1].

, mingli@ece.wpi.edu
other normal unicast traffics may exist in the network at
any time, broadcast applications should have good coexis-
tence with these traffics, which translates into consuming
minimal amount of network bandwidth and disseminating
the file with low latency.

It is nontrivial to design an efficient reliable broadcast
protocols for real WMNs. The fundamental challenge
comes from the unreliable nature of the wireless link [2],
which is due to packet losses caused by channel fading
and interferences. In order to guarantee 100% PDR with
those unreliable links, some previous schemes [3,4] use
automatic repeat request (ARQ) technique, which requires
the receivers to provide explicit feedbacks of the packet
reception status to the source. However, this will cause
‘‘ACK implosion” problem which may incur a large amount
of redundant transmissions. Other schemes [5–7] combine
ARQ with forward error correction (FEC) technique to re-
duce the transmission overhead while still guaranteeing

http://dx.doi.org/10.1016/j.adhoc.2010.09.009
mailto:zyyang@ece.wpi.edu
mailto:mingli@ece.wpi.edu
mailto:wjlou@ece.wpi.edu
http://dx.doi.org/10.1016/j.adhoc.2010.09.009
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798 789
100% PDR. Yet, these technique consider the wireless link
as point-to-point, and neglect the fact that wireless med-
ium is broadcast in nature. This leads to duplicate trans-
missions at intermediate nodes, which are not efficient
enough.

Recently, network coding (NC) has been proposed as an
effective technique to increase the network bandwidth
efficiency [8]. In contrast to FEC, NC gives intermediate
nodes the ability of randomly encoding different packets
received previously into one output packet. Thus, although
multiple intermediate nodes may receive the same packet,
they will broadcast different re-coded packets that are lin-
early independent with each other with high probability.
Each of these re-coded packets can benefit other nodes
that overhear it, which avoids the duplicate transmissions.
Theoretical analysis has demonstrated that NC is able to
approach the multicast and broadcast capacity in multi-
hop wireless networks [9,10]. Due to the high complexity
of implementing network coding, practical NC-based
broadcast schemes have also been proposed [11–16],
where NC is shown to have a noticeable gain in bandwidth
efficiency. However, most of these schemes only provide
reliability with best effort rather than guaranteeing 100%
PDR, with the exception of AdapCode [13] and Pacifier
[16]. However, AdapCode is purposefully designed for
wireless sensor networks and is not efficient when di-
rectly applied into WMNs. While MORE and Pacifier fo-
cuses on multicast in WMNs, they do not consider to
exploit the specific characteristic of broadcast, that is,
every node has to receive the whole file. In fact, when a
node has received a certain amount of information, it
can be regarded as a temporary source, which can guaran-
tee the reliable reception of its neighbors in an efficient
way.

In this paper, we propose R-Code, an efficient distrib-
uted Reliable broadcast protocol in WMNs based on net-
work Coding which guarantees 100% PDR. The core idea
of R-Code is to establish a guardian–ward relationship be-
tween neighboring nodes, so that the global responsibility
of the source to ensure the reliable reception of all the
nodes in the network is distributed to all the guardians.
This is because a guardian is a temporary source that is
much closer to its wards than the original source, thereby
it can guarantee their reliable reception of the file more
efficiently. A link quality-based minimum spanning tree
is constructed to guide the selection of guardians and pack-
et transmissions accordingly. A guardian is the best node in
a ward’s neighborhood to ensure the reliable reception of
the ward with the least number of transmissions. The
guardian–ward relationship is adaptively maintained
throughout the broadcast session to exploit the benefit of
opportunistic overhearing. In addition, intra-flow NC is
adopted to further reduce the total number of transmis-
sions and simplify the coordination between multiple
transmitters. Moreover, R-Code applies a source rate limit-
ing mechanism to alleviate the collisions in the network.
We evaluate R-Code and compare it with AdapCode by
extensive simulations. The simulation results show that
R-Code uses up to 15% less number of transmissions and
65% shorter broadcast latency than that in AdapCode to
disseminate the same file.
The rest of the paper is organized as follows: we give re-
lated work in Section 2. In Section 3, we describe the pre-
liminaries. The analysis of existing schemes is presented in
Section 4. In Section 5, we introduce the design of R-Code
protocol in detail. Section 6 presents the simulation results
and Section 7 wraps up the paper.
2. Related work

Broadcast in multi-hop wireless networks has been
studied for decades. From the perspective of reliability,
those proposed schemes can be divided into two catego-
ries: (1) schemes that provide reliable broadcast services
with best effort, a good survey of which can be found in
[17]; (2) schemes that guarantee 100% PDR strictly. Some
of them use ARQ technique [3,4], where the source re-
quires feedbacks from all the receivers, leading to the
well-known ACK implosion problem and also incurring
large amount of redundant transmissions. Others combine
FEC with ARQ [5–7], which can increase the throughput.
However, all these schemes do not explicitly take advan-
tage of the broadcast nature of wireless medium, and thus
suffer from duplicate transmissions.

Recently, network coding has been applied to broadcast
in multi-hop wireless networks. From the theoretical as-
pect, Lun et al. [9] prove that random linear network
coding can be used to construct a capacity-approaching
scheme for multicast over lossy wireless networks. Adjih
et al. [10] show that by using a simple broadcast rate
selection strategy, NC can ensure that every transmission
is useful with high probability. Fragouli et al. [12] study
NC-based efficient broadcast from both theoretical and
practical point of views. They show that NC is able to in-
crease the bandwidth/energy efficiency by a constant
factor in fixed networks. They also propose a probabilistic
forwarding-based algorithm for random networks which
shows significant overhead improvement over probabilis-
tic flooding. However, their algorithm does not guarantee
100% PDR.

From the aspect of protocol design, MORE [11] is the
first practical NC-based routing protocol that achieves high
throughput and guarantees 100% PDR, for both unicast and
multicast sessions. The main idea of MORE is to combine
opportunistic routing [18] with network coding, which
eliminates the need of complicated coordination mecha-
nism between multiple forwarders in pure opportunistic
routing. However, MORE is inefficient when applied to
multicast, since almost every node in the network may be-
come a forwarding node (FN), which can cause heavy con-
gestion [16]. Moreover, due to the constraint on the
encoding/decoding complexity, the source has to divide
the file into batches and transmit them sequentially. In
particular, the source works in a stop-and-wait fashion,
which means it needs to wait till a batch is received by
all receivers before moving to the next batch. This makes
MORE suffer from the ‘‘crying baby” problem [19]. Namely,
when one receiver has poor connection to the source, try-
ing to ensure 100% PDR of this receiver will make other
receivers wait unnecessarily which can heavily degrade
the performance of the whole protocol.

1 Each node will broadcast beacon messages every T seconds to estimate
the link qualities to its neighbors.

790 Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798
In order to address those weaknesses of MORE, Koutso-
nikolas et al. propose Pacifier [16], a high-throughput, reli-
able multicast protocol. In Pacifier, the source builds a
shortest-ETX [18] tree, which is the union of all the short-
est-ETX paths from the source to each receiver, to guide
the multicast process. Since only non-leaf nodes of the tree
are selected as FNs, the number of forwarding nodes is re-
duced significantly compared with MORE. Similar to
MORE, Pacifier also applies intra-flow network coding
and lets the source assign a TX_credit for each FN. This
TX_credit is the expected number of transmissions this FN
should make for each coded packet it receives from an up-
stream FN in order to ensure that each of its children re-
ceives at least one packet. To solve the crying baby
problem, Pacifier lets the source send batches of packets
in a round-robin way rather than the stop-and-wait fash-
ion adopted in MORE. It also applies a source rate limiting
mechanism to further reduce the congestion. However,
both MORE and Pacifier are source routing protocols,
which includes the list of FNs and their TX_credits in the
header of each transmitted packet. This makes them less
scalable. Moreover, they do not exploit the specific charac-
teristic of broadcast session and each receiver’s reliable
reception has to be guaranteed by the source through
end-to-end ACKs, which is inefficient.

AdapCode [13] is a reliable broadcast protocol which is
used for code updates in wireless sensor networks. Because
we will compare R-Code against AdapCode in our evalua-
tion, a brief overview of its two major components is given
below.

2.1. Compressed forwarding

AdapCode works in a similar way like probabilistic for-
warding. However, the forwarding is based on batch rather
than single packet. That is, each node only transmits pack-
ets after receiving the whole batch. For a received batch
which contains k packets, k/N coded packets is transmitted.
The number N is called the ‘‘coding scheme”, which is se-
lected adaptively according to the number of neighbors.
In this way, Adapcode reduces the number of transmis-
sions significantly compared with pure flooding.

2.2. ‘‘Timer + NACK” mechanism

AdapCode ensures 100% PDR by a Timer + NACK
mechanism, which runs as follows: each node i keeps a
count-down negative ACK (NACK) timer and this timer will
be restored to initial value once the node receives a packet.
When the NACK timer counts to 0 and i still does not get en-
ough packets for decoding, it broadcasts a NACK to request
for the needed packets. Each of i’s neighbors that overhears
this NACK and possesses those required packets, is eligible
to respond. In order to reduce the risk of unnecessary
simultaneous responses, all those eligible responders will
go through a coordination process. That is, each of them de-
lays for a random period of time before responding to see if
any other node is replying to this NACK. If no reply is heard
during this period, it will respond to this NACK by sending
all the requested packets. AdapCode also adopts a ‘‘lazy
NACK” mechanism to reduce the number of NACKs, which
requires each node to reset its NACK timer to avoid sending
duplicate NACK if it overhears another one.
3. Preliminaries

3.1. Network model

The WMN considered in this paper consists of a number
of wireless mesh routers that communicate with each
other by radio transmission. Those mesh routers are static
but not energy limited. The WMN connects to the Internet
through some gateway routers. The broadcast application
is one-to-all, where a gateway router is always the source
that wants to disseminate a file to all the other routers in
the WMN. The WMN is modelled as a weighted undirected
graph G(V, E), where V is the set of nodes (mesh routers)
and E is the set of links. Two nodes i and j are considered
to be connected if wi,j P wthreshold, where wi,j is the weight
of link (i, j) and wthreshold is a given threshold value. wi,j is
defined as the expected transmission count (ETX) [18] be-
tween i and j.1 We also assume that for one transmission,
the packet losses in different receivers are independent [20].

3.2. Network coding

We use intra-flow random linear network coding in this
paper. In order to reduce the packet header overhead and
encoding/decoding complexity, the source divides the
broadcast file into small batches and send them sequen-
tially. Each batch contains k original packets, denoted as
pi, i = 1,2, . . . ,k. The source keeps broadcasting coded pack-
et of the current batch until all the receivers decode this
batch successfully, then it moves to the next batch. We
choose k to be 32 in our scheme, which is the same as in
[11,16]. Each coded packet x is a linear combination of all
the packets in the batch: x ¼

Pk
j¼1ajpj, where haji is the

encoding vector. Each aj is randomly selected from a Galois
Field GF(2q). We choose q to be 8 in our scheme, the same
as in [11,16]. Every coded packet in transmission includes
the encoding vector in the packet header. When a node re-
ceives a packet, it checks if the encoding vector of this
packet is linearly dependent with all the other encoding
vectors of the packets received previously. If so, this packet
is discarded since the information it carries can be deduced
from those already received packets; otherwise, this packet
is called an innovative packet and stored in a buffer. When
transmission opportunities appear, an intermediate node
broadcasts coded packets generated by the packets stored
in the buffer currently. Once a node receives k such innova-
tive packets, it can decode this batch to retrieve all the ori-
ginal packets by doing Gaussian elimination, whose
computational complexity is O(k3).
4. Existing schemes analysis

In this section, we carry out a thorough analysis of Pac-
ifier and AdapCode.

Fig. 1. A simple example of AdapCode. The packet delivery probability of
each link is given.

2 The calculation is based on expected values in all the examples in this
paper.

3 The probability that B coincidentally possesses all the 8 required
packets is quite small, we ignore it here for the convenience of analysis.

4 A covers B means A has the responsibility of ensuring B’s reliable
reception.

Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798 791
4.1. Pacifier

In MORE and Pacifier, the selection of FNs and the calcu-
lation of credit for each FN are both based on ETX-metric.
As stated in [21], this makes their performance heavily de-
pends on the accuracy of the link quality measurement.
Unfortunately, with currently widely used measurement
mechanisms which are based on periodical hello packets,
the precise link quality measurement can only be obtained
with very high overhead, which is not applicable in
practice.

Moreover, although Pacifier addressed the crying baby
problem by letting the source send batches in a round-
robin fashion, within the transmission of the same batch,
it still suffers from the ‘‘ACK delay” problem [14]. That is,
during the time between the ACK is sent from the receiver
and it is received by the source, those coded packets sent by
the source for the current batch are, in fact, unnecessary.

To solve this problem, Pacifier lets the source maintain
a counter CSi

for each batch i. CSi
is the expected number of

packets the source need to send to guarantee that at least
one of the receivers receives the whole batch successfully.
CSi

decreases by one after each of the source’s transmis-
sion. The source moves to the next batch either when it re-
ceives an ACK or when CSi

reaches zero. However, since the
calculation of CSi

is based on the link quality measurement,
the performance of this mechanism is also quite sensitive
to the accuracy of those estimations.

We can see that the ACK delay problem is caused by the
requirement of end-to-end ACKs (from the receiver to the
original source), which can be further ascribed to that, in
Pacifier, the source has to directly guarantee the reliable
receptions of every node. In detail, since all the selected
FNs in Pacifier only act as forwarders, which passively re-
lay what they received from upstream nodes. For a given
node i that still needs more packets, only the original
source can actively inject the required packets into the net-
work which then are relayed by those FNs to the receiver.
Thereby the original source has to take the responsibility of
ensuring 100% PDR for all the nodes.

However, since in broadcast, every node has to receive
the whole file reliably sooner or later, a FN can also play
the role of a temporary source after receiving the whole
file. Thus for a given node i that still needs more packets,
if some neighbor of i is a temporary source, i can get pack-
ets more efficiently from this temporary source than from
the original source. In Section 5 we will show that by tak-
ing advantage of those temporary sources, we can design a
reliable broadcast scheme which not only avoids ACK delay
problem, but also does not require accurate link quality
measurement.

4.2. AdapCode

In AdapCode, each eligible responder has the responsi-
bility of replying to the overheard NACK by sending those
required packets. In order to avoid that some nodes are too
heavily loaded to die out quickly, which can potentially
disconnect the wireless sensor network, AdapCode designs
a random selection mechanism for the NACK’s responder
which makes every eligible responder has the same prob-
ability to reply. However, we argue that this random selec-
tion mechanism makes AdapCode inefficient for WMNs.
This could be illustrated by a simple example.

Fig. 1 presents a scenario of local broadcast process,
where node A just decoded a batch and tries to disseminate
it to its neighbors. For convenience, we let the batch size to
be 10 and the coding schemes of all the nodes to be 1,
which means A will transmit 10 coded packets for this
batch. Thus, B, C will receive 8 and 2 packets,2 respectively.
Since C has poorer connection to A, it will receive a packet
with longer time interval expectedly which causes its
NACK timer to fire earlier. Thus, it firstly sends out NACK,
which in turn suppresses B’s NACK because of the lazy
NACK mechanism. In this NACK, C indicates the require-
ment of 8 more packets for successful decoding. Node A,
as the only 3 eligible responder now, replies to this NACK
by transmitting 8 packets. Because of the broadcast nature
of wireless transmissions, B can also overhear these packets
and obtain enough packets to decode the batch successfully.
After decoding the whole batch, B will broadcast 10 coded
packets according to the coding scheme, from which C can
overhear 5 more packets. Now C has received 2 + 8 �
0.2 + 10 � 0.5 = 8.6 packets, which is still not able to decode
the batch. When its NACK timer fires again and sends an-
other NACK, both A and B are eligible responders now. The
total number of transmissions of this broadcast process is
32.9.

However, since the link quality of (B, C) is better than
that of (A, C), if we let A cover 4 B at first and then B cover
C deterministically, the total number of transmissions re-
quired is 27.5, which is more efficient. Since in practice, a
broadcast session will experience similar situations quite of-
ten, we explicitly take the link quality into consideration in
the design of R-Code.
5. R-Code design

5.1. Idea

The basic idea of R-Code is to distribute the responsibil-
ity of reliable information delivery from the original source
to some selected nodes, called guardians. A guardian se-
lects several nodes from its neighbors, called wards, and
ensures the reliable reception of those wards. In order to

Fig. 2. A simple example to show the intuition of R-Code. The weight of each link is given.

Table 1
Comparison between pacifier and R-Code.

Node ID Number of transmissions Broadcast latency

Pacifier R-Code Pacifier R-Code

S 3k 1k 0 0
A 1k 1k 1 1
B 2/3k 2/3k 2 2
C 7/9k 7/9k 8/3 8/3

792 Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798
promise that every node could be covered by a local guard-
ian efficiently, R-Code uses a link quality-based minimum
spanning tree as a backbone to guide the selection of
guardians and wards.

In particular, the parent–child relationship between the
node pairs in the tree can be translated into guardian–
ward relationship. Therefore the original source only cov-
ers its children by keeping sending packets until get posi-
tive ACKs from all of these children. Upon receiving
packet, each non-leaf child sends independently coded
packets. A child stops sending only after receiving positive
ACKs from all its children. This hop-by-hop cover process
goes on until all the nodes receive this whole file reliably.
Since these guardian–ward relationships are based on
MST, which ensure that each node (except for the original
source) will be assigned unique guardian, 100% PDR for all
receivers are guaranteed. Also since all the ACKs only tra-
vel one hop distance, the ACK delay problem is avoided.
Moreover, the optimal property of MST ensures each ward
can always choose the best neighbor to be its guardian,
avoiding the inefficiency of AdapCode. In addition, since
R-Code defines specific guardian–ward relationship be-
tween neighboring node, it can use positive ACK rather
than NACK adopted in AdapCode, which can also reduce
the broadcast latency.

We use an example to explain the intuition underlying
R-Code and compare the performance of R-Code with
Pacifier. Without loss of generality, we assume the time
is divided into slots and each transmission only happens
at the beginning of a slot. Since every node has to send
an ACK after receiving the packet, we ignore the cost of
those ACKs for both protocols, which does not affect the
comparison results. The broadcast latency is the number
of slots from the time when the packet is broadcast firstly
by the source to the time when it is received by the
receiver.5

Fig. 2 presents a network, which consists of 6 nodes. S is
the source and wants to broadcast a batch reliably, the size
of which is k. If we build the broadcast tree like Pacifier
does, which is to combine all the best unicast paths from
source to every other nodes, then we obtain the tree that
5 For the simplicity of analysis, we calculate the broadcast delay for one
receiver at a time.
is shown in Fig. 2a with bold lines. The numbers of trans-
missions generated by every node are shown in Table 1
and the average number of transmissions is 0.91k. How-
ever, we observe that E is not covered by its best neighbor.
For example, it can get a packet from D with two transmis-
sions, which is more efficient than getting it directly from
the source S. In a comparison, MST can make each node to
be covered by its best neighbor, which is shown in Fig. 2b
with bold lines. Now the average number of transmissions
needed is 0.65k, which is reduced by almost 30%.

However, this gain comes with cost in average broad-
cast latency, which increases about 7%, from 2.02 to 2.17.
This tradeoff between the number of transmissions and
broadcast latency reflects the difference of goals between
R-Code and Pacifier. That is, the primary goal of R-Code is
to minimize the total number of transmissions while that
of Pacifier is to achieve higher throughput, which, for a give
file, can be translated into shorter broadcast latency. For
this reason, we will not compare them in the evaluation
part.

5.2. Design

R-Code works on top of the IP layer and the packet
header format is shown in Fig. 3, which contains a type
field that identifies data packet from control packet, the
source’s IP address, broadcast session id, batch index, the
total number of batches for the file and code vector, which
exists only in data packet and indicates the coefficients
based on which the coded packet is generated from the ori-
ginal packets in this batch.
D 0 4/9k 31/9 31/9
E 0 0 3 35/9
Avg. 0.91k 0.65k 2.02 2.17

Fig. 3. R-Code packet header format.

Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798 793
5.2.1. Basic scheme
Generally, R-code can be divided into two stages. (1)

Initialization. During this stage, a distributed algorithm
[22] is applied to construct a MST.6 During the whole
broadcast session, this MST is considered to be fixed. As sta-
ted in Section 3.2, the source divides the file into batches
with size of k and broadcasts those batches in a round-robin
fashion to avoid crying baby problem.

For each batch, each node i initially selects its parent in
the MST as guardian, denoted as Gi. As the broadcast ses-
sion goes on, for some specific parent–child pair, their
guardian–ward relationship maybe reversed.7 However,
we note that each node always has only one guardian at
any time, either its parent or its child.

(2) Broadcast. During this stage, the source keeps send-
ing coded packets generated from the current batch. When
a node i receives a packet, it firstly checks whether this
packet is innovative. If not, the packet is discarded; other-
wise, i buffers this innovative packet and runs Gaussian
elimination to check if it has gathered enough packets for
decoding the whole batch. If not, it continues to keep silent
and waits for more packets; else if i decodes the whole
batch, it sends an ACK back to its guardian Gi by unicast.
Then, if i is currently not in the process of disseminating
some other previously decoded batch, it begins to play
the role of guardian for its wards and keeps sending coded
packets of this batch. Each guardian also works in a round-
robin fashion to disseminate those successfully decoded
batches received currently. After receiving ACKs from all
the wards for a specific batch, the guardian will eliminate
this batch from its buffer.
5.2.2. Dynamically maintain the guardian–ward relationship
In the initialization stage, selecting the parent to be

guardian for its children is based on the expectation that
the parent is closer to the original source and thus will re-
ceive the whole batch ahead of the children. However,
since a node i can overhear packets not only from parent,
but also from ancestors and siblings due to the broadcast
6 In R-Code, the MST only need to be built up for once and can be shared
by multiple broadcast sessions, this is different from Pacifier whose
multicast tree structure needs to be constructed for every multicast session
and reconstructed during the session when some receiver receives one
batch successfully.

7 Parent–child relationship is defined for MST which is fixed during the
life time of the tree structure. However, guardian–ward relationship is
defined according to the proceed of the broadcast session, which will be
dynamically adjusted.
nature of wireless transmissions, it could happen that i
gets the whole batch successfully before its parent. In this
case, if wi;Gi

is less than wGi ;GGi
, which means that node Gi

can be covered by i with less number of transmissions than
be covered by GGi

, the better choice for Gi is to take i as the
new guardian. We adaptively adjust the guardian–ward
relationship to capture this opportunistic overhearing gain.
This can be done by sending two notification packets to i
and GGi

separately by unicast. Otherwise, if wi;Gi
is greater

than wGi ;GGi
, the guardian–ward relationship between GGi

and Gi keeps untouched.
A simple example is shown in Fig. 4 to illustrate this

adjusting process.The network consists of four nodes and S
is the source. The MST is indicated by bold links in Fig. 4a.
In the initialization stage, each node is assigned a guardian,
GA is S, GB is A and GC is B, as illustrated by arrows in Fig. 4b.
Suppose the batch size is k. If the guardian–ward relation-
ship is fixed, both S and A need to transmit 3k packets to
broadcast this batch, totally 6k number of transmissions.
However, we notice that after A’s first k transmissions, C is
expected to receive the whole batch successfully. Since
wC,B = 1/3 � wA,B, then B chooses A as its new guardian, as
shown in Fig. 4c. C needs to transmit another 2k times to fin-
ish the broadcast session. The total number of transmissions
is 5k, which is 17% less than keeping the guardian–ward
relationship fixed. The extra cost for this change is only 2
control packets, from B to A and C separately. Since the com-
mon value for k is 32 or 64, it worths the effort to dynami-
cally maintain the guardian–ward relationship.

Moreover, this dynamic mechanism makes the initializa-
tion of guardian–ward relationship less critical. In specific,
even the .measuring of the link qualities are not very precise
which leads to a sub-optimal MST being built at the initial-
ization stage, R-Code can still keep high performance during
the broadcasting process. In another word, the performance
of R-Code is not sensitive to the accuracy of link quality
measurement, in sharp contrast with Pacifier.

5.2.3. Source rate limiting
The importance of source rate limiting, through which

the contention level of the network can be reduced, has al-
ready been shown in recent studies [23]. Pacifier applies a
simple backpressure-based rate limiting by exploiting the
broadcast nature of wireless transmissions. The basic idea
is to let the source wait before sending the next packet un-
til it overhears that the child has already forwarded the
previous packet it sent. AdapCode’s approach is to let the
source wait for a given period of time TbatchInterval, after fin-
ishing the current batch and before starting the next batch.
Moreover, each node has to backoff for a random period of
time before transmitting each packet. This time is uni-
formly chosen between 10 ms and 74 ms.

However, the situation in R-Code is different. Because
now besides the original source, other guardians also gener-
ate packets actively rather than passively forwarding. Thus,
R-Code can be considered as a multiple source broadcast
scheme, which is different from flow-based Pacifier and
AdapCode. Those backpressure-based approaches, which
is derived from flow theory, is not directly applicable.

R-Code applies a simple rate limiting approach to all the
guardians in the network. For a specific guardian, it has to

Fig. 4. A simple example of dynamically maintaining the guardian–ward relationship.

794 Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798
backoff a random period of time before each transmission,
the range of which should be proportional to the number
of concurrent transmitters this node knows in the neigh-
borhood. For example, in an area with large number of con-
current transmitters, the waiting time should be longer in
order to reduce the probability of collision; otherwise each
transmitter waits for shorter time for fast dissemination.
We apply the moving weighted average (MWA) [24] meth-
od to determine the average number of transmitters: avg-
Transmitter = a � avgTransmitter + (1 � a) � curTransmitter,
where the curTransmitter is the number of concurrent
transmitters that the node knows during the previous hello
packet interval. The value of a should be determined
according to the traffic stability of the network. Since most
of the nodes in R-Code will be guardian for some batch
during the whole broadcast session and the topology of
WMN is stable, the number of transmitters among the
neighbors of each node does not change often. Thus, we
choose a = 0.8 in our simulations. The wait period of time
is uniformly chosen between TpktInterval � 0.5 � avgTrans-
mitter and TpktInterval � avgTransmitter. TpktInterval is called
packet broadcast interval, the value of which should be
determined by the current traffic load in the network.
We will evaluate the performance of various TpktIntervals in
the following section. Note that this approach is different
from what is adopted by AdapCode, where the chosen
range of the random waiting time is identical to all the
nodes and the local environment is not taken into
consideration.
Table 2
Optimal coding schemes.

Average number of neighbors 0–5 5–8 8–11 11–

Best coding scheme N = 1 N = 2 N = 4 N = 8
6. Performance evaluation

We evaluate the performance of R-Code and compare it
with AdapCode through extensive simulations. Since
AdapCode is purposefully designed for wireless sensor net-
works, for fairness, we slightly modify it to be applied in
WMNs. (1) In our implementation of AdapCode, we let
the nodes transmit coded packets generated by linear com-
bination of the whole batch rather than a portion of it. As
claimed in [13], this could make AdapCode have better per-
formance on bandwidth efficiency with the cost of higher
computation overhead for encoding and decoding. (2) We
let the responder of NACK send coded rather than original
packets, which can benefits other nodes which overhear
these packets, besides the sender of the NACK. (3) The
range of the random backoff time is selected the same as
R-Code does, which is more adaptive. (4) We also choose
other parameters like batch size, the Galois field size,
etc., to be the same as R-Code. Note that all those modifi-
cations make AdapCode performs better in WMN than its
original version.
6.1. Simulation settings

We use Glomosim simulator in our simulation. The net-
work consists of a 7 � 7 grid of static nodes. We choose the
grid size to be 200 m and 250 m, where the former simu-
lates a relatively dense network and the latter simulates
a relatively sparse network. The average radio transmis-
sion range is 317m. Note that the WMN we considered in
this paper consists of only routers, which are usually de-
ployed in a well-considered way for the purpose of balanc-
ing the network coverage and deployment cost, so a grid
topology is more reasonable than a random topology for
simulation. For AdapCode, We follow the optimal coding
schemes presented in [13], which is shown in Table 2.

The source is fixed to be node 0 for all the simulations.
The broadcasted file is 4 MB, consisting of 1KB packets.
Other related simulation parameters are listed in Table 3.
We run both protocols in the two grid sizes 10 times and
show the average results over all 10 runs. For each run,
the TpktInterval ranges from 2 ms to 9 ms, with the step
equals to 0.5 ms. We use the following metrics for
comparison:
6.1.1. Average broadcast latency
the total time required for a node to receive the whole

file, averaged over all nodes.
6.1.2. Average number of transmissions
the total number of transmissions of all the nodes di-

vided by the number of nodes.

Table 3
Simulation parameters.

Simulation parameter Value

Batch size 32
Galois fied size 28

wthreshold 5
TbatchInterval 100 ms
Data transmission rate 11 Mbps
ACK transmission rate 1 Mbps
Retry limit 7
Pathloss model Two-ray
Fading mode Rician
Rician k factor 4
Hello packet interval (T) 1 s

Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798 795
6.1.3. Average number of collisions
the total number of collisions experienced by all the

nodes divided by the number of nodes. Note that one trans-
mission can cause several collisions at different nodes.
6.1.4. Average number of linearly dependent packets
the total number of linearly dependent packets received

by all the nodes divided by the number of nodes. Note that
the count of this metric includes the case that a node who
has already received the whole batch overhears coded
packet from the same batch.

We do not compare PDR performance, since both
R-Code and AdapCode can guarantee 100% reliability.
 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 2 3 4 5 6 7 8 9A
ve

ra
ge

 N
um

. o
f

T
ra

ns
m

is
si

on
s

Packet Broadcast Interval (ms)

AdapCode
R-Code

(a)

 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160

 2 3 4 5 6 7 8 9

A
ve

ra
ge

 B
ro

ad
ca

st
 T

im
e

(s
)

Packet Broadcast Interval (ms)

AdapCode
R-Code

(c)
Fig. 5. Grid size
6.2. Number of transmissions

We first compare the average number of transmissions
introduced by both protocols. Besides data packets, we also
count the NACKS of AdapCode, and ACKs and those control
packets for maintaining the guardian–ward relationships
of R-Code.

From Figs. 5a and 6a we can see that whatever the grid
size is, R-Code uses less number of transmissions than
AdapCode does for accomplishing the broadcast session,
the maximum reduction can be 13% when the grid size is
200 m and 15% when the grid size is 250 m. The key reason
for R-Code’s better performance is its local optimal deci-
sion. For each node, it always chooses the best neighbor
to be guardian. In comparison, when a node i in AdapCode
sends a NACK, it randomly chooses a node from those that
overhears this NACK and possesses the required packets to
be responder. This randomly selected node, as we argued
in Section 4.2, maybe not the best one and thus incurs
more redundant transmissions. This is shown clearly in
Fig. 5b and 6b, where we can observe that AdapCode yields
more linearly independent receptions in most cases.

The only exception appears when TpktInterval is small, e.g.,
less than 3.5 ms when the grid size is 200 m, and 2.5 ms
when the grid size is 250 m, where R-Code uses more
transmissions. The reason for this exception is that in these
cases, all the nodes inject packets too fast to be sustained
by the network. This causes heavy contention between
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 10000
 10500
 11000

 2 3 4 5 6 7 8 9

A
ve

ra
ge

 N
um

. o
f

L
in

ea
rl

y
D

ep
en

de
nt

 P
ac

ke
ts

Packet Broadcast Interval (ms)

AdapCode
R-Code

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7 8 9

A
ve

ra
ge

 N
um

. o
f

C
ol

lis
io

ns

Packet Broadcast Interval (ms)

AdapCode
R-Code

(d)
= 200 m.

796 Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798
nodes, which is shown clearly in Fig. 6d, where we can see
that the average number of collisions experienced by each
node is almost 700 when TpktInterval is 2.0 ms and grid size is
200 m. The heavy collision further leads to the large
amount of overheard linearly dependent packets, in other
words, useless for the receiving nodes. This is shown in
Fig. 6b. Since the average number of neighbors for each
node is approximately six for the network with grid size
of 200 m, when TpktInterval is 3.0 ms, all the nodes’ broad-
casting rate has already above 400 Kbps, which is quite a
high speed. Note that the reason for AdapCode’s better per-
formance in these cases is the NACK + Timer mechanism,
which makes AdapCode not sensitive to the variation of
TpktInterval. However, this comes with the cost of much long-
er broadcast delay, which is shown in Fig. 5c and 6c.

6.3. Broadcast latency

Compared with the performance of number of trans-
missions, R-Code gains larger advantage over AdapCode
when considering the broadcast latency. We can see that
under all settings, the average broadcast latency of R-Code
performance better than AdapCode. When TpktInterval is
small, the reduction ratio can be up to 65%, which
is achieved when the grid size is 250 m and TpktInterval is
3.0 ms. This is consistent with our analysis in Section 5.1,
where we point out that NACK mechanism inherently
 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 3600

 3700

 2 3 4 5 6 7 8 9A
ve

ra
ge

 N
um

. o
f

T
ra

ns
m

is
si

on
s

Packet Broadcast Interval (ms)

AdapCode
R-Code

(a)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 2 3 4 5 6 7 8 9

A
ve

ra
ge

 B
ro

ad
ca

st
 T

im
e

(s
)

Packet Broadcast Interval (ms)

AdapCode
R-Code

(c)

Fig. 6. Grid size
tends to elongate the broadcast latency. We also observe
that the broadcast latency of R-Code grows almost linearly
to TpktInterval. This is because that before trying to inject
packets into the network, each guardian has to delay for
a random short period of time that is proportional to
TpktInterval. We also observe that this linear property does
not hold when TpktInterval is small, e.g., less than 3 ms when
grid size is 200 m. In these cases, the broadcast latency of
R-Code is even higher than the case when the packet
broadcast latency is 3 ms, which is also the minimum
broadcast latency for all the cases. This seemly abnormal
performance can also be explained by the high congestion
level in these cases. Under such high congestion level, each
transmitter will encounter many collisions that causes it to
backoff longer time, according to the CSMA/CA mechanism,
which offsets the benefits of shorter TpktIntervals. In contrast,
AdapCode’s performance is quite stable under various
TpktIntervals. The reason is that the broadcast latency of
AdapCode is mainly decided by the initial value of the
NACK timer for each node, which is set to be 2 � TbatchInterval

and not related to TpktInterval.
Although the performance of R-Code on both number of

transmissions and broadcast latency is better than Adap-
Code, we still can see that there is a tradeoff between
transmission overhead and broadcast latency. The network
designer need to choose proper values for parameters
according to specific applications.
 5200
 5400
 5600
 5800
 6000
 6200
 6400
 6600
 6800
 7000
 7200

 2 3 4 5 6 7 8 9

A
ve

ra
ge

 N
um

. o
f

L
in

ea
rl

y
D

ep
en

de
nt

 P
ac

ke
ts

Packet Broadcast Interval (ms)

AdapCode
R-Code

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 3 4 5 6 7 8 9

A
ve

ra
ge

 N
um

. o
f

C
ol

lis
io

ns

Packet Broadcast Interval (ms)

AdapCode
R-Code

(d)

= 250 m.

Zhenyu Yang (S’08) received his B.E and M.E
degrees in Computer Science both from Xi’an
Jiaotong University, China, in 2004 and 2007,
respectively. He is currently a Ph.D. student in
the Electrical and Computer Engineering
department at Worcester Polytechnic Insti-
tute. His current research interests are in the
area of wireless networks and network secu-
rity, with emphases on network coding and
protocol design.

Z. Yang et al. / Ad Hoc Networks 9 (2011) 788–798 797
6.4. Discussion

We compare the average number of collisions between
R-Code and AdapCode and observe that as the increasing
of TpktInterval, the average number of collisions experienced
by AdapCode are quite stable. In a comparison, the average
number of collisions experienced by R-Code decreased rap-
idly at first and then approaches to a stable value, which is a
little higher than AdapCode. The reason for higher number
of collisions experienced by R-Code in all settings is ‘‘hidden
terminal’ problem. Since R-Code encourages simultaneous
transmissions to enhance the performance of spatial reuse,
so it tends to suffer from the hidden terminal problem more.
On the opposite, the NACK mechanism of AdapCode makes
each node’s transmission more passive and provides less
chance for the happening of hidden terminal problem. How-
ever, We argue that this does not means AdapCode will
introduce less number of transmissions, because its ineffi-
ciency in bandwidth usage comes from the random selec-
tion mechanism for NACK’s responder, which incurs large
amount of linearly dependent packets. How to deal with
hidden terminal problem in R-Code will be our future work.

7. Conclusion

In this paper, we propose R-Code, a distributed and effi-
cient broadcast protocol which guarantees 100% PDR for all
receivers. By introducing a guardian–ward relationship be-
tween neighboring nodes, R-Code effectively distributes
the global responsibility of reliable information delivery
from the original source to those locally selected guardians.
R-Code uses a link quality-based MST as a backbone to
guide the selection of guardians adaptively and the trans-
mission of coded packets accordingly. R-Code also prevent
guardians from sending duplicated packets with no extra
overhead by adopting network coding technique. Extensive
simulations show that R-Code reduces the average number
of transmissions and broadcast latency up to 15% and 65%,
respectively, compared with AdapCode, a state-of-the-art
reliable broadcast protocol under unreliable links.

Acknowledgement

This work was supported in part by the US National
Science Foundation under Grants CNS-0746977, CNS-
0716306, and CNS-0831628.

References

[1] Z. Yang, M. Li, W. Lou, R-Code: Network coding based reliable
broadcast in wireless mesh networks with unreliable links, in:
Globecom’09, 2009.

[2] N.Z. Marco Zú, B. Krishnamachari, An analysis of unreliability and
asymmetry in low-power wireless links, ACM Trans. Sensor
Networks 3 (2) (2007) 7.

[3] A. Sobeih, H. Baraka, A. Fahmy, ReMHoc: a reliable multicast protocol
for wireless mobile multihop ad hoc networks, in: Consumer
Communications and Networking Conference, 2004. CCNC 2004.
First IEEE, January 2004, pp. 146–151.

[4] E. Pagani, G.P. Rossi, Reliable broadcast in mobile multihop packet
networks, in: MobiCom ’97: Proceedings of the 3rd annual ACM/IEEE
International Conference on Mobile Computing and Networking,
ACM, New York, NY, USA, 1997, pp. 34–42.
[5] L. Rizzo L. Vicisano, RMDP: an fec-based reliable multicast protocol
for wireless environments, 1998.

[6] J. Nonnenmacher, E. Biersack, D. Towsley, Parity-based loss recovery
for reliable multicast transmission, Networking, IEEE/ACM Trans 6
(4) (1998) 349–361. Aug.

[7] R.G. Kermode, Scoped hybrid automatic repeat request with forward
error correction (sharqfec), SIGCOMM Comput. Commun. Rev. 28 (4)
(1998) 278–289.

[8] C. Fragouli, J.-Y. LeBoudec, J. Widmer, Network coding: an instant
primer, SIGCOMM Comput. Commun. Rev. 36 (1) (2006) 63–68.
January.

[9] D.S. Lun, M. Medard, M. Effros, On coding for reliable communication
over packet networks, IEEE Trans Inform Theory (2008).

[10] C. Adjih, S.Y. Cho, P. Jacquet, Near optimal broadcast with network
coding in large sensor networks, in: First International Workshop
on Information Theory for Sensor Networks, Sante Fe , USA, June
2007.

[11] S. Chachulski, M. Jennings, S. Katti, D. Katabi, Trading structure for
randomness in wireless opportunistic routing, in: SIGCOMM ’07,
2007.

[12] C. Fragouli, J. Widmer, J.-Y. LeBoudec, A network coding approach to
energy efficient broadcasting: from theory to practice, in: INFOCOM
2006. 25th IEEE International Conference on Computer
Communications. Proceedings, April 2006, pp. 1–11.

[13] I.-H. Hou, Y.-E. Tsai, T. Abdelzaher, I. Gupta, AdapCode: adaptive
network coding for code updates in wireless sensor networks, in:
INFOCOM 2008, April 2008.

[14] L. Yunfeng, B. Li, L. Ben, CodeOR: Opportunistic routing in wireless
mesh networks with segmented network coding, in: Network
Protocols, 2008. ICNP 2008. IEEE International Conference on,
October 2008, pp. 13–22.

[15] J.-S. Park, M. Gerla, D. Lun, Y. Yi, M. Medard, CodeCast: a network-
coding-based ad hoc multicast protocol, Wireless Commun. IEEE 13
(5) (2006) 76–81. October.

[16] D. Koutsonikolas, Y.-C. Hu, C.-C. Wang, High-throughput, reliable
multicast without crying babies in wireless mesh networks, in:
CoNEXT. ACM, December 2008.

[17] B. Williams, T. Camp, Comparison of broadcasting techniques for
mobile ad hoc networks, in: MobiHoc. ACM, 2002, pp. 194–205.

[18] D.S.J. DeCouto, D. Aguayo, J. Bicket, R. Morris, A high-throughput
path metric for multi-hop wireless routing, in: MobiCom ’03:
Proceedings of the 9th Annual International Conference on Mobile
Computing and Networking, ACM, New York, NY, USA, 2003, pp.
134–146.

[19] H. Holbrook, S.K. Singhal, D.R. Cheriton, Log-based receiver-reliable
multicast for distributed interactive simulation, in: ACM SIGCOMM,
1995, pp. 328–341.

[20] A. Miu, H. Balakrishnan, C.E. Koksal, in: MobiCom ’05: Proceedings of
the 11th Annual International Conference on Mobile Computing and
Networking, New York, NY, USA.

[21] D. Koutsonikolas, Y.-C. Hu, C.-C. Wang, ‘‘CCACK: efficient network
coding based opportunistic routing through cumulative coded
acknowledgements, Tech. Rep. <http://web.ics.purdue.edu/
�dkoutson/publications/ccack_techrpt.pdf>.

[22] R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for
minimum-weight spanning trees, ACM Trans. Program. Lang. Syst.
1983.

[23] B. Hull, K. Jamieson, H. Balakrishnan, Mitigating congestion in
wireless sensor networks, in: SenSys ’04: Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems,
ACM Press, New York, NY, USA, 2004, pp. 134–147.

[24] Y. lun Chou, Statistical Analysis, Holt International, 1975.

http://web.ics.purdue.edu/~dkoutson/publications/ccack_techrpt.pdf
http://web.ics.purdue.edu/~dkoutson/publications/ccack_techrpt.pdf

Networks 9 (2011) 788–798
Ming Li (S’08) received his B.E and M.E
degrees in Electronic and Information Engi-
neering both from Beihang University, China,
in 2005 and 2008, respectively. He is currently
a Ph.D. student in the Electrical and Computer
Engineering department at Worcester Poly-
technic Institute. His current research inter-
ests are in the area of wireless networks and
pervasive computing, with emphases on pro-
tocol design, network and system security.

798 Z. Yang et al. / Ad Hoc
Wenjing Lou obtained her Ph.D degree in
Electrical and Computer Engineering from
University of Florida in 2003. She received the
M.A.Sc degree from Nanyang Technological
University, Singapore, in 1998, the M.E degree
and the B.E degree in Computer Science and
Engineering from Xi’an Jiaotong University,
China, in 1996 and 1993 respectively. From
December 1997 to July 1999, she worked as a
Research Engineer at Network Technology
Research Center, Nanyang Technological Uni-
versity. She joined the Electrical and Com-

puter Engineering department at Worcester Polytechnic Institute in 2003
where she is now an assistant professor. Her current research interests
are in the areas of ad hoc, sensor, and mesh networks, with emphases on
network security and routing issues. She has been an editor for IEEE
Transactions on Wireless Communications since 2007. She was named
Joseph Samuel Satin Distinguished fellow in 2006 by WPI. She is a
recipient of the U.S. National Science Foundation Faculty Early Career
Development (CAREER) award in 2008.

	R-Code: Network coding-based reliable broadcast in wireless mesh networks
	Introduction
	Related work
	Compressed forwarding
	“Timer+NACK” mechanism

	Preliminaries
	Network model
	Network coding

	Existing schemes analysis
	Pacifier
	AdapCode

	R-Code design
	Idea
	Design
	Basic scheme
	Dynamically maintain the guardian–ward relationship
	Source rate limiting

	Performance evaluation
	Simulation settings
	Average broadcast latency
	Average number of transmissions
	Average number of collisions
	Average number of linearly dependent packets

	Number of transmissions
	Broadcast latency
	Discussion

	Conclusion
	Acknowledgement
	References

