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Abstract

Base station placement has significant impact on sensor
network performance. Despite its significance, results on
this problem remain limited, particularly theoretical results
that can provide performance guarantee. This paper pro-
poses a set of procedure to design(1 � ") approximation
algorithms for base station placement problems under any
desired small error bound" > 0. It offers a general frame-
work to transform infinite search space to a finite-element
search space with performance guarantee. We apply this
procedure to solve two practical problems. In the first prob-
lem where the objective is to maximize network lifetime, an
approximation algorithm designed through this procedure
offers1="2 complexity reduction when compared to a state-
of-the-art algorithm. This represents the best known result
to this problem. In the second problem, we apply the de-
sign procedure to address base station placement problem
for maximizing network capacity. Our(1 � ") approxima-
tion algorithm is the first theoretical result on this problem.

1. Introduction

An important characteristics for wireless sensor net-
works is that many performance measures (e.g., lifetime,
capacity) is highly dependent upon the topology of the ac-
tual physical network. For instance, the energy expenditure
to transmit data from one node to another node not only
depends on the data bit rate, but also on the physical dis-
tance between the two nodes. Consequently, it is important
to understand the impact of location related issues on net-
work performance and take possible steps to optimize per-
formance starting from network deployment stage.

This paper focuses on the important problem of base sta-
tion placement such that certain network performance ob-
jectives can be optimized. Although there is active research
on maximizing network lifetime (see, e.g., [1, 3, 6, 13])
or network capacity (see, e.g., [5, 7, 10, 12, 14]), most of
these work consider a sensor network under agivenphys-
ical topology. Indeed, the location problems for base sta-
tions have been very difficult to analyze (shown to be NP-

complete in [2]) and only very special cases have been in-
vestigated for optimal placement, e.g., single-hop commu-
nication between sensor node and base station [8] or special
grid topology [2].

In a very recent and important work [4], Efrat et al. de-
veloped the first(1 � ") approximation algorithm for base
station placement (with the objective of maximizing net-
work lifetime). Unfortunately, the complexity associated
with this algorithm is quite high and could be problematic
in practice. Further, the proposed approximation solution
procedure in [4] is specific to the network lifetime problem,
which cannot be easily extended to address other network
performance objectives.

Our efforts in this paper are inspired by the work in [4].
In this paper, we aim to achieve the following two objec-
tives. First, for the base station placement problem with
network lifetime objective studied in [4], we aim to de-
sign an approximation algorithm with significant reduction
on computation complexity. Second, and perhaps a very
bold objective, we aim to develop a design procedure for(1 � ") approximation algorithms that can be applied to
solve a broader class of optimization problems. To keep
our scope within base station placement problems for sen-
sor networks, we will show how such a procedure can be
used to design(1� ") approximation algorithms with a dif-
ferent optimization objective, e.g., network capacity.

The proposed design procedure in this paper meets both
the above two goals. Our contribution in this paper is the-
oretical in nature and represents new basic results in sensor
networks in particular as well as in the field of approxima-
tion algorithms in general. The proposed design procedure
consists of four phases, once successfully applied to a spe-
cific optimization problem, can provide an(1� ") approxi-
mation algorithm to some of the most difficult optimization
problems (NP-complete). A basic idea in this procedure is
to replace an infinite search space for each variable by a
finite-element search space but with a guaranteed bound on
possible loss in performance. To prevent the search space
(for all variables) from increasing exponentially with the
number of variables (as in [4]), an important contribution in
our design procedure is acomplexity reduction technique,
which exploits the potential overlap among the elements in
the search space. Specially, we explore the product rela-
tionship among the variables and design the search space



for each of them in the form of a geometric progression. By
identifying a common factor among these geometric pro-
gressions, we show it is possible to reduce the total number
of elements in the search space significantly.

As applications of the design procedure, we apply the
procedure to develop approximation algorithms for two dif-
ferent base station placement problems. The first problem
is the same as the one in [4], i.e., how to place the base
stations so that network lifetime can be maximized. Specif-
ically, we show how to design an approximation algorithm
for base station placement such that network lifetime is at
least(1 � ") times the maximum network lifetime, for any
desired small approximation bound" > 0. The compu-
tational complexity of our new approximation algorithm is1="2 lower than the algorithm proposed in [4]. This repre-
sents the best known result on this problem.

To demonstrate the utility of the design procedure, we
show how it can be used to design approximation algo-
rithms for other difficult optimization problems. To keep
our scope within base station placement in sensor networks,
in the second problem, we consider how to place the base
stations such that the weighted network capacity can be
maximized, under the condition that each node must meet a
common lifetime requirement. Although this problem also
considers base station placement, it has different objective
function from the first problem and thus calls for different
formulation and solution. We show that the proposed design
procedure can also be successfully applied, although the de-
tails are problem-specific. Again, we design an approxima-
tion algorithm for this problem such that the weighted net-
work capacity is at least(1 � ") times the maximum. This
represents the first theoretical result for this problem.

The rest of the paper is organized as follows. Section 2
presents the sensor network model used in this study and
describes two base station placement problems for sensor
networks. In Section 3, we lay a theoretical foundation for
the design of(1 � ") approximation algorithms. In Sec-
tion 4, we apply the design procedure to solve base station
placement problem with the objective of maximizing net-
work lifetime, while in Section 5, we apply the same design
procedure to solve base station placement problem when
the objective is to maximize network capacity. Section 6
reviews related work and Section 7 concludes this paper.

2. Network Model and Base Station Placement
Problems

We consider a sensor network consisting ofN sensor
nodes deployed over a two-dimensional area. The location
of each sensor node is fixed and the initial energy on sen-
sor nodei is denoted asei. We assume there areM base
stations that need to be deployed in the area to collect sens-
ing data. The case whereM = 1 represents a single base
station, is perhaps most common. But our algorithms de-
veloped in this paper can also handle the general case whenM > 1, i.e., multiple base stations.

In this paper, we focus on the energy consumption due
to communications (i.e., data transmission and reception).
Suppose sensor nodei transmits data to sensor nodej with
a rate offij b/s. Then we model the transmission power at
sensor nodei as [9]: ptij = 
ij � fij : (1)
ij is the cost on link(i; j), and can be modeled as
ij = �+ � � dnij ; (2)

where� and� are two constant terms,dij is the physical
distance between sensor nodesi andj, n is the path loss
index, and2 � n � 4 [9].

The power consumption at the receiving sensor nodei
can be modeled as [9]:pri = � �Xk 6=i fki ; (3)

wherefki (also in b/s) is the incoming bit-rate received by
sensori from sensork. It is easy to observe from Eqs. (1),
(2), and (3) that the locations for the base stations as well
as data routing in the network have a profound impact on
energy consumption behavior among the nodes.

The focus of this paper is to investigate base station
placement problems in sensor networks. Clearly, how the
base station should be placed depends on the particular net-
work performance objective that we wish to optimize. In
this paper, we consider the network lifetime and capacity
objectives, each of which has attracted great interest even
for static (fixed) network topology.� In the first problem, each sensor nodei produces data

rateri that needs to be routed to the base stations. The
problem is how to place the base stations and arrange
data routing such that the network lifetime is maxi-
mized, where network lifetime is defined as the time
until any sensor node uses up its energy.� In the second problem, the network lifetime require-
ment isT and data rateri at each sensor nodei is an
optimization variable. The problem is how to locate
the base stations and arrange data routing such that the
weighted network capacity,

PNi=1 wiri, is maximized,
wherewi is a pre-specified weight for sensor nodei.

In addition to the above two problems, we conjecture the
design procedure outline in the next section can also be ap-
plied to solve other hard optimization problems involving
infinite search space.

3. A Procedure for the Design of(1�") Approx-
imation Algorithms Based on Complexity
Reduction Technique

The base station placement problems discussed in the
last section involve optimizing an objective that is depen-



dent on several factors. We can view the dependency re-
lationship as a function, which, due to its complexity, may
not be explicitly formulated. In this section, we outline a
design procedure for a class of approximation algorithms
that are particularly useful to solve such hard optimization
problems. For the ease of discussion, we only discuss how
to maximize a functionf(x) with one variablex in this sec-
tion. The case wherex is a vector can be easily generalized
following the same procedure.

In Section 3.1, we outline a design procedure for(1� ")
approximation algorithms by limiting the search space ofx
into a set� consisting of finite elements while the maximum
objective valuef(x) among allx 2 � is at least(1�") times
the maximum. Since it is usually very difficult to construct
this finite-element set� directly, we resort to an effective
approach via divide-and-conquer.

The procedure in Section 3.1 may have high computa-
tional complexity (the number of elements in the search
space increases exponentially withL). In Section 3.2, we
propose a complexity reduction technique to significantly
reduce its computational complexity (the number of ele-
ments in the search space is linear withL).3.1. Design Pro
edure: Basi
 Idea

We now present the basic idea in the design procedure
for (1 � ") approximation algorithms. For variablex, the
search space to find the maximumf(x) is a set with infi-
nite elements. Since it is impossible to check all elements
in an infinite-element set, we aim to limit the search space
to a finite-element set, say�. As doing so may compro-
mise the optimality of the solution, the key is to show that
the finite-element set contains at least one element that is at
least(1� ") times the maximum. Note that there is a trade-
off between performance (") and complexity (j�j), wherej�j is the number of elements in set�. The better perfor-
mance (the smaller") we want, the higher complexity (the
larger the search spacej�j) this algorithm has. The basic
idea in this design procedure is the following.

1. Set up a mathematic model for the optimization prob-
lem, i.e., maximizef(x), wheref(x) can be computed
in polynomial-time for any givenx.

2. For a given" > 0, construct a finite-element set� that
meets the following criterion: for any givenx, there
exists ax̂ 2 � such thatf(x̂) � (1� ")f(x). We call
this"-mappingcriterion.

3. By examining all the elements in the finite-element
set�, we choosex�� that has the maximum objectivef(x��) as the final(1� ") approximation solution.

Whether or not it is possible to construct such a set is
problem specific and is the main challenge in the design of(1� ") approximation algorithms. Suppose we can do this
for a specific problem, then the following result holds. Its
proof is omitted to conserve space.

Lemma 1 If � meets the"-mapping criterion, thenx�� is a(1�") approximation solution, i.e.,f(x��) � (1�")f(x�).
As discussed,f(�) can be a very complex function and

even may not be explicit (as in the two problems that we will
solve in Sections 4 and 5). As a result, a direct construction
of a finite-element set� that meets the"-mapping criterion
may be extremely difficult, if at all possible. Under such
circumstance, it is necessary to explore other approach.

The approach that we use isdivide-and-conquer,which
breaks up a hard problem into a number of easier sub-
problems. Specifically, although we could not construct
a finite-element set� for x that meets the"-mapping cri-
terion, it may be possible to expressx as a function of
some other variables, i.e.,x = g(y1; y2; � � � yL), such that
it is possible to construct finite-element set�k for eachyk,k = 1; 2 � � � ; L, that meets"k-mapping criterion, which
is defined as follows.

Definition 1 ("k-Mapping Criterion) A finite-element
set�k for yk, 1 � k � L, is said to meet the"k-mapping
criterion if for any givenx = g(y1; y2; � � � ; yk; � � � ; yL),
there exists âx = g(ŷ1; ŷ2; � � � ; ŷk; � � � ŷL) with ŷj = yj
for 1 � j � k � 1, ŷk 2 �k, andf(x̂) � (1� "k)f(x).

Note that in"k-mapping, we restrict the firstk � 1 vari-
ables to be identical to those underx. As we will show, this
requirement is crucial to ensure that Lemma 2 will hold.

As a result, we can define a finite-element set� based on
these sets�k and show that it meets the"-mapping crite-
rion. In other words, the second step in the above approach
can be further divided into the following two sub-steps.� Expressx as x = g(y1; y2; � � � ; yL) such that (i)g(y1; y2; � � � ; yL) can be computed in polynomial

time; and (ii) for any given"k > 0, 1 � k � L, we
can construct a finite-element set�k for yk that meets
the"k-mapping criterion.� For the given" > 0, determine the values for"k such
that

PLk=1 "k = ". Let� = fg(y1; y2; � � � ; yL) : yk 2�k; 1 � k � Lg.

The main task in the above design procedure is thus to
construct�k, 1 � k � L, to meet the"k-mapping cri-
terion. This construction process is problem-specific, i.e.,
whether or not such construction is possible depends on the
specific problem. In Sections 4 and 5, we show that, for the
base station placement problems (with either network life-
time or network capacity objective), the construction of�k
that meets the"k-mapping criterion is possible.

Now suppose that we have successfully constructed�k
for all 1 � k � L, each meeting its"k-mapping criterion,
then the following lemma is true.

Lemma 2 � is a finite-element set withj�j =O(QLk=1 j�kj) and meets the "-mapping criterion,
i.e., for any given solutionx, there exists a solution̂x 2 �
such thatf(x̂) is at least(1� ")f(x).



Instead of proving that� meets the"-mapping criterion,
we can prove an even stronger result by induction: for allk, 1 � k � L, there exists axk = g(y(k)1 ; y(k)2 ; � � � ; y(k)L )
such thaty(k)j 2 �j for 1 � j � k andf(xk) � (1 �Pkj=1 "j)f(x). Note that the result fork = L is the above
lemma. The details can be found in [11].3.2. Complexity Redu
tion Te
hnique andComplete Design Pro
edure

There is one problem associated with the approximation
algorithm developed in the last section. Although the so-
lution is a(1 � ") approximation solution, the complexity
increases exponentially withL. Even thoughL is a small
number,j�jmay still be a very large number. In this section,
we aim to reduce such complexity.

The main idea in our complexity reduction technique is
as follows. If we could construct all the�k ’s intelligently
by synthesizing some common factor among theyk’s, then
we could reduce the size of the search space. Specifically,
we exploit the relationship betweenx and certain polyno-
mial product of allyk’s, 1 � k � L, and design each�k as ageometric progressionsuch that all these geometric
progressions for�k ’s share a common factor. That is, we
construct the finite-element set�k for yk into the following
geometric progression form:fakqhkk : hk = 0; 1; � � � ; Hkg
(i.e., fak; akqk; � � � ; akqHkk g), whereak > 0 andqk > 1.
It is important to choose the values for"k’s so that not onlyPLk=1 "k = " but alsoq1 = q2 = � � � = qL = q (i.e., a
common factor among all�k ’s). As a result, the number of
elements inj�j can be reduced significantly, i.e., from the
previousj�j = O(QLk=1 j�kj) down toO(PLk=1 j�kj) as
we will prove shortly.

The complete steps for the design procedure can be sum-
marized as follows.

Procedure 1 (Design Procedure for(1� ") Approxima-
tion Algorithm)� Phase 1 Set up a mathematic model for the optimiza-

tion problem, i.e., maximizef(x), wheref(x) can be
computed in polynomial-time for any givenx.� Phase 2 Expressx asx = ĝ(z) andz = QLk=1 ypkk ,
whereyk are all non-negative variables andpk are all
constant integers,1 � k � L, such that (i)̂g(z) can be
computed in polynomial time for any givenz; and (ii)
for any given"k > 0, 1 � k � L, we can construct a
finite-element set�k = fakqhkk : hk = 0; 1; � � � ; Hkg
for yk to meet the"k-mapping criterion, whereak > 0
andqk > 1.� Phase 3 For the given" > 0, assign the values for"i
such that (1)q1 = q2 = � � � = qL = q (Note thatqk is a function of"k) and (2)

PLk=1 "k = ". Let

� = fĝ(z) : z 2 
g, where
 = fQLk=1 ypkk : yk 2�k; 1 � k � Lg.� Phase 4 By examining all the elements in the finite-
element set�, we choosex�� that has the maximum
objectivef(x��) as the(1� ") approximation solution.

Again, whether or not it is possible to construct�k,1 � k � L, that meets the"k-mapping criterion is problem-
specific and is the main task in applying the above design
procedure. In Sections 4 and 5, we show that, for the base
station placement problems (with either network lifetime
or network capacity objective), the construction of�k that
meets the"k-mapping criterion is possible. Once we con-
struct�k successfully, we have the following theorem. Its
proof is quite straight forward and is thus omitted to con-
serve space.

Theorem 1 � is a finite-element set with sizej�j =O(j
j) = O(PLk=1 j�kj) andx�� is a(1�") approximation
solution, i.e.,f(x��) � (1� ")f(x�).
Remark 1 For many hard optimization problems in prac-
tice, e.g., two problems to be discussed in Sections 4 and
5, it may be impossible to identifyz as a single polyno-
mial product ofall yk ’s. In this case, among all theyk ’s,
we group as manyyk’s as possible in the definition ofz (in
order to take advantage of the complexity reduction tech-
nique). For the rest ofyk ’s that cannot be put into the poly-
nomial product in the definition ofz, we can apply the ba-
sic idea described in Section 3.1, i.e., constructing a search
space�k for each of theseyk ’s independently to meet the"k-mapping criterion. As a result,j�j is in the order of the
product ofj
j discussed in Theorem 1 (for thoseyk ’s in the
definition ofz) andj�kj’s (for thoseyk ’s not in the defini-
tion of z). Obviously, the moreyk ’s that we can put into the
polynomial product definition forz, the lower complexity
we can achieve.

We emphasize that a proper definition ofyk ’s and the
construction of finite-element sets�k ’s are challenging and,
for some problems, may not be even possible. For the latter
case, we declare that this design procedure is not applicable
to the underlying problem. This should not come as a big
disappointment, as no single design procedure can solve all
the hard optimization problems. But, if we are able to over-
come this challenge, then the algorithm designed following
this procedure is a(1� ") approximation algorithm.

4. A (1�") Approximation Algorithm for Max-
imizing Network Lifetime

We now apply the design procedure in the last section
to address our first base station placement problem. The
network model for this problem is given in Section 2. Re-
call that for this problem, we consider each sensor nodei
producing data rateri that needs to be routed to the base



stations. The problem is how to place the base stations and
arrange data routing such that the network lifetime is max-
imized, where network lifetime is defined as the time until
any sensor node uses up its energy.

In Sections 4.1, 4.2, and 4.3, we follow the four phases in
the design procedure to construct a(1�") approximation al-
gorithm. Two numerical examples are given in Section 4.4.4.1. Phase 1

In this phase, we need to set up a mathematic model
for the maximum network lifetime problem, i.e., identifyx variable andf(x) function. For this specific problem,x
is actually a vector representing the locations ofM base
stations (denotexm as them-th component ofx, 1 � m �M ). The objective here is the network lifetimeT , which
corresponds to the objective functionf(x). For any givenx, we will show thatf(x) can be obtained by solving a lin-
ear programming (LP) problem (polynomial complexity).

For each sensor nodei = 1; 2; � � � ; N , we have the fol-
lowing incoming/outgoing flow balance equations and en-
ergy constraints.ri + k 6=iX1�k�N fki = j 6=iX1�j�N fij + MXm=1 fi;Bm ; (4)� k 6=iX1�k�NfkiT+ j 6=iX1�j�N
ijfijT+ MXm=1
i;Bmfi;BmT �ei ; (5)

wherefij (or fi;Bm) denotes the bit rate from sensor nodei
to sensor nodej (or base stationBm). The firstN equations
in (4) state that, at each sensor nodei, the bit rateri (gen-
erated by sensor nodei), plus the total bit rate of incoming
flows from other sensors, is equal to the total bit rate of out-
going flows. The secondN inequalities in (5) state that the
energy required for reception and transmission at each sen-
sor nodei, at the end of network lifetimeT , cannot exceed
its initial energy. Our objective is to maximizeT while both
(4) and (5) are satisfied.

When theM base stations’ locations are given, i.e.,
i;Bm ’s are constants, we can formulate the following LP.
Maximize T
subject toriT + k 6=iX1�k�N Vki � j 6=iX1�j�N Vij � MXm=1Vi;Bm = 0(1 � i � N)k 6=iX1�k�N �Vki + j 6=iX1�j�N 
ijVij + MXm=1 
i;BmVi;Bm � ei(1 � i � N)T; Vij ; Vi;Bm � 0(1 � i; j � N; i 6= j; 1 � m �M) ;

whereVij = fijT andVi;Bm = fi;BmT , whereVij (orVi;Bm ) is the bit volume being sent from sensor nodei to
sensor nodej (or base stationBm). Note thatT , Vki, Vij ,
andVi;Bm are variables, and thatri, �, 
ij , 
i;Bm , andei
are all constants. We now have an optimization problem
in the form of an LP formulation, which can be solved in
polynomial time. In other words, we have shown a mathe-
matical model for the optimization problem, where the ob-
jectivef(x) (the maximum network lifetime) can be com-
puted from any givenx (the locations of the base stations)
in polynomial time.

The following property follows the above discussion and
will be used repeatedly in the Phase2.

Property 1 To be energy efficient, if a sensor node needs to
transmit to some base stations in one hop, it is sufficient to
consider the case where this sensor node transmits (in one
hop) to only one base station, i.e., its nearest base station.4.2. Phase 2

Phase2 in the design procedure is the most challenging
part. Specifically, whether or not it is possible to construct�k, 1 � k � L, such that each�k meets the"k-mapping
criterion, is problem specific. In this part, we fill in all the
details and show that it is indeed possible for our base sta-
tion placement problem.
A New Notion of Lifetime For our problem, the net-
work lifetime is so far defined as the time instance until
any node uses up its energy. It turns out such network life-
time definition is not quite convenient in our algorithm de-
sign. Instead, we introduce a new definition, which we call
“longevity” to distinguish from lifetime. Longevity defini-
tion is heavily data-centric (in contrast to lifetime, which is
energy-based) and refers to either the time instance when
data can no longer be forwarded over a link or a flow path.
Under the longevity definition, we imagine that the energy
at a node is logically partitioned into different pieces, with
each piece pre-assigned (or dedicated) for either transmis-
sion to another node or receiving from a different node.

Definition 2 (Link Longevity) For link (i; j), denote
the transmission energy allocated for this link at nodei
as etij and the receiving energy allocated for this link at
node j as erij . Then the link longevity is defined asminn etij
ijfij ; erij�fij o.

In the above definition, for the special case when nodej
is a base stationBm, the receiving energy onBm is defined
as1. Following the link longevity definition (or more pre-
cisely, when energy at a node is allocated based on links),
node longevityis defined as the minimum longevity among
all links at this node whilenetwork longevityis defined as
the minimum longevity among all the nodes.

Definition 3 (Flow Longevity) Definef l the bit rate for
a flow originating from a sensor node to a base station by



traversing a pathl. For each link(i; j) that is traversed by
this flow, denote the transmission energy allocated to this
flow at nodei as(elij)t and the receiving energy allocated
to this flow at nodej as(elij)r. The flow longevity is defined

asmin(i;j)2l � (elij )t
ijf l ; (elij )r�f l �.

Following the flow longevity definition (or more pre-
cisely, when energy at a node is allocated based on flows),
the correspondingnode longevitycan be defined as the
minimum longevity among all flows originating from this
node whilenetwork longevityis defined as the minimum
longevity among all the nodes.

The following property states the relationship be-
tween the data-based network longevity definition and the
(energy-based) network lifetime definition.

Property 2 For any given solution (base station locations
and data routing), the network longevity is no more than
the network lifetime. Under an optimal solution, the max-
imum network longevity is equal to the maximum network
lifetime.

It should be note that a solution under longevity defini-
tion includes not only base station locations and data routing
but also energy allocation on links or flows. Under a given
solution (base station locations and data routing), if the en-
ergy allocation is chosen properly, the network longevity
can be equal to the network lifetime. Otherwise, the net-
work longevity is less than the network lifetime. Based on
this property, we have the following lemma. Its proof is
omitted to conserve space.

Lemma 3 If an algorithm is a(1� ") approximation algo-
rithm under network longevity criterion, then this algorithm
is also a(1�") approximation algorithm under the network
lifetime criterion.

Determination of z, ĝ(z), and yk. We now identifyzm,ĝm(zm), andy(k)m for eachxm (the location of base stationBm). We choosezm as a vector of the transmission cost
i;Bm from each sensor nodei = 1; 2; � � � ; N to base stationBm. Denotezim as thei-th component ofzm, we havezim = 
i;Bm :
For eachzim, we choosey(1)im = �i;Bm ;
where�i;Bm is the phase of the base stationBm (measured
from the horizontal axis) when the origin is sensor nodei. We now show that there is a function̂gm(�) such thatxm = ĝm(zim; y(1)im), 1 � i � N , andĝm(�) can be com-

puted in polynomial time for any givenzim andy(1)im . That
is, the location of base stationBm can be computed in poly-
nomial time if we know a transmission cost
i;Bm and the

corresponding phase�i;Bm . Specifically, given a transmis-
sion cost
i;Bm , we can calculate the distancedi;Bm from
sensor nodei to base stationBm via Eq. (2). After we know
the values of the distancesdi;Bm , as well as the phase�i;Bm ,
we can determine the location for base stationBm based on
the location of sensor nodei.

We now identify the rest ofy(k)im variables so thatzim
can be expressed as a polynomial product of thesey(k)im ’s,2 � k � L. Denote nodei’s longevity asti. We definey(2)im = eti;Bm ; y(3)im = fi;Bm ; y(4)im = ti ; L = 4 :
We now show thatzim can be defined aszim = y(2)im (y(3)im )�1(y(4)im )�1 : (6)

Under link longevity definition, we haveti � eti;Bm
i;Bmfi;Bm ,

i.e.,
i;Bm � eti;Bmfi;Bm ti , for each link(i; Bm). It turns out that

it is sufficient to consider only the case for
i;Bm = eti;Bmfi;Bm ti ,
i.e., Eq. (6). The details are explained in the next paragraph.

Note that
i;Bm ’s, 1 � i � N , are used to determine the

location for base stationBm. Assume we have
eti;Bmfi;Bm ti in

a solution. Since
eti;Bmfi;Bm ti is an upper bound of each
i;Bm ,

then the possible locations for base stationBm is thecom-
mon regionof several intersecting disks. We argue that it is
sufficient to search only a boundary point for this entire re-

gion, where
i;Bm = eti;Bmfi;Bm ti . Note that if we move base
stationBm to such a point, under the same data routing
and link energy allocation, the new longevity of each link(i; Bm) remains at leastti, 1 � i � N , while all other link
longevities remain unchanged. Therefore, the correspond-
ing node longevity for each node as well as the network
longevity are all the same as before. We have thus obtained
another solution with the same network longevity where the
base stationBm is now at a boundary point of the common
region. Thus, it is sufficient to search only a boundary point
for solutions to achieve the maximum network longevity.

For the ease of mathematical notation, we omit the sub-
scriptim when there is no confusion. For example, we will
useyk to expressy(k)im .
Construction of �k Recall that whether or not it is pos-
sible to construct�k that meets"k-mapping criterion is
problem-specific and is the main task in the design pro-
cedure described in Section 3.2. In this part, we show
how to construct a finite-element set�k for eachyk and
show the"k-mapping criterion is satisfied in four claims.
In each claim, we construct�k for yk, k = 1; 2; 3; 4, such
that the performance bound will decrease by no more than1 � "k when the search space for variableyk is limited to
the finite-element set�k. Note that we must construct the
finite-element sets�2;�3, and�4 as geometric progres-
sions, while�1 does not have this requirement sincey1 is
not in the definition ofz (see Remark 1). We first construct�1 for y1 = �i;Bm as follows.



Claim 1 (�1) For y1 = �i;Bm and an arbitrarily small
given"1 > 0, we can construct a set�1 = fh1a1 : h1 =1; 2; � � � ; H1g, with H1 = dn�="1e (wheren is the path
loss index) anda1 = 2�=H1 such that for any given solu-
tion  for base station placement, data routing, and energy
allocation (on links) with a network longevityT , there ex-
ists a solution ̂ and a sensor nodei with �i;Bm 2 �1 and
the network longevity iŝT � (1� "1)T .

The proof is based on construction. That is, we will
move base stationBm in solution and construct ̂ as
follows. Under solution , for base stationBm, we con-

sider
etj;Bmfj;Bm tj for each sensor nodej, 1 � j � N . Theseetj;Bmfj;Bm tj ’s define a common region by intersecting disks

from different nodej. For the purpose of this proof, we
move base stationBm to a point on the arc(v1; v2) of the
region’s boundary that is part of the smallest circle (i.e.,cir-
cle with the smallest radiusd). Assume the center of this
circle is sensor nodei and denotewk the point on this circle
that is closet toBm among these points have a phaseh1a1.
We moveBm to pointwk. It can be shown that the new
solution ̂ satisfies all requirements [11].

We now construct a finite-element set�2 for y2 = eti;Bm ,
such that the decrease in performance bound is at most"2
when we narrow the search space for variabley2 into a
finite-element set�2.

Claim 2 (�2) For y2 = eti;Bm and an arbitrarily small

given "2 > 0, we can construct a set�2 = fa2qh22 :h2 = 0; 1; � � � ; H2g, wherea2 = "2ei, q2 = 1 + "2, andH2 = j ln(1="2)ln(1+"2)k, such that for any given solution for

base station placement, data routing, and energy allocation
(on links) with a network longevityT , there exists a solu-
tion  ̂ with �̂i;Bm = �i;Bm , êti;Bm 2 �2 whenêti;Bm > 0,

and the network longevity iŝT � (1� "2)T .

The proof is based on construction. For each sensori
with eti;Bm > 0, we can revise energy allocation in and

construct ̂ as follows.êti;Bm=� "2ei 0<eti;Bm<"2ei"2ei(1+"2)h2 eti;Bm � "2ei (1�m�M)êtij = (1� "2)etij (1�j�N)êrki = (1� "2)erki (1�k�N)
whereh2 = jln eti;Bm"2ei = ln(1 + "2)k. It can shown that the

new solution ̂ satisfies all requirements [11].
We now construct a finite-element set�3 for y3 = fi;Bm ,

such that the decrease in performance bound is at most"3
when we narrow the search space for variabley3 into a
finite-element set�3.

Claim 3 (�3) For y3 = fi;Bm and an arbitrarily small
given"3 > 0, we can construct a set�3 = fa3qh33 : h3 =0; 1; � � � ; H3g, with a3 = "3ri(N2�N+2) , q3 = 1 + "32 , andH3 = �ln (N2�N+2)PNj=1 rj"3ri = ln �1 + "32 ��, such that for

any given solution for base station placement and data
routing with a network longevityT , there exists a solution ̂ with �̂i;Bm = �i;Bm , êti;Bm = eti;Bm , f̂i;Bm 2 �3 whenf̂i;Bm > 0, and the network longevity iŝT � (1� "3)T .

We first show that we only need to considerfi;Bm 2[a3;PNi=1 rj ℄ whenfyi;Bm > 0. This is done by construct-

ing a solution y from with f yi;Bm � a3 whenfyi;Bm > 0
and the network longevity isT y � (1 � "3=2)T . We then
construct a solution̂ from y as follows.f̂i;Bm= "3riN2�N+2 �1+ "32 �h3 (1� i�N; 1�m�M)f̂ij = fyij (1 � i; j � N; i 6= j) ;
whereh3 = � ln[(N2�N+2)fyi;Bm=(ri"3)℄ln(1+"3=2) �

. It can be shown

that the new solution̂ satisfies all requirements [11].
We now construct a finite-element set�4 for y4 = ti,

such that the decrease in performance bound is no more than"4 when we narrow the search space fory4 into this finite-
element set�4.

Claim 4 (�4) DenoteTS as the maximum network
longevity obtained by placing base stations only at the same
locations for sensor nodes. Fory4 = ti and an arbitrarily
small given"4 > 0, we can construct a set�4 = fa4qh44 :h4 = 0; 1; � � � ; H4g, with a4 = TS, q4 = 1 + "4, andH4 = j n ln 2ln(1+"4)k, wheren is the path loss index, such that

for any given solution for base station placement and data
routing with a network longevityT , there exists a solution ̂ with �̂i;Bm = �i;Bm , êti;Bm = eti;Bm , f̂i;Bm = fi;Bm ,t̂i 2 �4, and the network longevity iŝT � (1� "4)T .

We first show that we only need to considerti 2[TS ; 2nTS ℄. We then revise node longevity in solution 
and construct̂ as follows.t̂i = TS(1 + "4)h4 (1 � i � N) ;
whereh4 = jln tiTS = ln(1 + "4)k. This can be done by de-

creasing the energy allocation on certain link (e.g., incom-
ing link (k; i)). It can be shown that the new solution̂ 
satisfies all requirements [11].4.3. Phases 3 and 4

We now proceed to Phase 3 and Phase 4 of the design
procedure. We first determine"1; "2; "3, and"4 such that



"1+"2+"3+"4 = " andq2 = q3 = q4 = q. From Claims 2,
3, and 4,q2 = 1 + "2, q3 = 1 + "3=2, andq4 = 1 + "4, we
choose"1 = "2 = "4 = "=5, and"3 = 2"=5.

For eachz = 
i;Bm , we have
 = fy2y�13 y�14 : yk 2 �k; 2 � k � 4g= ("ei5 �1+ "5�h2 � 2"ri5(N2�N+2) �1+ "5�h3��1�TS �1+ "5�h4��1)= ��1 + "5�h2�h3�h4 (N2 �N + 2)ei2riTS � ;
wherehk = 0; 1; � � � ; Hk; 2 � k � 4, and thusj
j = O 4Xk=2 j�kj!= O &ln 5(N2 �N + 2)PNj=1 rj2"ri = ln�1 + "5�'+� ln(5=")ln(1 + "=5)�+ � n ln 2ln(1 + "=5)��= O� ln(1=")" + ln(N=")" +1"�=O� ln(N=")" � ;
where we have used the fact thatln(1 + "=5) � "=5 for
small" > 0.

The set� for the locations of base stationBm is defined
as all points with�i;Bm 2 �1 and
i;Bm 2 
 (or ei;Bm 2�2, fi;Bm 2 �3, andti 2 �4), 1 � i � N . Based on
Claims 1, 2, 3, and 4, we know that the maximum network
longevity by checking all locations in� is at least(1 � ")
times the optimum andj�j = O(N j
jj�1j) = O(N"2 ln N" ).

In Phase4, a(1� ") approximation solution is obtained
by examining all locations in�. ForM base stations, the
search space isO((N"2 ln N" )M ).4.4. Numeri
al Examples

As examples, we apply our(1� ") approximation algo-
rithm to solve base station placement problem forM = 1
(single base station) andM = 2 (two base stations). We
randomly generate a 30-node network in a10x10 area (see
Fig. 1). All units are normalized in consistent to those de-
fined in Eqs. (1), (2), and (3). For the power consumption
model, we set� = 1, � = 3, � = 1, andn = 4. The ini-
tial energy at a node is chosen from a uniform distribution
within [50; 100℄ and the data rate is chosen from another
uniform distribution within[1; 10℄.

For a given" = 0:1, the base station placements forM = 1 andM = 2 calculated by our approximation al-
gorithm are shown in Figs. 1(a) and (b), respectively. The
corresponding network lifetimes areT = 13:50 for M = 1
andT = 30:09 for M = 2.
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(a) Single base station (M = 1).
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Figure 1. Base station placement to maximize
network lifetime.



5. A (1�") Approximation Algorithm for Max-
imizing Weighted Network Capacity

We now show that the design procedure in Section 3 can
be used to address base station placement problem when
the optimization objective is network capacity. In this new
problem, we assume there is a weightwi for each sensor
nodei. For a given network lifetime requirementT , we
investigate how to place the base stations and perform data
routing such that the weighted capacity,

PNi=1 wiri, is max-
imized, whereri are variables.

Note that although the weighted capacity problem here
and the network lifetime problem discussed in the last sec-
tion both consider base station placement and data routing,
there does not appear any duality relationship between the
two problems and thus they must be solved independently.
We point out that the approximation algorithm presented in
this section is the first theoretical result on this problem.

In Section 4, we have given detailed exposition on how
to apply the design procedure for the network lifetime prob-
lem. The development in this section builds upon the
knowledge and experience in the last section and we will
strive to keep our discussion as concise as possible. Read-
ers are advised to review the last two sections to refresh
their understanding on the details of the algorithm design
procedure. The focus in this section will be on how to con-
struct the finite-element sets�k.1 As discussed in Section 3,
constructing such sets is problem-specific and is the most
challenging part in applying the design procedure to solve a
specific optimization problem.5.1. Algorithm Design
Phase 1. We choosex as a vector of locations of all
base stations (denotexm as them-th component ofx, 1 �m �M ). The objective functionf(x) here is the weighted
capacity

PNi=1 wiri. Whenx is given,f(x) can be obtained
by solving the following LP (polynomial complexity).
Maximize

PNi=1 wiri
subject to k 6=iX1�k�N fki + ri � j 6=iX1�j�N fij � MXm=1 fi;Bm = 0(1 � i � N)k 6=iX1�k�N �Tfki + j 6=iX1�j�N 
ijTfij + MXm=1 
i;BmTfi;Bm � ei(1 � i � N)rmin � ri � rmax; fij ; fi;Bm � 0(1� i; j�N; j 6= i; 1�m�M) ;

1The notations used in this section are self-contained and donot relate
to those in Section 4. For example,�k ’s in this section are for the network
capacity problem here and have no relationship to�k ’s discussed in the
last section for the network lifetime problem.

wherermin andrmax denote the lower and upper bounds for
the rate that a sensor can generate, respectively. Unlike the
network lifetime problem in Section 4, nowri are variables
andT is a constant.
Phase 2. We now identifyzm, ĝm(zm), andy(k)m for eachxm (the location of base stationBm). We choosezm as a
vector of
i;BmT for i = 1; 2; � � � ; N . Denotezim as thei-th component ofzm, i.e.,zim = 
i;BmT :
For eachzim, we definey(1)im = �i;Bm ;
where�i;Bm is the corresponding phase of the base stationBm when the origin is sensor nodei. For the rest ofy(k)im
variables, we choosey(2)im = eti;Bm ; y(3)im = fi;Bm ; L = 3 ;
and we can definezim aszim = y(2)im � (y(3)im )�1 :
Similar to what we discussed in Section 4.2, it is sufficient

to search only the locations that have
i;BmT = eti;Bmfi;Bm . We
again omit the subscriptim when there is no confusion.

The following three claims are for�1, �2, and�3, re-
spectively. Their proofs can be found in [11].

Claim 5 (�1) For y1 = �i;Bm and an arbitrarily small
given"1 > 0, we can construct a set�1 = fh1a1 : h1 =1; 2; � � � ; H1g, with H1 = dn�="1e (wheren is the path
loss index) anda1 = 2�=H1 such that for any given solu-
tion  for base station placement, data routing, and energy
allocation (on links) with a weighted capacityW , there ex-
ists a solution ̂ and a sensor nodei with �i;Bm 2 �1 and
the weighted capacity iŝW � (1� "1)W .

Claim 6 (�2) For y2 = eti;Bm and an arbitrarily small

given "2 > 0, we can construct a set�2 = fa2qh22 :h2 = 0; 1; � � � ; H2g, wherea2 = "2ei, q2 = 1 + "2, andH2 = j ln(1="2)ln(1+"2)k, such that for any given solution for

base station placement, data routing, and energy allocation
(on links) with a weighted capacityW , there exists a solu-
tion  ̂ with �̂i;Bm = �i;Bm , êti;Bm 2 �1 (whenêti;Bm > 0),

and the weighted capacity iŝW � (1� "2)W .

Claim 7 (�3) For y3 = fi;Bm and an arbitrarily small
given "3 > 0, we can construct a set�3 = fa3qh33 :h3 = 0; 1; � � � ; H3g, with a3 = rmin"3=2, q3 = 1 + "3=2,

andH3 = jln 2Nrmax"3rmin
= ln �1 + "32 �k, such that for any

given solution for base station placement and data rout-
ing with a weighted capacityW , there exists a solution̂ 
with �̂i;Bm = �i;Bm , êti;Bm = eti;Bm , fi;Bm 2 �2 whenfi;Bm > 0, and the weighted capacity iŝW � (1� "3)W .



Phase 3. We now proceed to Phase3. We first determine"1; "2, and"3, such that"1 + "2 + "3 = " andq2 = q3 = q.
From Claims 6 and 7,q2 = 1 + "2 andq3 = 1 + "3=2, we
choose"1 = "2 = "=4 and"3 = "=2.

For eachz = 
i;BmT , we have
 = ��1 + "4�h2�h3 eirmin

� ;
wherehk = 0; 1; � � � ; Hk; k = 2; 3, andj
j = O� ln(N=")" � :

The set� for the locations of base stationBm is defined
as all points with�i;Bm 2 �1 and
i;BmT 2 
 (or ei;Bm 2�2 andfi;Bm 2 �3), 1 � i � N . Based on Claims 5,
6, and 7, we know that the maximum network longevity
by checking all locations in� is at least(1 � ") times the
optimum andj�j = O(N j
jj�1j) = O(N"2 ln N" ).
Phase 4. In Phase4, we check all locations in� for
each base station and find the maximum weighted capacity
among them. Since there areM base stations, the search
space isO((N2"2 ln2 N" )M ).5.2. Numeri
al Examples

Again, we apply this(1 � ") approximation algorithm
to solve base station placement problem forM = 1 (single
base station) andM = 2 (two base stations). We randomly
generate a 30-node network in a10x10 area (see Fig. 2).
The initial energy at a node is set from a uniform distri-
bution within [50; 100℄. The required network lifetime is10 for all nodes. The weight for each node is set from a
uniform distribution within[1; 5℄. The minimum and maxi-
mum data rate are1 and100, respectively.

For a given" = 0:1, the base station placements forM = 1 andM = 2 calculated by our approximation al-
gorithm are shown in Figs. 2(a) and (b), respectively. The
corresponding weighted network capacities are3602:26 forM = 1 and5767:96 for M = 2.

6. Related Work

Related work on base station placement include [2, 4, 8].
In [2], Bogdanov et al. studied how to place base station so
that the network flow is proportionally maximized subject to
link capacity. The authors show that the base station place-
ment problem for an arbitrary network is NP-complete. The
authors also pointed out that an approximation algorithm
with any guarantee was not known and subsequently pro-
posed two heuristic algorithms. In [8], Pan et al. studied
single base station placement problem to maximize network
lifetime (i.e.,M = 1 case for our first problem). The op-
timal location is determined for the very special case when
only single-hop routing between a sensor node and the base
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Figure 2. Base station placement to maximize
the weighted capacity.



station is allowed. The more difficult problem for base sta-
tion placement where multi-hop routing is allowed was not
addressed.

The most relevant work to this paper is [4] by Efrat,
Har-Peled, and Mitchell. In this work, the authors stud-
ied two location problems in sensor networks. The first
problem addresses optimal location for a single base sta-
tion placement, which is the same as the first problem dis-
cussed in this paper whenM = 1. The authors proposed
a (1 � ") approximation algorithm that hasO �N"4 ln N" �
computational complexity. In comparison, for single base
station placement (M = 1), the computational complexity
in the approximation algorithm developed in this paper isO �N"2 ln N" �, which is order of1="2 reduction in complex-
ity. Such reduced complexity is mainly attributed to our de-
velopment of the complexity reduction technique discussed
in Section 3.2. More important, we have made a theoretical
contribution by synthesizing a systematic design procedure
in Section 3.2, which has the potential to be applied for the
design of other(1� ") approximation algorithms.

7. Conclusions

Our efforts in this work were motivated by base station
placement problems in sensor networks. Prior to this work,
there was only one(1�") approximation algorithm for base
station placement but unfortunately with high complexity.
In this paper, we developed a procedure to design(1 � ")
approximation algorithms that not only produce an approx-
imation algorithm with lower complexity, but also can be
applied to address other difficult problems for base station
placement with other objectives (i.e., network capacity).
The proposed procedure offers a general framework in the
design of(1�") approximation. The key ideas are to trans-
form infinite search space to a finite-element search space
with performance guarantee and to exploit overlap among
the elements to further reduce the size of the search space.
We believe this procedure has the potential to solve other
difficult optimization problems involving continuous search
space and we are currently further exploring its applications
beyond the two discussed in this paper.
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