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Abstract. Server selection is an important problem in replicated server
systems distributed over the Internet. In this paper, we study two
server selection algorithms under a server-based framework we have
developed. These algorithms utilize server load and network performance
information collected through a shared passive measurement mechanism
to determine the appropriate server for processing a client request.
The performance of these algorithms is studied using simulations.
Comparison with two naive server selection algorithms is also made.
The initial simulation results show that our dynamic server selection
algorithms have superior performance over the two naive ones, and
as a result, demonstrate the importance of dynamic server selection
mechanisms in a replicated server system.

Keywords: Server replication, server-based dynamic server selection,
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1 Problem Formulation and Related Work

Server replication (or mirroring) is a common technique that has been used
to provide scalable distributed service over the Internet. If done appropriately,
server replication can avoid server overload and significantly reduce client access
latency. In addition to the issues such as where to place replicated servers in the
global Internet and how clients can locate a server with the desired service, an
important and challenging problem in server replication is how to select a server
to process a client request so as to provide the “best service” for the client. This
problem, referred to as the server selection problem, is the focus of our paper.

In addressing the server selection problem, two procedures are typically in-
volved. First, statistics about server/network performance need to be collected.
Based on the collected statistics, a server selection algorithm then selects the
“best” server among a pool of eligible servers for processing a client request. De-
pending on where the statistics are collected and the server selection decision is
made, existing server selection approaches [5,7,8,11,14,16,19,23] can be classified
as either client-based or server-based .
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Under the client-based approach, statistics about the network and server per-
formance is typically collected using the active probing method [7,8,11,16,19]: a
client [8] or its “proxy” (e.g., the service resolver in [11]) sends probe packets to
measure the network performance.1 As an exception, Seshan et al.[23] employs
a novel passive measurement method where clients share their network perfor-
mance discovery through performance monitoring at the client side. The major
drawback of the client based server selection approach is that it is not transpar-
ent to clients: either clients or their proxies (e.g., service resolvers) need to know
the name/location of all the servers providing a given service. Furthermore, the
client-based approach requires modification of client browser software and in-
stallation of network measurement tools at every client side, and in some cases,
it may rely on the deployment of an Internet-wide measurement infrastructure
(e.g., modification of DNS to incorporate service resolvers). In the case where
active probing measurement techniques are used, the extra traffic introduced by
probe packets can lead to network bandwidth wastage or even congestion. In
the long term the client-based approach may have its appeal, especially when an
Internet-wide measurement infrastructure [15,21,22] is in place. However, in the
immediate future, server selection mechanisms using the client-based approach
are unlikely to be widely available to many clients to take advantage of replicated
server systems.

In contrast, the server-based approach relies on the cooperation of servers
providing a given service to determine the “best” server for a client and inform
the client the location of the server via, say, HTTP redirect mechanism. An
example of the server-based approach is HARVEST system [5] which uses a
simple network metric, hop count , as the criterion to select the “best” server for
clients.

In [14], we propose and develop a server-based measurement and server se-
lection framework which employs passive network measurement techniques and
performance information sharing among servers to dynamically select the “op-
timal” server for processing client requests. The proposed framework contains
three major components: (1) a server-based passive network measurement mech-
anism based on tcpdump [18] and a prototype of which called Woodpecker is
described in [10], (2) a metrics exchanging protocol for sharing server load and
network performance information among the servers, which will be described
in a future paper, and (3) a dynamic server selection mechanism for selecting
an “optimal” server to process a given client request, which is the focus of this
paper.

In this paper we describe two server-based dynamic server selection algo-
rithms. These two algorithms utilize both the server load and network perfor-
mance information collected by each server and shared among them. Based on
these performance statistics, a server decides whether itself or another server
would be the appropriate server to process a client request it receives. In the
latter case, the client request is redirected to the selected server (see Fig. 1).

1 In the case of [11] servers also collaborate with service resolvers by “pushing” their
performance statistics to service resolvers periodically.
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The performance of these algorithms is studied using simulations. Comparison
with two naive server selection algorithms is also made. The initial simulation
results show that our dynamic server selection algorithms have superior perfor-
mance over the two naive ones, and as a result, demonstrate the importance of
dynamic server selection mechanisms in a replicated server system.

Our server-based approach to the problem of server selection has the follow-
ing salient features. First, it is client-transparent. Second, it does not require any
modification to any client software or relies on the availability of an Internet-
wide measurement infrastructure. Therefore it is readily deployable. Third, by
using shared passive network performance measurement, we avoid the wastage of
network resources of active probing measurement techniques. The network band-
width overhead incurred by metrics exchanges among the servers is relatively
low, as the number of servers in a replicated system is generally small, in par-
ticular, when compared to the number of clients (or the sub-networks). Fourth,
by taking both the server load and network congestion status of paths between
servers and clients, we can employ relatively sophisticated dynamic server selec-
tion algorithms to choose the “optimal” server to service client requests without
incurring too much latency and overhead. Our approach is particularly amenable
to an enterprise-based replicated server system, where a number of servers con-
nected through an enterprise network provide certain services over the Internet
to “regular” clients who need access to the services frequently.

The remainder of this paper is organized as follows. In Section 2, the two
dynamic server selection algorithms are presented. The performance results are
shown in Section 3. In Section 4, we conclude the paper and discuss the future
work.

Redirected Request

Redirection ACK

Server R

Server S

�Client   X

Fig. 1. An example system

2 Server-Based Dynamic Server Selection Algorithms

In this section, we present two dynamic server selection algorithms. Before de-
scribing our algorithms, we define two major performance metrics used in our
server selection algorithms: server loads and fast paths, which indicate the status
of servers and different network paths from servers to clients.
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1. if (a client X is a regular client)
2. if (server load is light) and (the path from S to X is not slow)
3. accept the request
4. else
5. if (all other servers are heavily loaded)
6. accept the request
7. else
8. randomly redirect the request to R other than S
9. else
10. if (server load is light) or (all other servers are heavily loaded)
11. accept the request and generate metrics about the client
12. else
13. redirect to a light-loaded server

Fig. 2. Random Redirection Server Selection Algorithm

2.1 Performance Metrics

Server Load: For given server S, its load, denoted by LS , is defined as the
ratio of Ttotal to Rmax. Here, Ttotal is the time period required to serve all
requests in the waiting queue on S, and is related to the capability of S. It is
computed based on the current and historical information of S including the
processing delay on S and the transferring delay from S to a client. Rmax is
the maximum response delay that a typical client can accept for a request of
average size, such as 10 KBytes [6]. LS is called light if LS ≤ 80%; otherwise,
it is called heavily loaded.

Fast Path: As shown in Figure 1, if the transferring delay of a reply from a
server S to a client X is k times longer than the transferring delay from
another server R to X plus the cost of redirecting the request from S to R,
the path from S to X is called slow, and the path from R to X is called
fast. Here, k is an experimental parameter, such as 2 or 4. The transferring
delay depends on the size of the reply and the bottleneck bandwidth of
the path. For simplicity, the bottleneck bandwidth is approximated through
the TCP-friendly formula [17,24]. The redirection cost is the delay of an
acknowledgment from S to X plus the delay of the redirected request from
X to R. Both transferring delays are estimated through the RTTs of the
paths which are obtained through the passive measurement on servers.

2.2 Server Selection Algorithms

Our two simple server selection algorithms are given here. When a client X
sends a request to server S, there are two situations in which this request may
be redirected: (1) server S is overloaded, or (2) the path from S to X is slow.
We give two algorithms to choose another server R which may provide better
service under both situations. The first algorithm is called Random Redirection
(RR) which randomly redirects a request to another server R other than S. The
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1. if (a client X is a regular client)
2. if (server load is light) and (the path from S to X is not slow)
3. accept the request
4. else
5. computing equivalent classes
6. if (no better server)
7. accept the request
8. else
9. redirect the request to the ‘‘best’’ server R
10. else
11. if (server load is light) or (all other servers are heavily loaded)
12. accept the request and generate metrics about the client
13. else
14. redirect to a light-loaded server

Fig. 3. Best-guess Redirection Server Selection Algorithm

second algorithm examines all servers and selects the “best” one as R based on
the current metrics on S. Because the current metrics on server S may not be
accurate due to the delay of metrics exchange among servers, the second method
is called Best-guess Redirection (BR). RR is the simplest method which doesn’t
required too much calculation. BR, however, is one of the most complicated
methods, in which server must know the status of all servers and related network
paths to clients and compare all the possible choices.

Figure 2 and Figure 3 gives the basic frame of algorithms RR and BR. When
a server S receives a request from a client X, S checks whether accepting this
request into its waiting queue or redirecting this request to another server R.
As shown from line 1 to 3, if X is a regular client, and S’s load is light and the
path from S to X is not slow, S accepts this request. Otherwise, in RR method
in Figure 2 from line 5 to 8, S randomly redirect the request to another server
R other than S; or, in BR method in Figure 3 from line 5 to 9, S computes
equivalent classes to find whether a better server exists. The equivalent class
of server S respective to a specific request is the set of servers whose current
response time for this specific request is within a threshold compared with that
of the server S. If all the servers are in the same equivalent class (i.e., there is no
better server), S has to accept the request. Otherwise, S redirects the request
to R which could provide “best” service.

Lines 10 to 14 shows the case that there is no information available about
this client. If S’s load is light, it accepts this request. Otherwise, it redirects this
request to a light loaded server. In order to avoid the request oscillating among
the servers, S has to accept this request if all other servers are heavily-loaded.

3 Simulation

3.1 System Models

In our simulation, a system consists of clients, servers and network paths. Fig-
ure 1 shows an example system with 2 servers, 4 clients and 8 network paths.
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Fig. 4. Queueing delays of all 4 servers under FG and RR algorithms

Client Model: A client generates requests and receives replies from servers.
For generating requests, the size of a request is Pareto-distributed with an
average request size of 10 KBytes [6] and a shape parameter 1.66 [9]; the
inter-arrival of requests is exponential distributed. In addition, we assume a
new request can be generated even though previous requests have not been
served. For receiving a reply, if the reply is a redirection acknowledgment,
the client resends the request to the redirected server; if the reply is data,
the client records the response time of the request.

Server Model: When a server receives a request, it first checks whether to
accept this request or to redirect it to another server using the server selection
algorithms presented above. If a redirecting decision is made, the server sends
a redirecting acknowledgment back to the client; otherwise, the server accepts
this request into a FIFO queue which holds all waiting requests when the
server is serving a previous request.
A server always processes the request at the head of the waiting queue if the
queue is not empty. The cost of processing a request on a server consists of
its queuing cost, its operating system cost for starting and ending a service,
and its storage accessing cost. Queuing cost is the time period between the
request’s arriving and leaving the queue. Operating system cost is counted
using an average value (e.g., 0.1ms). Storage accessing cost are computed
through a storage model [13] with the parameters, such as an average seek
time (e.g., 10ms), an average rotation delay (e.g., 1ms), a controller overhead
(e.g., 1ms), and the transferring cost from the storage to the memory with a
20 Mbytes/second I/O bus. The effect of disk cache and memory cache will
be considered in our future study.

Network Model: Each client has a network path to each server, while the
bottleneck bandwidth of the path can be approximated using the formula in
[17,24] through the Maximum Transfer Unit (MTU), the Round-Trip Time
(RTT) and the loss rate of the path.
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Bandwidth =
1.3 · MTU

RTT · √
LossRate

From the results in [4,6,9,17,24], the typical values of loss rates, MTUs, and
RTTs of network paths are: a loss rate is between 0.01% and 5%, a MTU is
between 576 bytes to 1500 bytes, and a RTT is between 20 ms and 500 ms. In
our simulation, the loss rate, MTU and RTT of a path are generated within
the above ranges to simulate the dynamic status of the network paths.

Table 1. Response times among all clients

Method AVG MAX MIN STD # Requests Served
FS 4.048 14.16 0.007 3.953 6955
FG 1.189 6.932 0.009 1.851 7949
RR 0.142 3.489 0.003 0.196 8341
BR 0.140 2.647 0.003 0.210 8343

3.2 Initial Simulation Results

In this section, we present our initial simulation results. Besides the proposed
two server selection algorithms, RR and BR, two other static server assign-
ment approaches are also tested in our simulation to investigate the effect of the
server selection algorithms. The first one is called Fixed-Server (FS) assignment
method: a client keeps requesting services from a fixed server which is initially
randomly chosen by the client, and a server has a fixed number of clients dur-
ing a simulation. This is the most naive situation. The second method is called
Fixed-Group (FG) assignment approach: all clients are divided into equal size
groups, and each group of clients only contacts with a single default server. In
this method, each server has the same number of clients during a simulation. FS
and FG are similar to the methods used in existing systems.

Our initial simulation results are given as follows. In this group of simulations,
16 clients require services from 4 servers during a period of 1 minute. In Table 1,
the average response time of all clients under four approaches are given, as are
the maximum, minimum and standard deviation of the response time. The total
number of requests served are listed in the last column of Table 1. It is easy to
see that RR and BR served more requests than FS and FG.

Table 2 shows the queuing times on the simulated servers. Similarly, the
average value, the maximum, the minimum and the standard deviation are given.

Choosing the average results of BR as the base 1.00, Table 3 clearly shows
that RR and BR are significant better than FS and FG both in the average
response time among clients and the average queuing time among servers. An
interesting finding is that RR is only slightly worse than BR. BR requires much
more computing cost than RR, but RR did more redirections than BR. In our
simulation, 51664 times of redirections took place in the RR approach, while
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Fig. 5. Response times of the first 4 clients under FG and RR algorithms

Table 2. Queuing delays among all servers

Method AVG MAX MIN STD
FS 4.028 14.17 0.0 3.956
FG 1.166 6.749 0.0 1.850
RR 0.049 0.342 0.0 0.028
BR 0.044 0.327 0.0 0.028

47686 times of redirections happened in the BR approach. A large scale simula-
tion will show even greater differences between them.

Table 3. Summary of simulation results

FS FG RR BR
Avg Response Time over all clients 28.91 8.49 1.01 1.00
Avg Queuing Time over all servers 85.70 24.80 1.04 1.00

The dynamic methods, such as RR and BR, distributed the requests more
evenly among servers than the static methods such as FS and FG. The FG
method is better than the FS method in static methods while the RR method is
slightly worse than the BR method in dynamic methods. Therefore, we choose
the FG and RR methods as representatives to compare static methods with
dynamic methods. Figure 4 shows the queuing times of requests on four server
in the FG and RR methods. The x axis is the number of requests which have
been served on servers, and the y axis is the queuing time. Figure 4(a) shows that
one waiting queue keeps building up in the FG method; however, Figure 4(b)
shows that all the queuing times of requests are distributed in a small range in
the RR method. Figure 5 shows response times of 4 clients under the FG and RR
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methods. The x axis is the number of requests which clients have received their
replies, and the y axis is the response time. In Figure 5(a), the response time of
one client keeps increasing in the FG method; on the other hand, Figure 5(b)
clearly shows that, the response time of all client stay within a small range in
the RR method.

4 Concluding Remarks

In this paper, we study two server selection algorithms under a server-based
framework that we have developed in [14]. Both algorithms employ server load
and network performance metrics collected through a shared passive measure-
ment mechanism to determine the appropriate server for a client request. Sim-
ulations show that both dynamic algorithms are significantly better than static
methods in terms of response times and queuing delays. Work is under way to
implement this mechanism and investigate its performance over the Internet.
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