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Abstract

To scale up with the explosive Web growth, caching systems have been proposed and deployed over the Internet in

recent years. Among them, hierarchical caching systems employing expiration-based consistency control mechanisms

have become a viable and efficient solution. In this paper, we first analyze the performance of such hierarchical caching

systems from the perspectives of both cache servers and end users. Then, we examine retrieval and freshness threshold-

based approaches and their impact on system performance and user-perceived QoS. We show that by setting these

thresholds appropriately, it is possible that (1) users can impose a consistency QoS requirement on the object that they

wish to obtain without too much trade-off in system performance, and (2) performance bias against leaf users due to

their unfavorable locations in the hierarchical structure can be mitigated.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A challenging problem facing the traditional

client-server model is that it cannot scale up to

cope with the explosive growth in user (client)

population. Popular Web sites such as news portal

cnn.com and hot event site saltlake2002.com must

handle requests from a huge number of simulta-
neous users all over the world. This request surge
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(also known as flash crowd) can easily overload

any single Web server and its access links. To ad-

dress this scalability issue, Web caching [3] has

been proposed and deployed over the Internet in

recent years. The primary goal of caching is to

reduce the amount of requests sent to and re-

sponses received from the origin server by putting

copies of popular content closer to end users; this
can be achieved in the form of browser, proxy, or

reverse caches. Among different caching systems, a

hierarchical one consists of multiple cache servers

located at different levels in the caching hierarchy.

In [5,13], it has been shown that hierarchical

caching systems have the greatest potential to ag-

gregate user requests and reduce Internet traffic. In
ed.
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this paper, we focus on some performance issues

associated with such systems.

An important issue associated with a caching

system is the so-called object validity. Since the

content of a cacheable object may be modified as

time goes on, a cached object may only remain valid
for a limited amount of time. When an object is

modified, all cached copies become stale unless they

are updated accordingly. There are two validation

paradigms. The first one is called strong consistency.

The origin server of an object keeps track of all

cached copies and updates them immediately when

the object is modified. This paradigm is useful for

time-critical applications that cannot tolerate any
discrepancy in content [12,17], e.g., emergence an-

nouncements. Although strong consistency is in-

dispensable for certain services, its complexity is

high and thus it is expensive to implement.

On the other hand,mostWeb-based applications

(e.g., Web pages) do not have a stringent require-

ment on content consistency and can be supported

by the so-called weak consistency paradigm. Under
this paradigm, objects are only validated periodi-

cally, and there is a possibility that users may obtain

a stale object [11]. However, it is understood that

such inconsistency (within a certain limit) will not

be harmful, and in most cases users can still extract

useful information from the received object. 1 Since

weak consistency is acceptable formanyWeb-based

applications and, more importantly, inexpensive to
implement, it has been quickly developed and de-

ployed over the Internet.

In this paper, we consider the weak consistency

paradigm based on the time-to-live (TTL) timing

mechanism. TTL and its variants are popular and

have been widely used in Web caching (e.g., Ex-

pires and Last-Modified in HTTP server response

headers [9]). Under the TTL-based weak consis-
tency paradigm, whenever an object is retrieved

from its origin server, its TTL is initialized to a

value which reflects the maximum tolerance of

discrepancy. Once initialized, the TTL of an object

will decrease with time. A cached object is con-
1 Moreover, users always have the option to obtain the latest

object, e.g., by using the ‘‘reload’’ button in their Web

browsers.
sidered valid only if its remaining TTL is positive;

otherwise, it is considered expired and must be

validated again, either with the origin server or

some other cache servers.

We examine the expiration-based hierarchical

caching systems in a general setting and will not
limit ourselves to any specific application or im-

plementation. We focus on performance issues as-

sociated with these systems from the perspectives of

both cache servers and end users. We then propose

two threshold-based approaches that extend the

service capability of the basic hierarchical caching

system. The first one is the so-called freshness

threshold, which enables users to set a minimum
freshness requirement for the object that they wish

to obtain. With this threshold, users can avoid al-

ways receiving the so-called soon-to-expire objects.

We find that by appropriately selecting the fresh-

ness threshold parameter, it is possible to deliver

this new service feature without significantly com-

promising the overall system performance. The

second approach is the so-called retrieval thresh-
old, which is designed to mitigate the location

disadvantage associated with leaf users in a hier-

archical caching structure. We find that by adjust-

ing this threshold parameter on cache servers at

different levels, hierarchical caching systems can

offer an unbiased service to all users, regardless of

their locations in the caching hierarchy. Both the

retrieval and freshness threshold-based approaches
are simple to implement, and thus will undoubtedly

further help accelerate the deployment of weak-

consistency-based hierarchical caching systems.

The remainder of this paper is organized as

follows. In Section 2, we show some basic prop-

erties of a hierarchical caching system. In Section

3, we propose the retrieval and freshness thresh-

old-based approaches and show how each of them
can help improve object freshness and response

time for all users in the hierarchical system. Re-

lated work is summarized in Section 4. Section 5

concludes this paper.
2. System model

Fig. 1(a) shows a tree-like hierarchical caching

system for an object in our study. If a cache server
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(CS) receives a request, and if the requested object

is cached locally with a positive TTL, the object is

returned immediately with the remaining TTL.

Otherwise, the CS generates another request to its

immediate upstream CS for this object. This pro-

cess is recursive until a fresh copy (an object with a

positive TTL) is obtained. In the worst case, the
recursive process terminates at the origin server

(OS), where the object TTL is initialized to s.
Here, s represents the maximum amount of time

that an object may be inconsistent with the one at

the OS. Once initialized, the TTL decreases with

time when the object is cached at a CS.

In Fig. 1(b), we take the longest path (or the

depth of a tree) and convert requests from all other
nodes outside this path as equivalent Aggregated

Client (AC). If there are multiple longest paths, the

choice of a particular path for setting up the sim-

plified abstract model can be made arbitrarily. This

simplified abstract model is not meant to be a

complete replacement for the original system. In-

stead, it will solely be used to demonstrate the in-

trinsic properties of a hierarchical caching system.
Now we focus on the chain-like abstract model

in Fig. 1(b). For a CSd at level d (16 d 6D and D
is the depth of the tree), we denote the aggregated

request rate from ACd as kd . We assume that the

aggregated request arrival is a Poisson process. 2
2 The request behavior for an individual user can be very

complicated. But for the aggregated user requests coming from

a large user population (e.g., a CS serving users in a

metropolitan area), it is reasonable to adopt a Poisson model.
Note that except for leaf CSs, all other CSs also

receive requests from their immediate downstream

CSs. Under such a system, there are two sets of

performance metrics, one measured at ACd and

the other at CSd . For ACd , we consider user-per-

ceived response time ru
d , and for CSd , we focus on

cache miss ratio Cs
d since it is proportional to the

request traffic generated by that CS. These two

metrics characterize the performance from the

perspectives of end users and cache servers, re-

spectively. Both ru
d and Cs

d depend on the current

remaining TTL sdðtÞ, which exhibits a birth–death

renewal process, with its peak value Td being a

random variable defined over ð0; s�. In the rest of
this section, we will show some basic properties of

hierarchical caching systems.

2.1. Average TTL behavior

A sample path for the TTL behaviors at levels 1

and d is depicted in Fig. 2. Several properties of

this TTL evolution path can be observed in this
figure.

Property 1. If an object becomes stale at level d1
(16 d1 6D), then for any level d (d1 6 d 6D), cop-
ies of this object are also stale.

Note that we have implicitly neglected network

delay and server overhead when computing the
average TTL, because these delays (which are

typically on the order of milliseconds or seconds)

are much smaller than s (which is typically on the

order of several hours or even days). If we denote

t� as renewal points for the random process sdðtÞ,
Td

0 t

IIIIII

Fig. 2. TTL behaviors at level 1 and level d.
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and the time between two successive renewal

points as the length of a renewal period, then any

two renewal periods are independent and identi-

cally distributed. The idle time in each period at

CSd is inversely proportional to the aggregated

request rates sent to a subtree rooted at CSd . We
denote the aggregated Poisson request rates at

level d as Kd ¼ kd þ kdþ1 þ � � � þ kD.
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Property 2. There is at most one TTL triangle at
level d within any level 1 TTL renewal period.

For each level 1 TTL renewal period, there are

three possible scenarios at level d (see Fig. 2):

ii (I) the level 1 TTL triangle is triggered by a re-

quest initially generated within the subtree

rooted at CSd ;

i (II) the level 1 TTL triangle is triggered by a re-

quest initially generated outside the subtree

rooted at CSd , but there is a request gener-

ated within the subtree rooted at CSd during
the same level 1 renewal period;

(III) the level 1 TTL triangle is triggered by a re-

quest initially generated outside the subtree

rooted at CSd , and there is no request gener-

ated within the subtree rooted at CSd during

this level 1 renewal period.

The probability for Scenario I is pId ¼ Kd=K1,
and the probability for Scenario II is

pIId ¼ K1 � Kd

K1

�
Z s

0

Kd � e�Kd �t dt

¼ K1 � Kd

K1

� ð1� e�Kd �sÞ: ð1Þ

In Eq. (1), ðK1 � KdÞ=K1 is the probability when a

request is initially generated outside the subtree

rooted at CSd , and ð1� e�Kd �sÞ is the probability

that there is at least one request generated within
the subtree rooted at CSd during this period.

Since these two events are mutually independent,

pIId is the product of these two probabilities.

The probability for Scenario III is pIIId ¼ 1� pId �
pIId .

In Scenario I, the TTL triangle at level d has a

height of T I
d ¼ s as its peak value, where s is the
maximum TTL initialized at the OS. For Scenario

II, the TTL triangle has an average height of

T II
d ¼

R s
0
ðs� tÞ � Kd � e�Kd �t dtR s

0
Kd � e�Kd t dt

¼ s� 1=Kd þ e�Kd �s=Kd

1� e�Kd �s
: ð2Þ

For Scenario III, T III
d ¼ 0. Therefore, the average

TTL triangle height at level d is

EðTdÞ ¼
pId � T I

d þ pIId � T II
d

pId þ pIId

¼ Kd � sþ ðK1 � KdÞ s� ð1� e�Kd �sÞ=Kdð Þ
Kd þ ðK1 � KdÞð1� e�Kd �sÞ :

ð3Þ
In Fig. 3, by using Eq. (3), we show some nu-

merical results for EðTdÞ, the average height of a

TTL triangle (or average TTL for short), as a

function of the total arrival ratio Kd=K1 for CSd ,

where K1 ¼ 55.

We use simulations to further demonstrate the

behavior of a hierarchical caching system and to

reveal its properties and performance. Our simu-
lator is built upon the Network Simulator (ns-2)

framework [14] with our add-on agents (i.e., AC,

CS, and OS) and configurable parameters such as

kAC and s. In Fig. 4, we show the behavior of

EðTdÞ, normalized with respect to s, from both

simulation results (with points) and analysis (lines)

for a system where D ¼ 10. We use the following
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three contrasting user request patterns in this
simulation:

• Light Root Heavy Leaf (LRHL), i.e., kd ¼ d for

16 d 6D ¼ 10;

• Uniform, i.e., kd ¼ 1
2
ðDþ 1Þ ¼ 5:5 for all

16 d 6D ¼ 10;

• Heavy Root Light Leaf (HRLL), i.e.,

kd ¼ D� d þ 1 for 16 d 6D ¼ 10.

Note that we intentionally set the total request
arrival rate to be the same under all three traffic

patterns in order to show the impact due to dif-

ferent traffic characteristics. The following are

several properties extracted from the simulation

results.

Property 3. EðTd1ÞPEðTd2Þ for any 16 d1 6
d2 6D, i.e., the farther away a CS is from the OS,
the smaller average TTL triangle the CS can expect.

Property 4. The higher the request rate at a CS, the
larger TTL triangle the CS can expect.

Property 5. 1
2
s6EðTdÞ6 s for 16 d 6D.

These three properties can also be formally

proved based on our earlier analysis for EðTdÞ (we
omit the proofs here to conserve space). Based on

the analytical results for EðTdÞ and its properties,

in the rest of this section, we show some important

performance measures for hierarchical caching

systems.
2.2. Cache miss performance

A key metric for a CS is cache miss rate, which
can be defined as a ratio of cache misses over time

or total requests. More precisely, in the first case,
the miss rate can be defined as the number of

misses per unit time and is denoted as csd . For c
s
d ,

there is 1 miss per renewal period of Id þ EðTdÞ at
CSd and Id ¼ 1=Kd . Therefore,

csd ¼
1

1=Kd þ EðTdÞ
:

In the latter case, the miss ratio can be defined as

the ratio of the number of misses over the total

number of requests and is denoted as Cs
d . For C

s
d ,

we consider the following two sub-cases:

1. with probability pð1ÞC ¼ kd=Kd , the level d TTL

triangle is triggered by a request initially gener-

ated locally at ACd . Therefore, for the remain-
ing EðTdÞ, there are ðkd þ csdþ1Þ � EðTdÞ requests

(all hits) generated either locally or from the

downstream CS;

2. with probability pð2ÞC ¼ ðKd � kdÞ=Kd , the level d
TTL triangle is triggered by a request generated

at level dþ, where d < dþ
6D. Therefore, there

will be no further requests coming from this

particular downstream CS in this TTL triangle
period. Thus, for the remaining EðTdÞ, there

are kd � EðTdÞ requests (all hits) that are gener-

ated locally at level d.

Combining the above two sub-cases, we have

Cs
d ¼ pð1ÞC

1

ðkd þ csdþ1ÞEðTdÞ
þ pð2ÞC

1

kd � EðTdÞ
:

We can also derive the miss ratio for local re-

quests, denoted as Cu
d . All we need to do is to omit

the components for downstream requests in Cs
d ,

i.e.,

Cu
d ¼ pð1ÞC

1q
1þ kd � EðTdÞ

:

Fig. 5 plots the cache miss ratio Cs
d as a function

of CS position (level d) and request patterns. For

the uniform request pattern, the cache miss ratio is
almost constant at different levels except for a slight

increase for leaf CSs. But in the HRLL traffic



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
ac

he
 m

is
s 

ra
tio

 -
 Γ

 s d

Level - d

LRHL/miss.sim
LRHL/miss.cal
Uniform/miss.sim
Uniform/miss.cal
HRLL/miss.sim
HRLL/miss.cal

Fig. 5. Cache miss ratio at each level.

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

1 2 3 4 5 6 7 8 9 10

U
se

r 
re

sp
on

se
 ti

m
e 

- 
σu d

Level - d

LRHL/urtt.sim
LRHL/urtt.cal

Uniform/urtt.sim
Uniform/urtt.cal

HRLL/urtt.sim
HRLL/urtt.cal

Fig. 6. User response time at each level.

240 J. Pan et al. / Computer Networks 44 (2004) 235–246
pattern, the cache miss ratio increases quickly as a

CS is farther away from the OS. However, for the

LRHL request pattern, the increased request rate
for leaf CSs can actually compensate for their

structural disadvantage. Indeed, the increased re-

quest rate reduces the cache miss ratio for leaf CSs.

Apparently, the cache miss ratio is directly related

to the traffic generated by a CS. Therefore, when

designing a hierarchical caching system, it is im-

portant to ensure that leaf CSs have sufficient user

requests.

2.3. User response time

From the perspective of end users, the ultimate

performance measure for a caching system is user�s
response time, which we denote as ru

d . Assume that

the sum of network delay and server overhead

between CSd and CSd�1 is dd . Then, user response
time at level d can be calculated recursively as

ru
d ¼ Cu

d � dd

�
þ Kd

Kd�1

� r
s
d�1

Cs
d�1

�
;

where rs
d�1 is cache response time at level d � 1,

i.e.,

rs
d ¼ Cs

d � dd

�
þ Kd

Kd�1

� r
s
d�1

Cs
d�1

�
;

and for d ¼ 1, ru
1 ¼ Cu

1 � d1 and rs
1 ¼ Cs

1 � d1.
We again use simulation results to demonstrate

the behavior of user response time. In the simu-

lations, dd is normalized to one delay time unit. In
Fig. 6, we plot the user response time as a function
of CS position and request pattern. Clearly, there

is a performance bias against users that are farther

away from the OS, regardless of the particular

traffic pattern in the caching system.

Based on these basic properties for a hierar-

chical caching system, in the next section, we ex-

plore approaches in the context of prefetching, in

order to extend service features and improve the
performance of caching systems.
3. Threshold-based cache prefetching

As we have demonstrated in the previous sec-

tion, the central theme of a TTL-based weak

consistency paradigm is driven by the behavior of
object TTL at CSs. From user�s perspective, the

TTL of a retrieved object gives an upper bound of

the period within which the object may still be

considered ‘‘valid’’. In the basic model, users do

not have any control over object freshness.

Therefore, it would be desirable to offer users some

control over how fresh they wish the object to be.

Another aspect associated with TTL is user re-
sponse time. The farther away a CS is from the

OS, the smaller the average height of the TTL

triangle it can expect, which leads to larger average

user response time.

In this section, we show that by appropriately

imposing different thresholds on TTL, it is possible

to offer additional control to users with regard to
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their freshness requirement and to improve leaf

users� response time.

3.1. Threshold parameters

To mitigate performance bias against leaf users
(in terms of user response time), we introduce re-
trieval threshold, which is denoted as bd for a CS at

level d. This parameter sets the minimum re-

maining TTL of the object that can be retrieved by

a CS. There are two possible ways to maintain this

threshold. One is proactive, meaning that whenever

the remaining TTL of an object is below bd at a

CSd , the CS will immediately initiate an internal
request to its parent CSd�1 and so forth, until an

object with the remaining TTL larger than bd is

retrieved. The other approach is reactive, meaning

that a CSd will only send a request to its parent

CSd�1 for an object when there is a request to CSd

and the TTL of the cached object is less than bd .

Since the first approach is overly aggressive in

keeping the remaining TTL above bd , and would
generate excessive overhead requests, we will only

consider the second approach, which will be

elaborated later in this section.

To offer users some control over how fresh the

object that they hope to obtain will be, we intro-

duce freshness threshold, denoted as ad for an AC

at level d. The freshness threshold is set by users; it

reflects user application requirements. It is a
measure of how long the user wishes the object to

remain fresh after the user obtains the object.

Comparing freshness threshold with the retrieval

threshold, it is easy to see that we must have

06 ad 6 bd 6 s, which is shown in the shaded area

in Fig. 7. It is also worth noting that when bd ¼ s,
the effect of caching disappears.

In the case when the object�s remaining TTL is
between ad and bd , the CS has two alternatives to

serve a user request. With the first approach, the

CS may deliver the object to the user immediately

since the remaining TTL is greater than ad , while
generating another request to its upstream CS in

order to retrieve an object satisfying its retrieval

threshold bd . With the second approach, the CS

may temporarily withhold the current user request
while initiating another request to its upstream CS

for a copy with a remaining TTL greater than bd .
Upon receipt of this updated object, the CS will

also deliver it to the user. Clearly, the withholding
strategy could increase user response time (it will

also provide better-than-expected object fresh-

ness). Here, we will focus on the strategy that does

not withhold user request, since users are more

sensitive to a longer response time when waiting

for an object.

To link the basic model discussed in Section 2

where a ¼ b ¼ 0 to the threshold-based cache
prefetching models where a ¼ a > 0 and b ¼
b > 0, in Fig. 7, we show two possible evolution

paths. For the first path, we can first increase b to

b� a while keeping a ¼ 0. Then we can increase a
and b simultaneously to a and b. On the second

path, we can first increase ða; bÞ from ð0; 0Þ to

ða; aÞ, and then increase b from a to b while

holding a ¼ a. Therefore, the general case where
a ¼ a > 0 and b ¼ b > 0 can be derived by ap-

propriately shifting a or b from the basic model

(a ¼ b ¼ 0), and it is only necessary to study two

building-block cases where 06 a ¼ b6 s and

a ¼ 06 b6 s, respectively.

3.2. Freshness threshold

We first consider the case in which a user has a

freshness threshold ad > 0. For simplicity, we as-

sume that users share the same freshness require-

ment for an object no matter where they are.

Therefore, we have ad ¼ a for all 16 d 6D.

3.2.1. Average TTL behavior

To follow one path in Fig. 7, we start with
a ¼ b ¼ / and observe the TTL behaviors at level
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1 and d, as we did in Fig. 4. Fig. 8 shows the TTL

triangle 3 in this case. Comparing Fig. 8 to Fig. 4,

we observe that if we redefine the renewal period in
Fig. 8, most of the TTL analysis that we have done

earlier for Fig. 4 can be applied here. Specifically,

in Fig. 8, we define the level 1 renewal point s1ðt�Þ
as s1ðt��Þ > / and s1ðt�Þ ¼ /. The analysis for the

average height of a TTL triangle at level d would

then follow the same token as that in Section 2.1,

except that we need to take into account the ver-

tical shift of /.
To elaborate, we condition the TTL behavior at

level d during a given level 1 renewal period on the

following three scenarios (also see Section 2.1):

I(I) with probability pIft ¼ Kd=K1, the level 1 TTL

triangle is triggered by a request initially gen-

erated within the subtree rooted at CSd , and

T I
ft ¼ ðs� /Þ þ / ¼ s;

(II) with probability
cur
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�
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0

Kd � e�Kd �t dt;

the level 1 TTL triangle is triggered by a re-

quest generated outside the subtree rooted at
CSd , but there is also a request generated

within the subtree rooted at CSd within the

same level 1 renewal period. Then we have

T II
ft ¼ /þ

R s�/
0

ðs� /ÞKd � e�Kd �t dtR s�/
0

Kd � e�Kd �t dt
;

3 Although the TTL evolution is no longer a triangle-like

ve for the case with threshold-based prefetching, for the sake

presentation simplicity, we still refer it as triangle.
(III) the level 1 TTL triangle is triggered by a re-

quest generated outside the subtree rooted

at CSd , and there is no request generated

within the level d CS subtree during this level

1 renewal period.

By combining the above three cases, we can

calculate the average height of the TTL triangle at

level d (denoted as EftðTdÞ and ft for freshness

threshold) as

EftðTdÞ ¼
pIft � T I

ft þ pIIft � T II
ft

pIft þ pIIft

¼
Kdsþ ðK1 � KdÞ½s� /e�Kd ðs�/Þ � 1

Kd
þ 1

Kd
e�Kd s�

Kd þ ðK1 � KdÞ½1� e�Kd ðs�/Þ� :

After some algebraic manipulation, we have

EftðTdÞ ¼ /þ E
s¼defs�/

ðTdÞ: ð4Þ

That is, EftðTdÞ can be obtained by replacing s in

Eq. (3) with s� /, plus a positive shift of /. By
using the same token, it is straightforward to ob-
tain Cs

ft;d , r
u
ft;d , and other performance metrics.

We use numerical results to substantiate the

above analysis. Fig. 9 shows the average height of

the TTL triangle at each level when user requests

follow the HRLL traffic pattern in the caching

system. Recall that HRLL is the worst case traffic

pattern among the three that we have discussed

(see Fig. 4). In Fig. 9. We used ad ¼ bd ¼ / and
/ 2 f0; 0:1s; 0:3s; 0:7s; sg. In particular, the case
0
1 2 3 4 5 6 7 8 9 10

Level - d

1.0-1.0/ttl.cal

Fig. 9. Average height of TTL triangle at each level with

freshness threshold and HRLL request pattern.
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when / ¼ 0 corresponds to the basic case where

there is no freshness threshold. By increasing /,
the average height of the TTL triangle is pushed

upward. In the extreme case when / ¼ s, each

request must go to the OS, which corresponds to

the case without caching in the system.
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ig. 10. Cache miss ratio at each level with freshness threshold

and HRLL request pattern.
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3.2.2. Cache miss ratio

In Fig. 10, we show cache miss ratio with the

same traffic pattern and parameters used in Fig. 9.

In the case of ad ¼ s, 16 d 6D, we have

Eft;/¼sðTdÞ ¼ s. This is the same case as the one

under a flat caching system where each CS sends

requests directly to the OS. 4 Clearly, we have a
trade-off between object freshness and network

traffic: the fresher the object delivered to the user,

the higher cache miss ratio the system will expe-

rience, with a resulting increase in network traffic.

When a is already large (e.g., a ¼ 0:7s), a slight

increase in a could bring a large increase in Cs
ft;d

(see Fig. 10).
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Fig. 11. User response time at each level with freshness

threshold and HRLL request pattern.
3.2.3. User response time

We now address user response time when there

is a freshness threshold. Intuitively, one would

expect that user response time would increase

substantially if users impose additional freshness

requirements on the objects. It turns out that this

is not the case. Fig. 11 shows the user response

time at each level d, with the same traffic pattern
and parameters used in Fig. 9. The case of / ¼ 0

corresponds to no freshness threshold (as in the

case we discussed in an earlier section). Over a

wide range of /, 0 < / < 0:7, the increase of user

response time is barely noticeable. Only when / is

substantially large (i.e., /P 0:7) do we see a sig-

nificant increase in user response time for leaf level

users. This fact demonstrates that the freshness
threshold is a viable service option that can be

offered to users without much performance com-

promise in user response time.
4 To be more precise, the actual performance here would be

even worse than a flat system since each upstream CS is queried

in this update process, bringing additional processing overhead

to these servers.
F

3.3. Retrieval threshold

Now we consider the situation when a CSd has

a retrieval threshold bd > 0, while ad ¼ 0 for ACd .

3.3.1. Average TTL behavior

We first consider the average TTL with a re-

trieval threshold (rt), ErtðTdÞ, at CSd with bd . When

a request with ad ¼ 0 from ACd arrives, it is not

hard to see that this is the same case as when a ¼ b
in Section 3.2.1. Eventually, CSd has to get a copy

of the requested object with a remaining TTL larger
than bd , although the user request can be fulfilled

earlier with a copy of less freshness. Therefore, we

omit plotting ErtðTdÞ at CSd here, since ErtðTdÞ ¼
EftðTdÞ when bd ¼ /. However, since in Section 3.1
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Fig. 13. User miss ratio at each level with retrieval threshold

and HRLL request pattern.
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we adopt the strategy without request withholding

and proactive retrieval, the cache miss rate/ratio,

and all user-oriented performance metrics (includ-

ing user perceived object TTL, miss rate/ratio, and

response time), will be different from the case only

with a freshness threshold.

3.3.2. Cache miss ratio

Here again we only present the results with the

HRLL request pattern, since this is the worst case

scenario for leaf users. We assume that different

CSs can choose different bd according to their

location (d) in a hierarchy. Without loss of gen-

erality, we plot in Fig. 12 the cache system miss
ratio for bD 2 f0; 0:1s; 0:3s; 0:7s; sg (i.e., only the

leaf CSD adopts a retrieval threshold), and all

other parameters are the same as those used in Fig.

5. The case when bD ¼ 0 is equivalent to the basic

model without employing a retrieval threshold. As

expected, when the retrieval threshold bD in-

creases, the cache system miss rate also increases,

since we do count prefetching as a result of cache
miss. Furthermore, for the certain range of 0 <
bD < 0:7, the increase in cache miss ratio is not

very significant.

In Fig. 13, we plot the user miss ratio for the

same simulation. Here, we find that when the re-

trieval threshold increases, there is improvement

(i.e., reduction) in the user miss ratio. Such im-

provement is particularly profound for leaf users.
The larger the retrieval threshold bD is, the smaller

the user miss ratio becomes.
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Fig. 12. Cache miss ratio at each level with retrieval threshold

and HRLL request pattern.
3.3.3. User response time

We now discuss the improvement of user re-

sponse time as a consequence of retrieval thresh-

old. Fig. 14 shows that ru
rt;d is reduced accordingly

with the increase of bD. Again, the reduction of

user response time is significant for leaf users.

However, when bD > 0:7s, a further increase in bD

only results in a minor reduction in user response

time. In the extreme case when bD ¼ s, even

though all user requests must be sent to the OS

(resulting in a large volume of network traffic), the

improvement of user response time becomes neg-

ligible when compared to the case that bD ¼ 0:7s.
This fact suggests that the retrieval threshold needs

to be carefully tuned toward the proper operating
point to achieve the best trade-off in terms of
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Fig. 14. User response time at each level with retrieval

threshold and HRLL request pattern.
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performance improvement in user response time

and additional overhead in network traffic.
4. Related work

Web caching has attracted many research ef-

forts in recent years [16]. Most work focuses on the

user (or Web browser), proxy, and server charac-

terization by collecting trace logs, fitting to known

statistical distributions, and regenerating requests

in simulation or a controlled testbed [1,2]. There

are several related work on cache consistency and

hierarchical caching [5,11,13,15], but they are
mainly in the context of protocol design, empirical

simulation, and experimental measurement. In this

paper, we take an analytical approach to better

understand the intrinsic properties in hierarchical

caching systems built upon the TTL-based expi-

ration scheme.

Cohen et al. [8] considered a two layer hierar-

chical system with the TTL scheme, but they are
more focused on the miss rate and user request

pattern. Their work motivates us to further ex-

plore the TTL behaviors at different levels, espe-

cially within a hierarchical structure. In our work,

we also analytically derive cache miss ratio and

user response time based on the obtained TTL

model. Che et al. [6] focused on the impact of ac-

cess frequency of multiple objects on cache re-
placement algorithms and modeled it as a tandem

of low-pass filters. On the other hand, the focus in

this paper is on the temporal properties, not the

spatial constraints. Our goal is to show how to set

up different types of thresholds to control the TTL

behavior, deliver richer service features to end

users, and improve leaf user�s response time. Pre-

fetching has been proposed in the literature (see
[4,7,10]). In contrast to previous work, we explore

how different threshold settings can deliver various

performance-cost trade-offs for a hierarchical

caching system.
5. Conclusions

In this paper, we first developed an analytical

model for hierarchical caching systems with the
TTL-based expiration mechanism. Then we as-

sessed the performance of such systems from the

perspectives of both cache servers and end users.

We also revealed the performance issues associ-

ated with the structure of the caching system. By

introducing the cache prefetching based on
freshness and retrieval thresholds, we showed that

a hierarchical caching system could be enhanced

to offer more control options to users and to

mitigate performance issues related to caching

structure.
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