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Abstract

In this paper we propose a server-based measurement approach that can be deployed in replicated servers within
a wide-area enterprise network to provide distributed service to a large number of clients across the Internet. In our
approach, each server performs traffic measurement and exchanges the collected metrics with peer servers. This server-based
measurement approach consists of three steps: non-intrusive data collection, data analysis and performance metrics
generation, and exchange of performance metrics among peer servers. As part of an experimental system we have built, we
describe a performance metrics generation tool called Woodpecker, which is designed based on a non-intrusive passive packet
capturing mechanism. Experimental results obtained using Woodpecker demonstrate that it is indeed feasible to employ
non-intrusive measurement tools to generate the majority of desired performance metrics for dynamic server selection.
 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Server replication (or mirroring) is a common technique that has been used to provide scalable
distributed service over the Internet. If done appropriately, server replication can avoid server overload
and congested paths, and significantly reduce client access latency. In order to select a server to process
a client request so as to provide the ‘best service’ for clients, measurement of server loads and network
performance is critical in a replicated server system.

In this paper we propose a server-based measurement approach to facilitate dynamic server selection.
This approach is developed in particular for an enterprise network environment, where a number of
replicated servers are strategically deployed in geographically dispersed locations to provide distributed
services to a large number of clients across the Internet. As typically is the case, we assume that
these replicated servers are connected via a wide-area enterprise network, whereas clients access to
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the services provided by these servers through the Internet. Our proposed server-based measurement
approach consists of three steps. First, each server conducts network measurement and collects network
statistics in a fully independent and distributed manner. This step is referred to as data collection step.
Second, each server analyzes the collected network statistics and generates relevant performance metrics
that are useful for dynamic server selection. This step is referred to as data analysis and performance
metrics generation step. Lastly, the network performance metrics generated by individual servers are
exchanged among the peer servers. This step is referred to as information exchange step. Based on the
exchange information, each server will build a performance metrics database. which will be used as an
input to dynamic server selection algorithms.

A salient feature of our proposed server-based measurement approach is client-transparency. Because
the network performance measurement as well as dynamic server selection are performed on the server
side, a server-based measurement infrastructure based on our approach can be readily deployed without
the need to install special hardware or software at clients and=or at network routers. Another important
feature of our approach is the use of non-intrusive measurement techniques (see Section 2) to generate
the majority of network performance metrics that are useful for dynamic server selection. Active probing
based intrusive measurement techniques are used only for those performance metrics that cannot be
obtained through non-intrusive measurement. These performance metrics such as path bandwidth (i.e.,
the bottleneck link capacity along a path) are typically static, therefore intrusive measurement is
only invoked occasionally. As a result, our approach minimizes the extra network load incurred by
measurement traffic injected into the network.

Since our server-based non-intrusive measurement approach is targeted for replicated server sys-
tems within an enterprise network environment, the communication overhead of performance metrics
exchange can be limited and controlled. To see why this is the case, we first note that the number
of replicated servers with a single enterprise is typically small. For example, currently Yahoo, Lycos,
American Online, Alta Vista and Infoseek have, respectively, 15, 12, 8, 7 and 3 replicated web servers.
Second, for the purpose of server selection, it suffices to generate network performance metrics on a
subnetwork basis, instead of per client application instance, or per host. To further reduce the amount
of performance information generated and exchanged, an enterprise replicated server system can also
provide ‘differentiated services’ to clients by only keeping track of network performance for ‘preferred’
clients who regularly access to its service. In addition, exchange of performance metrics through a
wide-area enterprise network can also reduce the impact of the system overhead on the perceived
performance at clients.

To demonstrate the feasibility and advantages of the proposed server-based measurement approach,
we have built an experimental measurement system. The non-intrusive data collection mechanism
employed in this system is based on a passive packet capture tool, BSD Packet Filter. In addition,
tcpdump is used to collect data traffic for each TCP flow between servers and clients. To analyze the
collected raw data and generate relevant performance metrics for dynamic server selection, we design
and implement a prototyping metrics generation software tool called Woodpecker. Through experiments,
we demonstrate that Woodpecker is capable of generating a range of performance metrics that are useful
for dynamic server selection. These performance metrics include throughput, goodput, packet loss rate
and round trip delay for TCP flows. Static performance metrics such as path bandwidth are obtained
by occasionally invocation of intrusive measurement tools such as pathchar [10]. We also design
a simple SNMP-like request=response protocol for periodic exchange of performance metrics. The
frequency of these exchanges can be controlled to maintain validity of the distributed performance
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metrics database at each server while at the same time minimizing unnecessary traffic load within an
enterprise network.

The remainder of this paper is organized as follows. In Section 2 we provide a brief overview of
the background and related work. In Section 3 we first introduce a number of performance metrics
that are useful for dynamic server selection, and then describe the experimental system built based on
the proposed server-based non-intrusive measurement approach, in particular, the performance metric
generation tool Woodpecker. The paper is concluded in Section 4.

2. Background and related work

In this section we briefly give an overview of the background for our work and provide a brief survey
of related work.

2.1. Active probing versus passive watch

Network measurement and data collection techniques can be generally classified into two categories:
intrusive measurement (also referred to as active probing) and non-intrusive measurement (also referred
to as passive watch).

Active probing requires injection of a sequence of test packets into the network and obtain network
performance information by analyzing the behavior of the feedback probing packets. Examples of active
probing measurement techniques include the pathchar [10], bprobe and cprobe [5], TReno [12],
and traceroute [9]. A major advantage of active probing is that it is controllable. For example,
the time when network measurement is performed and the part of the network to be measured can
all be determined and controlled. Furthermore, the desired level of measurement accuracy can also be
controlled by appropriately adjusting the number of probing packets injected. The major drawback of
active probing is that it needs to inject extra measurement traffic into the network, the amount of which
may be substantial at times. Consequently, the extra measurement traffic may affect the normal network
traffic behavior, and can potentially cause unnecessary congestion.

On the contrary, passive watch (or non-intrusive measurement) can infer network status by passively
observing network traffic traversing through measurement points [3,13]. Using passive watch, no
probing traffic is injected into the network for measurement. Instead traffic flowing through a measure
point is captured and measured as it is. As a result, not all interested performance metrics can be
obtained through passive watch. Furthermore, the measurement accuracy may also be limited, because
performance measurement cannot be actively controlled.

2.1.1. Packet capturing and BSD packet filter
Many versions of Unix provide facilities for user-level packet capturing, making it possible to perform

network traffic monitoring using general-purpose workstations. Captured packets are usually first stored
in a dump file and then analyzed off-line. Such a process decouples the tasks of data collection and data
analysis. A kernel agent, called a packet filter, can be used to selectively copy captured packets across
the boundary of kernel space and user space.

A commonly accepted packet filter is the BSD Packet Filter (BPF) [13]. BPF is comprised of a
network tap and a number of packet filters. The network tap collects copies of packets from network
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Fig. 1. BSD Packet Filter (BPF) architecture.

device drivers and delivers them to packet filters of listening applications (which perform network
measurement and performance monitoring). A packet filter decides if a packet should be accepted, and,
if so, the number of bytes of the packet should be copied to a listening application.

Fig. 1 illustrates how BPF works and its relationship with application measurement processes and
link-level device drivers. In normal protocol processing, when a packet arrives at a network interface,
the link-level device driver sends it up to the system protocol stack. But when BPF is listening on
this interface, the driver invokes BPF first whenever a packet arrives. BPF feeds the packet to each
participating process’s filter. This user-defined filter decides whether a packet is to be accepted and
how many bytes of the packet is to be copied. For each filter which accepts the packet, BPF copies the
requested amount of data to the buffer associated with the filter. The device driver then regains control
after BPF finishes processing the packet. If the packet is not addressed to the local host, the driver
returns from the interrupt. Otherwise, normal protocol processing proceeds.

As typically only a small subset of network traffic is wanted by a measurement application process,
and a dramatic performance gain can be realized by filtering out unwanted packets in an interrupt
context. To minimize memory traffic, BPF filters packets ‘in place’ (where the network interface DMA
engine put it) rather than copying the packets to some other kernel buffer before filtering. Thus, if a
packet is accepted, only those bytes (e.g., the headers) which are needed by the filtering process are
referenced by the host machine.

Studies in [13] show that BPF is an efficient tool for packet capture. It outperforms SunOS
Network Interface Trap (NIT) in its buffer management mechanism, and Carnegie Mellon University
(CMU)=Stanford Packet Filter (CSPF) in its filtering mechanism. Its programmable pseudo-machine
model makes it extensible, as any knowledge of a particular protocol is factored out of the kernel. It
is also portable, as it can work with various data link layers. Furthermore, the whole BPF system is
small and easy to implement. Because of these advantages, in the prototyping server-based measurement
system we build, we employ BPF as our non-intrusive data collection mechanism. Another reason we
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use BPF is that its source code is readily available in public domain [13], whereas the source codes for
many other packet capturing software tools (such as Solaris snoop [4]) are proprietary.

2.2. Internet measurement infrastructure

In recent years several researchers have proposed to develop a global Internet performance mea-
surement infrastructure [1,7,8,11,17]. Such a global Internet performance measurement infrastructure
is envisioned to provide a variety of network performance related services, including, among others,
network performance monitoring and diagnostics and dynamic service=server selection. However, due
to both the scale and the complexity of the Internet, such a global Internet measurement infrastructure
is unlike to be fully deployed and operational in the near future. In contrast, with its modest scale and
scope, our proposed server-based measurement infrastructure is designed in particular for replicated
server systems within an enterprise network environment, and is readily deployable with relative low
overhead.

3. Server-based measurement approach and Woodpecker

In this section we first identify a few performance metrics that are useful in dynamic server selection.
We then present the server-based non-intrusive measurement approach, using the experimental system
we have built as an example. In particular, we describe the organization of the performance metrics
generation tool Woodpecker as well as the data structures and algorithms used in the tool. Sample
experimental results obtained using Woodpecker are also presented. Various other issues such as
implementation complexity of Woodpecker and the use of intrusive measurement tools for generating
certain static performance metrics are also discussed. Finally, we provide a short overview of the
performance metrics exchange mechanism implemented in our experimental system.

3.1. Performance metrics

Before describing the data collection process in our experimental system, we first introduce a few
performance metrics which are considered useful for dynamic serve selection.
Path bandwidth: measured in bytes per second, is the minimum physical link capacity of all the links

traversed from a server to a client.
Throughput: is the average number of bytes of data transferred per second between a server and a

client, as experienced by a TCP flow.
Goodput: is measured as the average ‘useful’ data transfer rate (in bytes per second) between a server

and a client, as experienced by a TCP flow. Due to network congestion, some packets of a traffic flow
may be dropped. As a result, the goodput of TCP may be less than its throughput along a path. In
most cases, the goodput of a flow dominates the overall elapsed time, i.e. the performance perceived
by a user. Note that quantitatively, we have:

path bandwidth ½ throughput ½ goodput ½ 0:

Packet loss rate: is defined as the ratio of the number of packets lost to the total number of packets
transmitted for a TCP flow. Packet loss rate reflects the congestion status of a particular path.
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Round trip delay: is defined as the latency between the time when a packet is sent from a server and
the time when the acknowledgment of the packet is received by the server. The minimum round-trip
delay of a packet provides an upper bound for Round Trip Time (RTT). RTT is the delay due to
propagation and transmission cost, and it reflects the minimum delay that is likely experienced by a
packet when the path traversed is lightly loaded. When the round trip delay is much larger than RTT,
it is an indication that network congestion may have occurred somewhere along the path.
The above performance metrics are generated using our tool in each measurement interval, which is

in the scale of minutes. This time scale is chosen based on the studies of network stability [2,16].
We classify performance metrics into two classes, namely, static metrics and dynamic metrics. A

performance metric is referred to as static if it is unlikely to change within a measurement interval. For
example, the path bandwidth metric is considered as a static metric. Although it is possible that path
bandwidth may change due to link upgrade, such a change occurs very infrequently, whose time scale
is much larger than minutes. A performance metric is referred to as dynamic if it is tended to change
within a measurement interval. Throughput, goodput, packet loss rate, and round trip delay metrics are
considered as dynamic metrics.

3.2. Data collection

The data collection tool used in our system is tcpdump, which is a popular network monitoring
and data acquisition tool [15]. It uses libpcap, which is a system-independent interface for user-level
packet capture [14]. libpcap supports a filtering mechanism based on the architecture in BPF (see
Section 2.1.1). Although most packet capturing interfaces support in-kernel filtering, libpcap utilizes
in-kernel filtering only for the BPF interface 1.

The tcpdump tool operates by setting a network interface card in promiscuous mode. It is therefore
capable of capturing every packet going across the wire. For generating performance metrics, we use
filtering options on tcpdump which allows us to capture the packets of interest, namely data packets
from a server to clients and their acknowledgments. Furthermore, we have made a revision on tcpdump
so that we can periodically perform packet capturing and filtering every measurement interval.

3.3. Data analysis and metrics generation

In this section, we describe the data analysis and performance metrics generating tool in detail.

3.3.1. The organization of Woodpecker
Fig. 2 shows the three steps involved in packet processing of Woodpecker: capturing packets using

tcpdump, buffering packets, and analyzing data.
Packet capture using tcpdump: As mentioned above, tcpdump is used to capture packets over a link.

The output of tcpdump contains complete unprocessed information about packets. To extract the
performance metrics of our interest, these ‘raw’ data must be further analyzed. Woodpecker processes
the output of tcpdump and generates performance metrics on-line in memory, thereby avoiding disk
accessing overhead.

1 On the systems which do not have BPF, all packets are read into user-space and the BPF filters are evaluated in the
libpcap library, incurring additional overhead (especially, for selective filters).
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Fig. 2. Packet process flow in Woodpecker.

Packet buffer: A packet buffer is employed between tcpdump and Woodpecker.
Performance metrics generation: At the end of each measurement interval, Woodpecker uses the

information in IP and TCP headers of the captured packets to build performance metrics for each
TCP connection.

3.3.2. Data structures in Woodpecker
Due to different TCP connection status, appropriate data structures and algorithms must be employed

to process packets captured during a measurement interval. As shown in Fig. 3, during a measurement
interval, packets belonging to a flow may fall into the following four cases:
ž Case 1: A connection starts and ends within the same interval, e.g., Connection 1 in Interval 1 and

Connection 5 in Interval 2 (Fig. 3).
ž Case 2: A connection starts in current interval and ends in another interval, e.g., Connection 3 in

Interval 1 and Connection 4 in Interval 2 (Fig. 3).
ž Case 3: A connection starts in a previous interval and terminates in the current interval, e.g.,

Connection 4 in Interval 3 (Fig. 3).
ž Case 4: A connection starts from a previous interval, crosses the current interval, and terminates in a

future interval, e.g., Connection 2 in Interval 2 (Fig. 3).

Fig. 3. An example of packet capturing over multiple intervals.
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To handle the four cases appropriately, the following data structures are introduced.
Active connection table: We maintain an ‘active’ connection table to keep track of all connections that

are currently active (i.e., not terminated yet) in the current measurement interval. We use one entry
in the active connection table for each active connection. An entry is created upon the initiation of
a connection, and is removed in response to the termination or time-out of the connection. An entry
contains the following information:
Identifiers: are used to keep track of addresses for a connection, and the connection number. Each
connection is identified by its source IP address, destination IP address, source port number, and
destination port number. After identifying a packet by its addresses, a unique connection number will
be assigned to identify such connection.
Performance metrics for current interval: are used to track of the network behavior during the
current measurement interval. Since we are only interested in QoS perceived by a client, we focus on
data sent from a server to clients and acknowledgments or requests from clients to the server. The
following metrics are kept for current measurement interval.
ž Maximum packet delay is the largest packet delay of the connection.
ž Minimum packet delay records the minimum packet delay of the connection, which is the upper

bound of RTT.
ž Average packet delay is calculated by algebraic averaging of packet delays for all packets dumped

in current interval.
ž Elapsed time is the time in current interval that the first packet of a connection is recorded until the

time within the same interval the last packet of the connection is collected.
ž Throughput is calculated by dividing the total number of bytes transferred in this interval by the

elapsed time. The total transferred bytes include the data part of each packet, whose size can be
obtained from the dumped packet headers.
ž Goodput is calculated by dividing the difference between the total transferred bytes in a measure-

ment interval and the total retransmitted bytes in the same interval by the elapsed time.
ž Packet loss rate is calculated by dividing the number of retransmitted packets by the total number

of transferred packets in a measurement interval.
For connections that are terminated in the current measurement interval (i.e., Cases 1 and 3), we
maintain the status about these connections in a separate data structure. Therefore, they will not
appear in the active connection table in the future measurement interval.
For connections which cross over multiple intervals, both the metrics for the current interval and the
metrics for all previous intervals since the initiation of the connection will be maintained as follows:
Accumulated metrics: record metrics for connections across multiple intervals.
ž Accumulated maximum packet delay, accumulated minimum packet delay, and accumulated aver-

age packet delay are the maximum packet delay, the minimum packet delay, and the average of
packet delay among all packets recorded so far for a connection.
ž Accumulated throughput, accumulated goodput, and accumulated packet loss rate are similarly

defined as throughput, goodput, and packet loss rate, respectively, measured during the time period
from the initiation of the first packet of a connection till the current measurement interval.
ž Accumulated elapsed time maintains the time of the connection from the time when it transmits the

first packet to the time when its last packet is captured.
Time-out for an entry: Since there are packets lost along a path, some TCP connection may never
see their closing flag FIN. A keep-alive timer is employed to solve this problem [18]. A similar idea
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is also used in our data analysis. In particular, if we find that a connection is inactive for more than
Talive, we assume it is closed. We set the value of Talive as the same as the value of TCP keep-alive
timer (i.e., 2 hours) [18].

Frequently-visited subnets: We also maintain a set of records for frequently-visited subnets, instead of
one for each individual client from these subnets. To decide whether to create an entry for a particular
subnet, we use a threshold. When the number of connections or the sum of packets from a specific
subnet is above the threshold, a frequently-visited subnet entry will be created.

3.3.3. Algorithms for performance metrics generation
In this section, we describe the algorithm for metrics generation. Fig. 4 shows the flow-chart of the

algorithm used for data analysis and performance metrics generation. As shown in Fig. 4, Woodpecker
repeatedly reads packets from the buffer during a measurement interval. Based on the information in the
IP and TCP headers of the individual packet, the status of the respective connection is updated. At the
end of a measurement interval, Woodpecker generates a new set of metrics for each connection.

As shown in Fig. 4, the packet processing in Woodpecker is performed in a two-branch loop. The
upper right-hand branch controls what needs to be processed at the end of a measurement interval. The
algorithm examines the time stamp on a packet and checks to see if it is beyond the current measurement
interval. Once the time stamp on a packet indicates that the current measurement interval is ended,
Woodpecker generates a new metrics report and updates the accumulated metrics set. Then Woodpecker
starts the next interval.

If the time stamp on a packet is within the current measurement interval (the upper left branch in
Fig. 4), the packet will be processed as follows. The algorithm first searches the active connection table
to see whether this packet belongs to an existing connection. If a match is found, the corresponding entry
for this connection is updated with the information in the packet. If a match is not found, the packet is

Read a packet from buffer

Begin

New Connection?

Create a new entryUpdate the entry

End of interval?

No

No Yes

Yes

1. Generate metrics report

3. Start analyzing next interval
2. Update accumulated data set

Fig. 4. Performance metrics generation algorithm in Woodpecker.
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the first packet of a new connection. The algorithm creates a new entry corresponding to this connection
in the active connection table. Note that a connection is identified by its source IP address, source port
number, destination IP address, and destination port number.

3.3.4. Sample results
In this section, we present some sample experimental results obtained using Woodpecker. We in-

stalled Woodpecker on a SUN Ultra 2 workstation, endeavor.net.fla.fujitsu.com, which runs
as a server. The operating system on this machine is Solaris 2.6. Two clients are set up. One is
on an Ultra 1, julius.cs.umn.edu, with Solaris 2.5.1, and the other is on a SPARC 20, na-
pali.net.fla.fujitsu.com, with Solaris 2.5.1. The server endeavor and client napali are located
at Fujitsu Labs of America in Sunnyvale, CA, while client julius is located at Computer Science Depart-
ment of University of Minnesota in Minneapolis, MN. In the following, we list the set of performance
metrics for a few selected connections during three consecutive measurement intervals. These results
shows the various cases of connection status of these connections during each measurement interval.
Connections 1 and 2 in Interval 1 is the simplest case (Case 1), which are initiated and terminated within
the same measurement interval (1 min). Connection 3 in Intervals 1, 2 and 3 is the most complicated
case, which starts in Interval 1 and terminates in Interval 3.

Woodpecker Version 1.0, August 15, 1998

(Interval 1)

================================
TCP Connection No.1 ---

From the server: endeavor.net.fla.fujitsu.com:47320
===> To the client: julius.cs.umn.edu:telnet

Elapsed time: 5.776208 seconds
for 1488 Bytes in 24 packets

avg segm size 62 Bytes
Throughput 258 Bytes/sec
Goodput 238 Bytes/sec
Packet loss rate 0.076923
Min Round-trip Delay 87.2 ms
Max Round-trip Delay 102.7 ms
Avg Round-trip Delay 93.3 ms
STD Round-trip Delay 4.8 ms
......

================================
TCP Connection No.2 ---

From the server: endeavor.net.fla.fujitsu.com:672
===> To the client: napali.net.fla.fujitsu.com:2049

Elapsed time: 0.107327 seconds
for 6105 Bytes in 37 packets

avg segm size 165 Bytes
Throughput 56882 Bytes/sec
Goodput 56882 Bytes/sec
Packet loss rate 0.000000
Min Round-trip Delay 1.0 ms
Max Round-trip Delay 1.5 ms
Avg Round-trip Delay 1.1 ms
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STD Round-trip Delay 0.1 ms
......

================================
TCP Connection No.3 ---

From the server: endeavor.net.fla.fujitsu.com:47323
===> To the client: julius.cs.umn.edu:telnet

Elapsed time: 47.690798 seconds
for 2450 Bytes in 43 packets

avg segm size 57 Bytes
Throughput 51 Bytes/sec
Goodput 50 Bytes/sec
Packet loss rate 0.027778
Min Round-trip Delay 87.0 ms
Max Round-trip Delay 770.1 ms
Avg Round-trip Delay 146.5 ms
STD Round-trip Delay 118.1 ms

Accumulated Throughput 51 Bytes/sec
Accumulated Goodput 50 Bytes/sec
Accumulated Packet loss rate 0.027778
Accumulated Min Round-trip Delay 87.0 ms
Accumulated Max Round-trip Delay 770.1 ms
Accumulated Avg Round-trip Delay 146.5 ms
Accumulated Elapsed Time 47.690798 seconds
......

(Interval 2)

================================
TCP Connection No.3 ---

From the server: endeavor.net.fla.fujitsu.com:47323
===> To the client: julius.cs.umn.edu:telnet

Elapsed time: 59.608097 seconds
for 452354 Bytes in 553 packets

avg segm size 818 Bytes
Throughput 7588 Bytes/sec
Goodput 7053 Bytes/sec
Packet loss rate 0.070520
Min Round-trip Delay 40.3 ms
Max Round-trip Delay 109.3 ms
Avg Round-trip Delay 51.6 ms
STD Round-trip Delay 24.7 ms

Accumulated Throughput 4238 Bytes/sec
Accumulated Goodput 3954 Bytes/sec
Accumulated Packet loss rate 0.067114
Accumulated Min Round-trip Delay 40.3 ms
Accumulated Max Round-trip Delay 770.1 ms
Accumulated Avg Round-trip Delay 58.4 ms
Accumulated Elapsed Time 107.298895 seconds
......

(Interval 3)



244 Y. Dong et al. / Performance Evaluation 36–37 (1999) 233–247

================================
TCP Connection No.3 ---

From the server: endeavor.net.fla.fujitsu.com:47323
===> To the client: julius.cs.umn.edu:telnet

Elapsed time: 57.096218 seconds
for 462551 Bytes in 550 packets

avg segm size 841 Bytes
Throughput 8101 Bytes/sec
Goodput 7459 Bytes/sec
Packet loss rate 0.080000
Min Round-trip Delay 43.1 ms
Max Round-trip Delay 98.2 ms
Avg Round-trip Delay 53.3 ms
STD Round-trip Delay 14.9 ms

Accumulated Throughput 5580 Bytes/sec
Accumulated Goodput 5171 Bytes/sec
Accumulated Packet loss rate 0.073298
Accumulated Min Round-trip Delay 40.3 ms
Accumulated Max Round-trip Delay 770.1 ms
Accumulated Avg Round-trip Delay 55.9 ms
Accumulated Elapsed Time 164.395113 seconds
......

3.3.5. Implementation complexity
Packet capturing and analyzing overhead. In our metrics generation scheme, certain computing power
is consumed for capturing packets and analyzing those packets.

It has been shown in [13] that BPF is much more efficient than several other packet capturing tools
in both packet capturing and filtering. In our implementation, the whole processing time for metrics
generation for a typical dumping interval (1 min) is usually in milliseconds. Even in the worst case, it is
no more than a few seconds.

The overhead of data analysis includes reading each packet from the packet buffer, searching in the
active connection table, and updating the metrics for the respective connection. Since we only dump the
header of each packet, which has fixed size of 54 bytes, the time to read a packet from the packet buffer
is, therefore, almost in constant time. Furthermore, since the number of connections that can be set up
simultaneously at a server is limited, the overhead of searching in the connection table is also quite
small. Finally, the computation overhead is also insignificant since updating the performance metrics
only requires several arithmetic operations and memory accesses.

Quantitatively, we measure that the average cost of processing a packet is about 30 to 70 microsec-
onds in our testing system. As a result, in a 1-minute interval, at least 1 million packets can be processed
by our Woodpecker. It is much more than sufficient for a 100Base–T Ethernet interface. Furthermore,
the server used here is only a SUN Ultra 2 workstation. If a powerful machine or extra hardware is
used, there should not be any problem to process packets captured over a higher bandwidth link for the
measurement.

Server load. Although Woodpecker will incur some additional load on a server, such additional load can
be effectively controlled since the server is within an enterprise network. For example, we can reserve
certain computing power on the server for Woodpecker by limiting the maximum number of client jobs
that a server can accept. If the maximum number of such client jobs are reached, we either direct new
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request for another replicated server or add more servers in our enterprise network. Moreover, additional
hardware can be dedicated for measurement purpose. All these alterations on a server is possible since it
is within our enterprise networks. In practice, a special hardware based measurement tool can be used to
reduce the overhead of performance metric generation imposed on a server.

3.4. Using intrusive measurement tools to get path bandwidth

In our experimental system, we also employ intrusive measurement tools to obtain static performance
metrics that cannot be generated by Woodpecker. For example, we use pathchar [10] to measure
path bandwidth of a route between a server and a client. It is important to point out that intrusive
measurement tools are used infrequently because of the nature of static performance metrics such as
path bandwidth.

3.5. Metrics exchanging among networked servers

Our Woodpecker software is performed independently at each individual replicated server within a
wide area enterprise network. As a final step to build a measurement infrastructure within such an
enterprise network, we let the servers exchange performance metrics periodically among themselves.

A simple SNMP-like, request=response protocol is used for periodic exchange of performance metrics
among peer servers. In our experimental system, the frequency of performance metrics exchange is set
to a multiple of the length of measurement intervals to prevent the management traffic overload on the
enterprise network. To further reduce the communication overhead incurred by performance metrics
exchange, a selective push mechanism is implemented to allow a server to dynamically inform other
servers of significant changes in performance metrics.

4. Concluding remarks

In this paper we presented a server-based measurement approach for building a (primarily) non-
intrusive measurement infrastructure in a wide-area enterprise network environment. This server-based
measurement approach was designed with the specific objective of facilitating dynamic server selec-
tion in a replicated server system. Our approach has three salient features. (1) It is client-transparent
and readily deployable. (2) It uses non-intrusive measurement techniques to generate the majority of
performance metrics that are useful for dynamic server selection, thereby minimizing the extra network
load incurred by the measurement infrastructure. (3) It can be implemented in a scalable manner with
relative low communication overhead. To demonstrate the feasibility and advantages of the proposed
server-based measurement approach, we built an experimental measurement system. In particular, we
described a performance metrics generation tool called Woodpecker, which was designed based on a
non-intrusive passive packet capturing mechanism. Experimental results obtained using Woodpecker
demonstrated that it is indeed feasible to employ non-intrusive measurement tools to generate the
majority of desired performance metrics for dynamic server selection.

Our current work has primarily focused on generating performance metrics for TCP applications.
With the emergence of multimedia streaming applications, which are typically implemented using UDP,
it is also necessary for our system to be able to measure UDP traffic as well. This will be one direction
of our future work. Another direction of our future work is to study dynamic server selection algorithms
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using the performance metrics collected by the measurement infrastructure. Some initial studies along
this direction has been conducted and is reported in [6].
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