‘H Available at

: www.ComputerScienceWeb.com PERFORMANCE
m E POWERED BY SCIENCE @DIRECT" EvAluATIoN
ﬂ An International
Journal
ELSEVIER Performance Evaluation 55 (2004) 51-68

www.elsevier.com/locate/peva

Analysis and evaluation of expiration-based hierarchical
caching systems

Y. Thomas Ho@*, Jianping Paf?

2 The Bradley Department of Electrical and Computer Engineering, Virgin Tech, Blacksburg, VA, USA
b University of Waterloo, Waterloo, Ont., Canada

Abstract

This paper investigates some fundamental properties and performance issues of the expiration-based caching systems. We
focus on the hierarchical caching systems based ofirtteeto-live(TTL) expiration mechanism, and present a basic model
for such systems. By analyzing the intrinsic timing behavior in this model, we derive some important performance metrics
from the perspectives of caching systems and end users, respectively. We use network simulation results to further substantiate
the efficacy of our analysis. Our results show some basic properties and trade-offs for a hierarchical caching system based on
the weak consistency mechanism.
© 2003 Elsevier B.V. All rights reserved.

Keywords:Web caching; Hierarchy; Weak consistency; Time-to-live; Internet

1. Introduction

Animportantissue inthe design of any caching systems is to maintain some lewabigtenchetween
cached copies of an object and the object maintained at the origin server (OS). Every time the original
object is updated at the OS, copies of that object cached elsewhere bsteden€he value of cached
copies would be greatly reduced if they are not updated accordingly. Caching consistency mechanisms
ensure that cached copies of an object are eventually updated to reflect changes to the original object.
Depending on how soon the cached copies are updated, cache consistency mechanisms fall into two majol
categoriesstrong consistencgndweak consistency

Under strong consistency, upon an update of an object at the OS, the OS immediately notifies all cache
servers (CSs) about this updfé. Example caching applications that require strong consistency include
time-sensitive content delivery (e.g., emergency public announcements). The main problem associated
with strong consistency mechanisms (e.qg., invalidgijis that they often involve higher overhead and

* Corresponding author. Tek:1-540-231-2950; fax4+1-540-231-8292.
E-mail addressthou@vt.edu (Y.T. Hou).
1 Present address: Fujitsu Laboratories of America, Sunnyvale, CA, USA.

0166-5316/$ — see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-5316(03)00099-3

52 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

level
)

N—
0 S/

orgin server

Fig. 1. An example of ahierarchical caching system based on the tree topology.

complexity and are expensive to deploy. Nevertheless, strong consistency is an indispensable approach
to deliver mission critical contents on the web.

On the other hand, under weak consistency, it is acceptable to let a user get a somewhat stale object
fromthe CS. The CSonly validatesthe object’ sfreshnesswith the OS periodically and may lag behind the
actual update at the OS. Weak consistency is particularly useful for those web contentsthat can tolerate a
certain degree of discrepancy between the cached content and the content at OS aslong asit isunderstood
that such discrepancy does not cause any problem. It isimportant to keep such discrepancy not to exceed
a reasonable period of time. Example applications using weak consistency include online newspapers
and magazines, persona homepages, and the majority of web sites—although the original content may
be further updated at the OS, it is still useful (or at least not harmful) to retrieve the cached copy at a
cache or proxy server.? It has been shown that weak cache consistency is aviable and economic approach
to deliver content that does not have stringent freshness requirement [5].

To support weak consistency, the concept of time-to-live(TTL) isintroduced. TTL isanapriori estimate
of an object’ sremaining lifetime and can be used to determine how long a cached object remains useful.
Under the TTL approach, each object isinitialized witha TTL value, which is supposed to decrease with
time if the object is cached elsewhere. An object that has been cached longer than itsinitial TTL is said
to expireand the next regquest for this object will cause the object to be requested (or validated) from the
OS or other CSs that have a copy with an unexpired TTL. In practice, the TTL-based strategy is easy to
implement (e.g., by using the “Expires’ or “Last-Modified” fi eldsin HTTP header [8]).

There are many alternative approaches to construct a caching infrastructure. However, it has been
shown [2] that a hierarchically organized caching infrastructure is particularly effective to scale up web
growth since the Internet topology also tends to be organized hierarchically. In this paper, we consider
hierarchical caching systemsand investigate their performance and behaviors under the weak consistency
paradigm. Although the current HTTP protocols on web caching provide alot of similar features[4], we
intend to conduct our investigation in a more general setting and will not limit ourselves to particular
details of the current HTTP implementation.

We start with abasic model, which isageneric hierarchical caching system based on the tree topol ogy.
Under the basic model, the root node represents the OS whereas al the other nodes in the tree represent
CSs (see Fig. 1). We assume each node (or CS) is deployed in a metropolitan region and the user

2 A user aways has the option to reload the fresh content from the OS if he/she prefers to have the most updated copy of the
object.

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 53

requests® within this particular metro region always go to this regional CS for content service. When the
object isnot available or its TTL has expired at a CS, the CS will query itsimmediate parent CS, which
may further query itsimmediate parent CS and so forth, until a“fresh” copy of the object is retrieved or
theoriginroot server isreached. Here, a“fresh” copy refersto acopy of the object with an unexpired TTL
(i.e.,, non-zero TTL). The OS aways maintains a current copy of the object and will initialize the TTL
of an object upon request. The TTL value for an object at any CS decreases with time. Since TTL isa
fundamental parameter that determinestheintrinsic behavior of the overal hierarchical caching systems,
we analyze the behavior of TTL for a CS at each level of the tree. Based on this analysis, we conduct a
performance study for the hierarchical caching systems from the perspectives of both the caching system
and end user by deriving performance metrics such as hit/missrate, response time, and network load. We
use simulation results to substantiate the accuracy of our analysis and provide insights on various system
design trade-offs.

The remainder of this paper is organized as follows. In Section 2, we present the basic model for
the hierarchical caching systems based on the weak consistency mechanism. We also analyze the TTL
behavior of thebasic model and deriveits performance metrics. In Section 3, we present simul ation results
to substantiate our analytical results for the basic model. Section 4 discusses related work and Section 5
concludes this paper.

2. Modeling and analysis

In this section, wefirst describe the basic model under our study, and then analyzeits performance and
behavior.

2.1. Basic model

We assume that the hierarchical caching systems follow a tree structure (see Fig. 1). At level 0, we
have one origin (root) server,* Sy, which always maintains the latest (updated) copy of an object. The
root server islogically connected to some child servers which we refer to aslevel 1 CSs, each of which
are geographically located at different metro regions. Level 1 CS may also connect to some child servers
which we call level 2 CSs, and so forth. Finally, a CS that does not have any child CSiscalled aleaf CS.
The maximum number of levels of such ahierarchical treeis called the height of the tree. Fig. 1 showsa
simple example of the caching systems based on a tree structure with the height of 3.

We further assume that the aggregated user requests to the CS within a metro region follow a Poisson
process.’ When a user request arrives at the CS, if the object already exists at the CSand its TTL is till
greater than 0, the CS will deliver the object to the user. We consider such an event a user hit.On the
other hand, when the user regquest arrives at thelocal CS, if the object does not exist or the TTL timer has

3 Note that each user may also have the browser cache built on its host and here the user request refers to the request sent to
the proxy CShy the user after amiss at its own browser cache. That is, we only consider the requests sent to the proxy CS from
the user and not consider those request that can be served by the user’s own browser cache.

4 Notethat the root server may consist of acluster of physical servers. But we assume that geographically they all locate at the
same site (e.g., an | SPs data center).

5 Anexact traffic model for each individual user is hard to find. However, it is reasonable to assume that, for alarge population
in ametro region, the aggregated requests follow a Poisson process.

54 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

T T,
f{) hN T Th
r(t
h Th [\
\ B I\l — t

Renewal point Renewal point Renewal point Renewal point

Fig. 2. A sample path of the TTL for aCSat level h.

expired (i.e., decreased to 0), we consider such an event a user missWhen a miss happens, the local CS
will generate another request and query its immediate parent CS to see if it has the object with a valid
TTL. If this parent CS does have this object with an unexpired TTL, we call this event a system hisince
the request is generated by a child CS rather than directly from a user. Upon a system hit, the object
will be delivered to the CS and will subsequently be delivered to the user. Otherwise, we have a system
missand the parent CS will generate arequest and further query its own parent CS and so forth, until the
guery process reaches the origin root server, in which case we assume that the origin root server always
maintains an updated fresh copy of the object. The origin root server will deliver the object witha TTL
field initialized to maximum lifetime 7, where t > 0, and the TTL value decreases linearly as time goes
on. Thus, the maximum agethat an object (delivered to auser) can have under such hierarchical caching
systems is bounded by z. Under the basic model, upon an event of a system hit, not only the user will be
delivered a copy of the object with an updated TTL, all CSsinvolved in the query process will also get a
copy of this object with an updated TTL.

Notethat wedistinguish hit rate and missratefrom user and cache system perspectives. Such distinction
will help usbetter understand the detail s of the system behaviors, aswe shall elaborate shortly. To maintain
suchdistinction, at aCS, weneed to distinguish user requestsand system requests. user requestscomefrom
the metro region within the coverage of thislocal CSwhile system requests comefromitschild (including
grandchild, etc.) CSswhich are caused by user requests from their corresponding remote metro regions.

2.2. Performance analysis

In this section, we investigate the performance of the basic model. We conduct performance evaluation
aong two dimensions. caching system performane@ad end user quality of experiencBy caching
system’s performance, we refer to the behavior and properties of the hierarchical caching structure, such
as the aggregated behaviors of TTL, hit/miss rate, average response time, and traffic load at each CS.°
On the other hand, user’ s quality of experience refersto user’s perceived quality in content delivery, e.g.,
hit/miss rate, average response time, which only considers requests from end users and does not include
auxiliary traffic within the hierarchical caching systems.

2.2.1. Average TTL behaviors

SupposeweareataCSof level 1,1 < h < H,where H istheheight of thetree. Denote the (remaining)
TTL at the CSasr,(f). Then r,(f) isarenewa process[9], with the renewal point starting at time ¢ = ¢,
when r,,(7) just decreasesto O, i.e., r,(t,) = Oand r,(z,) > 0 (see Fig. 2). It should be clear that when

6 By aggregatedwe count both external user requests as well asinternal requests from child CSs.

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 55

Fig. 3. A sample path of the TTL behavior of aCSat level & in reference to the TTL behavior at level 1.

rp<(t) = 0, then for dl h* < h < H, r,(t) = 0. Thisis because that under our basic model, an object
maintained at a parent CS always hasitsremaining TTL larger than or equal to theremaining TTL of the
same object maintained at its child CSs.

Referring to Fig. 2, denote the peakvalue of r;,(z) during each renewal periodas 7, 1 < h < H.
Then we have T) = t and T, is a random variable defined over (0, 7] for 2 < h < H. We are in-
terested in the average value of Ty, for 2 < h < H, denoted as E(T},), which is an important system
parameter.

Due to the nature of the hierarchical tree and TTL-based expiration, there is an important property on
TTL that links the CSs at all levels. In particular, any TTL renewal point at level 7,2 < h < H (see
Fig. 3) coincides (or synchronizeswith arenewal point at level 1. However, the converseisnot true, i.e.,
arenewal point at level 1 may not be arenewal point at level 1, 2 < h < H. Thisis because that the
smaller the & for a CS, the more child servers (and thus the higher user population) it supports, which
trandates into smaller idle period (the time period when r;,(r) remains 0). This observation leads to the
fact that the average renewal period at level 1, 2 < h < H, islarger than the average renewal period at
level 1. To be more precise, the average renewal period at each level increases with 7, with the smallest
at level 1 and largest at level H.

Referring to Fig. 3, for each renewal period at level 1, it is clear that the first request that initiates the
TTL triangle within the renewal period follows a Poisson process with the rate A1, which is the sumof
all Poisson arrival rates at all CSs of the tree with S; being its root. This Poisson process (with rate A1)
can be considered of an aggregateof two Poisson processes:. the first with arate of A, representing the
arrivals at the sub-tree with S, as the root and the second (with arate of A1 — A},) representing arrivals
from the rest of the tree within S; excluding the sub-tree S;,. Clearly, the probability that the TTL triangle
is initiated by a request from the sub-tree with root Sj, is A, /A1 and the probability that the TTL is
initiated by arequest from therest of tree (i.e., Sy \ Si) is (A1 — Ay) /A1,

We now look at thetimeinterval at level i that correspondsto the same renewal period at level 1. There
are three cases, and the sum of probabilities of these three casesis 1.

56 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

Case 1 With probability A,/A1,the TTL triangle at level 1isinitiated by arequest from the sub-tree
with root at S,. Inthis casg, it isobviousthat 7, = t.
Case 2 With probability

Ar— Ay [T Ay — 4,
L / ApeMidr = 2 gy,
Ay 0 Aq

there isarequest arrival within r from the sub-tree with root S;,. In this case, thelevel 1 TTL triangleis
not triggered by this request asin Case 1. The average T), in this caseis given by
Jo (x = DA, e dr T —1/A 4 (1)) e T
[y Apedide 1— e M '

)

It can be shown that the average Tj, in this case (i.e., theright-hand side of (1)) isaways greater than t/2.
This can beintuitively explained by the Poisson property of the arrival process.
Case 3With probability of

Ar— Ax /oo Ay, e M dr = Ar— An g At
Al T Al '

thereis no request arrival within z in thisinterval. In this case, thereisno TTL trianglein thisinterval.
To calculate E(Ty), al weneed to doisto take the probabilistically weighted average of T, under Cases
1 and 2. We have

(Ap/AD) - T+ [(A1— Ap)/AL] - A —e M7y [1 — 1/A; + (1/Ap) € 7] /(1 — e)
Ap/AL+[(AL— Ay) /A1) - (1 — e iT)
M+ (A — Al — 1A, + (1A e 7]
B Ap+ (A1 — Ap)(L— e MiT) '

E(Ty) =

&)

Property 1. Under the basic modgthe average off, atlevelhh = 1,2, ..., H, has the following
property.

T > E(T)) > 3, ©)
and

E(Ty) > E(Tz) > --- > E(T})) > --- > E(Ty). 4
The proof for the above propertiesfor E(T},) is straightforward and is omitted here.

2.2.2. System and user performance metrics

As mentioned earlier, we distinguish the performance metrics along two dimensions: system oriented
performance and user perceived performance. Denote I, ©7, and o, as the system miss rate, hit rate,
and responsetime at a CS of level i, respectively. The system missrate, hit rate, and response time take
into account all regquests, both from the users in the (local) metro region and from child CSs (interna
dynamics within the hierarchical caching tree). Similarly, denote I}, ®}, and o}' as the user perceived
miss rate, hit rate, and response time for users directly served by a CS of level &, respectively. The user

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 57

perceived performance parameters consider only requests generated by the usersin thelocal metro region
and do not consider those requests forwarded from any child CSs.

Before we calculate the missrate I at level i, we make the following observation (see Fig. 3): each
CS can make at mostone request to its parent CS during any renewa cycle. Denote M), the number of
requests a CS at level & receives from its child CSs during a renewal cycle and ¢;, the number of child
CSs of this server at level 4. Then M, isarandom variable defined over 0, 1, .. ., ¢, and the probability
distribution of M, isacombinatorial exponential distributions—due to the fact that the user requests at a
CSof any level follow a Poisson distribution. Therefore, E(M),) can be easily calculated explicitly using
combinatorics and E(M},) < cy.

To calculate the missrate, I}, we condition on whether the first miss (i.e., the request that initiates the
TTL triangle) isfrom a user of the CSs metro region or from a child CS. We have,

[6=&£{ ! }+Ah_kh{ ! } (5)
" A L1+ D E(Ty) + E(M))] Ap o |1+ E(Ty) + E(My) — 1]
Note that for aconstant A;, and ¢, at each level &, the missrate strictly increases asthe level / increases.
The system’'shit rate, ©; = 1 — I, isthen
s _ An { A - E(Ty) + E(My) } Ap — Ap { A E(Ty) + E(Mp) — 1 } ©)
" A |14 D E(Ty) + E(My)] Ay |1+ [h - E(Ty) + E(My) — 1]]

Denote d;, asthe round trip time (rtt) (including processing delay at the CS) between achild CS at level
h and itsimmediateparent CS, and assume the delay between an end user and itslocal CSis negligible.
The average system response time, o7}, is therefore

O'Z:@Z~O+Fhs'7'[h, (7)

where 7, isthe delay until getting a fresh object given that there isamiss at the local CS. From (7), we
have

S
Oh

= i, 8
TTh s)
On the other hand,
Ap—1— Ay Ap
=d, —F0 STTh_1¢ - 9
Th +{ Ay + Al Th 1})
Combining (7)<9), we have the following recursive relationship for o
Ap Ap
s=1I7d wper) =T (dh + ——=— o, 10
Oh h <h+ Ay s T 1) h (h+ Anal? Gh—l) (10)

We now calculate the user perceived hit rate (), miss rate (I7,'), and response time (o}'), for users
directly served by aCS of level . These performance metricswill be slightly different from those corre-
sponding to the system performance. Thisis because we need to filter out the effect of the requests from
child CSs (which represent internal dynamics of the hierarchical caching system). Again, by conditioning
on whether the first request comes from local users or child CSs, we have

@u_)»_hi An - E(Ty) } Ap — Ay

. 1 (11)
Ay |1+ Ay - E(Ty) Ay

58 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

AsTl;' =1— ©), wehave, for the users' missrate,

! } . (12)

_ {
A |14 1 - E(T)

Y=

The response time that a user experiencesis

Ah

A s) 13

Uzl:@z'O-i-Fhu‘]Th:Fhu-(dh-i-

2.2.3. Network traffic load

One of the mgjor benefits of a caching system is to reduce the overall network traffic load and thus
to achieve scalability as the Internet grows. Here, we calculate the network load associated with the
hierarchical caching systems. One way to measure network traffic load for the hierarchical caching
systems isto perform an accounting on how much traffic each CS generates to its immediate parent CS.
Note that a CS will initiate a request to its parent CS only when areguest (either from local usersin the
metro region or from child CSs) incurs a miss. Denote the average request rate that aCS S, at level &
sends to its parent CS as pj,. By definition, we have

B 1
E(L+ Ty’
where I, istheidle period during arenewal cycleforaCSatlevel h and E(1;,) = 1/A,.

P (14)

3. Simulation investigation

In this section, we use simulation results to demonstrate the intrinsic properties of hierarchical caching
systems.

3.1. Simulation settings

Our simulationishbuilt onthe network simulator ns-2platform[7]. We define three new objects, namely,
OS, CS, and aggregated client§AC) asfollows. An OSis areply-only object which always returns the
requested object with its TTL value initialized to . An AC is arequest-only object with the aggregated
request rate Aac. For an CSobject, if it has the requested object with a positive (unexpired) TTL, it will
return such object to the local AC or its child CS; otherwise, the CS will generate another request to its
immediate parent CS. This process is recursive until the request reaches the OS. For each CS and AC
objects at each level of the hierarchy, we attach alogging facility in the simulation to record requests and
replies events, which will be used for off-line data processing.

Fig. 4 shows the three topologies of caching systemsin our simulation study. Under the “fl at” caching
topology (see Fig. 4(a)), each CS can only make requests directly to the OS. Therefore, under the flat
structure, the level number only represents the logical distance between a CS and the OS. On the other
hand, the “chain” (Fig. 4(b)) and “tree” (Fig. 4(c)) topologies represent two basic hierarchical scenarios.

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 59

level flat chain
D original server

O cache server

D aggregated clients

(@ (b) (0

Fig. 4. Topologies of caching systems used in the simulation study: (&) flat, (b) chain, and (c) tree.

Here, upon a miss of a request (i.e., the CS does not have the object with a positive TTL), a CS will
always generate another request to itsimmediateparent CS.

Also note that the chain topology is a specia case for the tree topology with a child-span of 1. For
the results presented here, we use a binary completetree (with a span of two for al non-leaf CSs). We
set the maximum number of levels H = 10 for al these three topologies. We use the rtt between two
consecutive levels asameasure of logical distance. For illustrative purpose, in our simulation, we set the
rtt between two consecutive levelsto 2 units. As an example, a CS corresponding to level 4 will have 8
units of rtt between itself and the OS.

Wewill show thesimulation resultswhen = 1unitof TTL time’ and A, = 1per TTL unittimefor all &
(i.e., the same user request rate at each level), unless otherwise stated explicitly in Section 3.2.4. To obtain
the average value from simulation samples, we repeat our simulations multiple times to minimize the
deviation and to converge toward the mean val ue, each time with arandom initial seed. Also, to eliminate
any transit effect from the initial system warm-up period, we run each simulation over a sufficient period
of time.

3.2. Simulation results and discussions

In this section, we present simulation results and discussions for the hierarchical caching systems. We
organize our presentation as follows. First, we examinethe TTL behavior (i.e., E(T})) at each CS, which
isthe most important parameter in characterizing the dynamics of the hierarchical caching systems. Then,
we present the simulation results for the performance metrics from both CSsand user’ s perspectives. This
isfollowed by a study of traffic load generated by the CSs of each level. Finally, we show how the user
request patterns can affect the performance outlook of caching systems.

3.2.1. Average TTL behavior
To get aclear picture on how TTL behaves, we first present a set of simulation snapshots showing the
TTL behaviors at different levels under the chain topology. Fig. 5 shows the sample TTL evolution (in

7 It isworth pointing out that the TTL time (usually in several hours to few days) is much larger than the rtt time (in hundreds
of milliseconds to few seconds). Thus, we can omit the rtt when calculating the remaining TTL. But we will consider rtt when
calculating the response time.

60 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

N

77

77T
(00

|
(555557

[

ttl evolution at each level - Ty,(t)
(53]
level (h)

LSS

S

¥

10

N]\

1

4 5 6 7 8 9 10 1
time (t)

o
-
N
w
[N
P
N
=
w
=
N
I
5}

Fig. 5. A sample path of TTL evolution at level 2, 1 < h < 10 under the chain topology.

connected lines) and received reguests (cross points) at each level during atimewindow inthe simulation.
As expected, each TTL triangle fals within its parent CSs TTL triangle, with each renewal point when
TTL decreases to 0 being synchronized to a renewal point of its parent CS. The smaller the 4 is (i.e.,
the closer a CSto the OS in the hierarchy), the denser the TTL triangle within the time window. Thisis
because the request aggregation and object sharing increase asa CSis closer to the OS.

We now examine the TTL behavior quantitatively and compare it with our closed form result in
Section 2.2. In Fig. 6, we plot E(T;,) as a function of %, using values from calculation (Eg. (2)) and
simulation, respectively, for the three topologies. The connected lines represent the calculated results
from our analysis while the disconnected points shows the results extracted from the simulation results.
Clearly, our analysisfor E(T,), 1 < h < H matches the actual simulations for all cases. With the flat
structure, each CS always gets the object with the maximum TTL (r = 1) (at the expense of larger
response time and traffic load). Under the chain or tree topologies, the average TTL E(T)) at aCSis
always lower than that in the flat structure as expected. A smaller TTL implies that, when an object is
delivered totheauser or child CS, theabject isof lessfreshnesssinceit might already be cached for awhile
although still valid in the weak consistency paradigm. Also, we observe that the TTL behaviors for both
the chain and tree topol ogies strictly follow Property 1,i.e., 1 > E(Ty) > E(T) > --- > E(Ty) > 1/2.

3.2.2. System and user performance metrics

We now move on to our present analysis and simulation results for the performance metrics from both
CSs and user’s perspectives. In particular, we show (in Fig. 7) the hit rate® and response time (delay)
from aCSs(i.e., system) and user’s perspectives.

InFig. 7(a), we plot the hit rate at CSs of each level from both analysis (Eq. (6)) and simulation results
for theflat, chain, and tree topologies. Clearly, our analysis matches simulation results very well. For the

8 Since missrate is the complement of the hit rate, we omit to present its simulation results to conserve space in the paper.

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 61

T T T T T T T T T ,
TR * .
Og i > h e -
Koo - *
08 - T -~\’\~\ -
g

07 i \.\’ -
-
0.6 | -

=
E 05 |

w
04 | |
03 | |
0.2 |) |

flat/ttl.sim +
flat/ttl.cal ------
0.1 chain/ttl.sim x |
chain/ttl.cal -
tree/ttl.sim x

0 Ire?/ttl.cal T) i
! 2 3 4 5 6 7 8 9 10

level (h)

Fig. 6. E(T},) behaviors for theflat, chain, and tree topologies.

flat structure, the hit rate isthe samefor CSs at all levels(i.e., 0.5)—dueto the fact that each CSinteracts
with the OS directly and independently from other CSs. On the other hand, the hit rate under chain or tree
topology exhibits the non-increasing behavior. Furthermore, the CS hit rate for the tree is higher than that
for the chain at almost all levels except the leaf CSs, and the hit rate for the chain is in turn higher than
that for the flat topology. This demonstratesthe effect of request aggregation and object sharing under the
hierarchical caching systems. That is, aCS (except the leaf CS) under the tree topology handles a higher
volume of requests than a CS at the same level under the chain or flat topologies.

At theleaf CS, mainly duetoasmaller TTL and also with less request aggregation and object sharing,
the hit rate under chain or tree topology is even lower than the flat structure. That shows that the system
favors CSs closer to the OS and penalizes CSs faraway from the OS, which is the intrinsic limitation
of any hierarchical caching systems. One of our future work is to seek techniques to alleviate such bias
against leaf CSsin an hierarchical system.

In Fig. 7(b), we plot the hit rate experienced by a user at each level through both analysis (Eq. (11))
and simulation results for the flat, chain, and tree topologies. We observe the similar hit rate behaviors
from user’s perspective. For the flat topology, the user perceived performance is aways the same as the
system metrics since there is no inter-CS requests. Comparing Fig. 7(b) to (a), we find that, under the
chain or tree topology, a CS's hit rate is always less than the user’s hit rate. This is because once there
isamissat a CS for a particular user request, this request may trigger multiple misses at CSs along the
upstream path toward the OS, which leads to a higher CS miss rate (or lower CS hit rate). We name this
as “miss synchronization”, and another part of our future work will explore techniques to avoid such
synchronization which can cause traffic surge among the path back to the OS. We also find that, for a
leaf CS, users' hit rate (as well as the response time to be discussed in the following) is the same as that
for the leaf CS under all topologies. This can be easily explained by the fact that aleaf CS can only have
reguests from users (i.e., no child CS below it).

62 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

1 1p— = X— —= - = _ T
T -~
______________ x
0.9 09 ¥ x X - - - N
x x Tt~ x \
0.8 08} x N AN
S
07 07 x x
— — —x - o -x - . \\
~ _ \
= 06 ~ Zosp x|
Y " x x 2 N
T 05 R S S S B A S S P S S € 05— —— . _— e e — +
= < = "\
z N T
8 o0al * 8 o0al \d
x x
03 E 03}
02 E 02}
flat/hitsim + flat/uhit.sim +
flavhit.cal flat/uhit.cal
01 F chain/hitsim % B 01 F chain/uhit.sim x
chain/hit.cal = - chain/uhit.cal = -
tree/hit.sim % tree/uhit.sim %
ok tree/hit.cal p ok tree/uhit.cal
) 3 : L L L L L L h) 3 : L L L L L L h
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
level (h) level (h)
(a) Cache hit rate. (b) User hit rate.
1of flatrttsim + ! ! ! ! ! ! 4] 1of flaturttsim + ! ! ! ! ! ! 4]
flat/rtt.cal flat/urtt.cal
chain/itsim x - chainfurttsim x -
9 chain/rit.cal = - A& 1 9 chain/urtt.cal = - A& 1
tree/rtt.sim = tree/urtt.sim x
tree/rtt.cal . tree/urtt.cal .
8 s 8 s
7 » g 7 »
2 - € -
},E‘, 6 e g 2 6 e
3 s - 8 5 -
5 ~ “ H ~ “
- - 2
g 4 P T Sy -
3 S~ _-F T~ 8 - < .
3 o E 3 e L
Pt x e x . x
2 — 2 x -
% - P
P e e « . A
x - —x— - x = - _ -
e’ e — =~ e N x - x
x - ™ —
B i - *x —
0 h o -x o — - 9 - L L
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
level (h) level ()
(c) Cache response time. (d) User response time.

Fig. 7. Cache and user hit rate and response time under the flat, chain, and tree topologies.

Fig. 7(c) and (d) showsthe response time for arequest from a CS and user’ s perspectives at each level,
respectively. The response time shown in thefigureisin unit of time with the rtt between two consecutive
levels of CS being 2 units (see Section 3.1 for our simulation settings). Therefore, the average response
timeis proportional to (more precisely, twice) the average number of levels (or CSs) that arequest needs
to travel (query) in order to get ahit.

In Fig. 7(c), under the flat topology, the response time increases linearly as the level increases, which
is expected. Since the hit rate is 0.5 based on our simulation settings (i.e.,, t = 1 and &4, = 1 for al
levels), the distance (measured in time) between the leaf CS (at level 10) and the OS is 20 units, the
average response time for a leaf CS is, therefore, 10 units. The response time under the tree topol ogy
is smaller than that under the chain topology, and the response time under the chain topology is much
smaller than that under the flat topology, especialy for the leaf CSs and users. In particular, under the
tree topology, a request only travels less than 1 hop upward (or 2 unit of rtt) on average to get a hit.
Thisisasubstantial improvement than under the flat topology, where the response timeincreases linearly
with the level number k. This demonstrates that, under the hierarchical caching systems, a request can
be fulfilled by a nearby CS along its upstream path (toward to OS). Fig. 7(d) shows the response time

level (h)

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 63
5[10 pr
™~ M —— —
45| — —.
2 o~
e ~ s ~
%;’ 35 ~., g o=
£ ~ -
T s} ~ £ ok -t T
% 25 ~ \ % —————— x_~ -
ﬁ 2r ~ ?’; 0.01 l/ -
g AN @ e
st ~ $ -
18} 3 —
be— % —— % - —%— - w—— % —— % - —w— - £
e i I SIS e Rk Sy -l - :\ § oot
0s <
0

0.0001 &
1

level (h)

(b)Normalized traffic load at each level.

(a) Aggregated traffic load at each level.

Fig. 8. Traffic load at each level under the flat, chain, and tree topologies.

from user’ s perspective at each level for all three topol ogies. We have similar observationsasin Fig. 7(c).
Furthermore, user perceived response time is even lower than that for the system for the chain or tree
topology since in most cases, when a user request comestoitslocal CS, the object isvery likely valid in
cache due to a previous user or system request.

3.2.3. Network traffic load

Another important performance behavior for caching system isthetraffic load, in particular, the request
and response traffic traveling through the network and processed by CSs. From the perspective of network
providers, such traffic measureisan important input for network capacity planning and traffic engineering.
On the other hand, from the perspective of service providers (or content delivery providers), traffic load
distribution among CSs is directly related to user perceived latency as well as an indication of whether
any additional load balancing is necessary.

Fig. 8(a) shows the aggregated request traffic volume at each level, which is the sum of request traffic
traversing the samelevel for the threetopol ogies. Again dueto the request aggregation and object sharing,
the hierarchical caching systems (i.e., chain or tree) have much lower traffic load at most levels (except
the leaf level) than the flat structure. In particular, under the flat topology, the closer to the OS, the higher
network traffic load, which poses a potential congestion bottleneck at or near the OS. In contrast, for the
hierarchical caching systemsunder thechainor treetopology, network trafficisevenly distributed at al lev-
els, which fulfillsthe objective of load balancing for both the network providersand service providers. For
theleaf level, similar tothereason with the cachehitratein Fig. 7(a), hierarchical systemscanhaveslightly
higher traffic demand than the flat one dueto alower TTL and less request aggregation and object sharing.

We need to point out that the lump sumnetwork traffic at the same level in Fig. 8(a) does not fully
demonstrate the superior advantage of the highly aggregated hierarchical caching systems such asthetree
topology. Thisis because the user population supported under the tree topology is much larger than that
under the chain or flat topology. To illustrate this point, in Fig. 8(b), we plot the normalized traffic load
defined as the ratio of request traffic summed over the CSs at the same level normalized with respect to
the total number of user requests received at the same level. For clarity, we use the log,, scale for the
vertical axisin Fig. 8(b) due to the small numerical scale of the result for the tree topology. In Fig. 8(b),
we find that, for the tree topology, the normalized traffic load per request at each level is several orders

64 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

lower than that under the flat topology for upstream CSs (i.e., CSs close to the OS), due to its ability to
aggregate requests. At the leaf level, the advantage of tree topology disappears since there is no more
request aggregation and object sharing at aleaf CS.

3.2.4. User request pattern

So far our simulation results are based on the uniform request pattern at each level (see Section 3.1),
whereuser requestrater, = 1forallh =1, 2, ..., 10. Inthisset of simulation results, wefurther explore
how non-uniform user request patterns at each level can affect the system’s and user’s performance
outlook. In particular, we consider two contrary scenarios:

e Heavy root-light lea{HR-LL). This represents the case where the closer it is toward the OS, the more
user request rate aCSreceivesfromitsloca metro region. In our simulation study, wechoose 1 = 1.9,
r=1217,...,20=0.1

e Light root-heavy leafLR-HL). This represents the opposite of the HR-LL scenario. Here, the farther
away itisfrom the OS, the larger the user request rate a CSreceives from itslocal metro region. In our
simulation study, we choose A1 = 0.1, A, = 0.3, ..., A10 = 1.9.

As we can find that in both scenarios, the total system request) ", Aac is the same as the one in the
previous sections (referred to as uniform scenario). We want to compare their results with the previous
sections to show how the request distribution can affect the system and user performance outlook.

For illustration purpose, we will only present simulation results and numerical calculation for the chain
topology. Fig. 9 shows the TTL behaviors for the HR-LL, uniform, and LR-HL user request patterns.
We observe that the TTL behavior under these traffic patterns still strictly follow Property 1,i.e, 1 >
E(Th) > E(Tz) > --- > E(Ty) > 1/2. However, even when the total request is the same, due to the
differencein user request patterns, E(7},) for theHR-LL caseissmaller than that for the uniform case, and
E(Ty) for the uniform case isin turn smaller than that for the LR-HL case. Thisis intuitive since under

E(Ty)

05 B

04 g
03 g

0.2 |- 1
LR-HL/ttl.sim +

LR-HL/ttl.cal
0.1 | Uniform/ttl.sim x i
Uniform/ttl.cal ------

HR-LL/ttl.sim

0r HR-LL/ttl.cal ------ i

1 2 3 4 5 6 7 8 9 10
level (h)

Fig. 9. TTL behaviors under different request patterns for the chain topology.

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 65

T T T T T T T T T T T
1F LR-HU/hit.sim —+— 4 1F
Uniform/hit.sim ——
HR-LL/hit.sim —x
09 | 4 0.9

08 | 4 08 |
07 |
06

05 |

CS hit rate (%)
User hit rate (6"))

04 F

03 F

02} X
01| N
LR-HL/uhit.sim —+—
x| Uniform/uhit.sim —s— e
ok j ok HR-LL/uhit.sim —x i
) L L L L L L L L h) h L L L L L L h
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
level (h) level ()
(a) Cache hit rate. (b) User hit rate.
T T T T T T T T T T T T T T
10F LR-HL/rtt.sim —+— g 10F L R-HL/urtt.sim " —+—
Uniform/rtt.sim —— Uniform/urtt.sim —»—
o HR-LU/rtt.sim —x R HR-LL/urtt'sim —x
. Ve
8 b 8 g
/
/
7 / 7

s
o)

CS response time (¢
User response time (o“h)

level (h) level (h)

(c) Cache response time. (d) User response time.

Fig. 10. System and user performance under different request patterns for the chain topol ogy.

the LR-HL case, more user requests at the leaf CS help to compensate the loss of request aggregation and
object sharing dueto its farther distance from the OS. Even when the request rate changes gradually, the
aggregated effect on TTL at different levelsis still considerable. As simulation results closely match our
analytical results, we will only present simulation results for the rest of this section.

InFig. 10(a), we plot the CS hit rate at each level for the HR-LL, uniform, and LR-HL cases. We find
that the hit rate can have drastically different behaviors under different user request patterns. In particular,
we observe that the higher user request rate at a CS, the higher the CS hit rate will be. For HR-LL, due
to the fewer user requests, less request aggregation and object sharing, the cache hit rate decreases very
quickly for CSscloseto theleaf. However, for LR-HL, the less request aggregation and object sharing are
effectively compensated by the increasing user request; except for the leaf CS, cache hit rate increases as
h grows. Onthe other hand, Fig. 10(b) showsthe user hit rate at each level under theHR-LL, uniform, and
LR-HL request patterns. Obviously, we find that the user hit rate performance favors the LR-HL traffic
pattern than that for the HR-L L traffic pattern since for users at al levels, LR-HL aways has the highest
hit rate consistently.

66 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

Table 1
A comparison of performance versus topologies and traffic patterns
Topology Scenario TTL User hit rate User response time
Flat Uniform 1.000 0.500 5.500
Chain LR-HL 0.935 0.840 1.295
Uniform 0.881 0.772 1.719
HR-LL 0.794 0.603 2.797
Tree Binary complete 0.904 0.878 0.466

Fig. 10(c) showstheresponsetime at CSfor different levelsunder these three request patterns (al so see
Fig. 10(a)). Although the response time for these cases have different performance for CSs at different
levels, the CS response time under the LR-HL traffic pattern is more desirable than that under the HR-LL
traffic pattern due to its concave behavior. For HR-LL, dueto less request and farther away from the OS,
when i grows, cache response time increases very quickly. However, for LR-HL, initially cache response
time increases when i grows since it becomes farther away from the OS. But as & further increases, the
cache response time will actually decrease, due to the increase in object sharing under HL traffic pattern.
Fig. 10(d) shows the user perceived response time under these three request patterns. Again, we find
that the performance under the LR-HL traffic pattern is consistently better than that under the HR-LL
traffic pattern. Overall, wefind that the user request distribution among the CSs can have great impact on
system and user behaviors and performance metrics. Fig. 10 suggests that when forming a hierarchical
system, network and service providers should maintain the LR-HL-like user request pattern to increase
the system hit rate and to reduce the user responsetime. It also suggeststhat by increasing the request rate
with higher user population or additional auxiliary requests introduced by prefetching, etc., the topology
disadvantage for leaf CSsin ahierarchical caching systems can be somehow alleviated.

3.2.5. Summary of simulation results

From the above results for the TTL behavior, hit rate, response time, traffic load, and user request pat-
tern, we observed some important properties and trade-offs for the flat and hierarchical caching systems.
Table 1 shows some numerical resultsfor comparison purpose. For aflat topology, although it can obtain
an object with thelargest TTL initialized at the OS, it usually has higher missrate (or lower hit rate) and
larger response time, and generates more and uneven traffic load (especially in term of the per request
load) than a hierarchical system (chain or tree). Under the hierarchical caching system, we observe that
there is a bias against leaf CS, which is due to the loss of request aggregation and object sharing at leaf
CS. Through our simulation results, we have also conclusively demonstrated that, for content distribution
employing the weak consistency paradigm, a hierarchical caching system is a scalable solution. When
adopting a hierarchical caching system, it is aso important for the network and service providers to
arrange the user reguest pattern in a proper manner to maximize the performance potential and avoid
some bias due to topology configuration.

4, Related work

Although caching has been used in distributed computer and database systems for many years, its
potentia in solving Internet scalability has only been discovered and explored in recent years. There

Y.T. Hou, J. Pan/Performance Evaluation 55 (2004) 51-68 67

are some prior research efforts on web caching based on weak consistency. For example, in [1,5], the
authors demonstrate the efficacy of web caching under weak consistency by using timer-based protocols.
Chankhunthod et al. [2] demonstrated that a caching system using the hierarchical architecture can be
very effectiveto scale up the web growth. Yu et a. [10] showed a scalable invalidation approach based on
hierarchy and application-level multicast routing. However, none of these prior efforts has investigated
the TTL expiration-based weak consistency problem for ahierarchical caching systemin aformal setting
as we have done in this paper.

The most relevant work to oursisthat by Cohen and Kaplan [3], where the authors focus on the effects
of aging on the miss rate of the cache. Among other things, the authors in [3] considered a simple tree
with a height of 2 and compared its miss rate with other configurations under different request arrival
patterns. Motivated by thework in [3], this paper aimsto have adeeper understanding of expiration-based
hierarchical caching systems with some theoretical underpinning. By casting such hierarchical caching
systems with a simple but generic model, we are able to obtain better understanding of the time domain
behavior of weak consistency and a comprehensive set of performance metrics from both system’s and
user's perspectives.

5. Conclusions

Thispaper presentsafundamental study of hierarchical caching systems based on the weak consistency
paradigm. Based on asimple model for hierarchical caching systems using the concept of TTL expiration
mechanism, we analyze the intrinsic timing behavior of such systems and derive important performance
metrics from both the system’s and user’s perspectives. Our simulation results further demonstrate the
efficacy of our analysis and reveal insights on various design trade-offs. Our results are general and can
be applied to distributed systems employing expiration-based weak consistency.

Acknowledgements

The authors wish to thank Xueyan Tang of Hong Kong University of Science and Technology for
pointing out asimpler derivation for the average TTL.

References

[1] V. Cate, Alex—a global file system, in: Proceedings of the 1992 USENIX File System Workshop, Ann Arbor, MI, May
1992, pp. 1-12.

[2] A.Chankhunthod, P. Danzig, C. Neerdaels, M.F. Schwartz, K.J. Worrell, A hierarchical Internet object cache, in: Proceedings
of the USENIX 1996 Technical Conference, San Diego, CA, January 1996, pp. 153-163.

[3] E. Cohen, H. Kaplan, Aging through cascaded caches: performanceissuesin the distribution of Web content, in: Proceedings
of the ACM SIGCOMM Conference, San Diego, CA, August 2001, pp. 41-53.

[4] A. Dingle, Cache consistency inthe HTTP 1.1 proposed standard, in: Proceedings of the First Workshop on Web Caching.
http://www.w3cache.icm.edu.pl/workshop/program.html.

[5] J. Gwertzman, M. Seltzer, World-wide web cache consistency, in: Proceedings of the 1996 USENIX Technical Conference,
San Diego, CA, January 1996, pp. 141-151.

[6] C.Liu, P.Cao, Maintaining strong cache consistency in the world-wideweb, in: Proceedings of the 17th |EEE International
Conference on Distributed Computing Systems (ICDCS' 97), May 1997, pp. 12-21.

http://www.w3cache.icm.edu.pl/workshop/program.html

68 Y.T. Hou, J. Pan/ Performance Evaluation 55 (2004) 51-68

[7] The Network Simulator—ns-2. http://www.isi.edu/nsnam/ng/.
[8] M. Rabinovich, O. Spatscheck, Web Caching and Replication, Addison-Wesley, Reading, MA, 2002.
[9] S.M. Ross, Introduction to Probability Models, 4th ed., Academic Press, New York, 1989, Chapter 7.
[10] H. Yu, L. Bredau, S. Shenker, A scalable Web cache consistency architecture, in: Proceedings of the ACM SIGCOMM
Conference, Cambridge, MA, August 31-September 3, 1999.

Y. Thomas Hou obtained his B.E. degree from the City College of New York in 1991, M.S. degree from
Columbia University in 1993, and Ph.D. degree from Polytechnic University, Brooklyn, New York, in
1998, all in Electrical Engineering. From 1997 to 2002, Dr. Hou was a research scientist and project
leader at Fujitsu Laboratories of America, | P Networking Research Department, Sunnyvale, CA (Silicon
Valley). He is currently an Assistant Professor at Virginia Tech, The Bradley Department of Electrical
and Computer Engineering, Blacksburg, VA. Dr. Hou's research interests include wireless video sensor
networks, multimediadelivery over wireless networks, scal able architectures, protocols, and mechanisms
for differentiated services Internet, and service overlay networking. Dr. Hou has published extensively in
the above areas and is a co-recipient of the 2002 |EEE International Conference on Network Protocols
(ICNP) Best Paper Award and the 2001 |EEE Transactions on Circuits and Systems for Video Technology Best Paper Award.
Heis amember of IEEE and ACM.

Jianping Pan obtained his B.S. and Ph.D. degrees in Computer Science from Southeast University,
Nanjing, China, in 1994 and 1998, respectively. From 1999 to 2001, he was a Postdoctoral Fellow and
Research Associate with the Center for Wireless Communications at University of Waterloo, Waterloo,
Ont., Canada. Since September 2001, he has been a Member of Research Staff with the IP Networking
Research Department at Fujitsu Laboratories of America, Sunnyvale, CA. His research interests include
transport protocols and application services for multimedia, high-speed and mobile networks. He is a
member of ACM and | EEE.

http://www.isi.edu/nsnam/ns/

	Analysis and evaluation of expiration-based hierarchical caching systems
	Introduction
	Modeling and analysis
	Basic model
	Performance analysis
	Average TTL behaviors
	System and user performance metrics
	Network traffic load

	Simulation investigation
	Simulation settings
	Simulation results and discussions
	Average TTL behavior
	System and user performance metrics
	Network traffic load
	User request pattern
	Summary of simulation results

	Related work
	Conclusions
	Acknowledgements
	References

