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Abstract—In this paper, we present MobTrack, a single device
system which aims to locate interfering radios on unlicensed
ISM band in indoor environments. Compared with existing
techniques which require a deployment of dense access points
(APs), MobTrack only demands a single device equipped with
multiple antennas. The location of an interfering signal source
are estimated by computing the angle of arrival (AoA) of Line of
Sight (LoS) component using an antenna array. Taking advantage
of cyclostationary property, MobTrack differentiates interfering
signals from working signals. By moving the device around
for a short distance within one meter, it depresses multipath
effects and determines the LoS component. Simultaneously,
the AoAs on the moving trace are recorded to estimate the
location of the interfering radio by triangulation. We evaluate the
performance of MobTrack by setting up a prototype experimental
system. Compared with recent interference localization schemes,
MobTrack has much lower hardware complexity and gets better
localization accuracy with a median of 0.55 meters.

I. INTRODUCTION

As the coming of more wireless devices working on the un-
licensed ISM band are produced, this portion of the radio spec-
trum is becoming more and more crowded, which inevitably
leads to interference between these devices. When interference
happens, the wireless communication performance may be
severely degraded. For example, we all have the experience
that though we are close to the WiFi Access Point, our device
still experience poor communication performance. Besides
WiFi, many other types of devices like Bluetooth speakers,
baby monitors, cordless phones and microwave ovens also
work on the same frequency band, which causes interfer-
ence to our WiFi communications from time to time. The
interference problem becomes even more crucial especially in
some circumstances like hospitals or business environments,
where sudden poor wireless performance may lead to serious
outcomes.

Nowadays, WiFi has become the predominant wireless
communication solution in indoor environments. In this paper,
we consider the scenario of WiFi being interfered by one or
multiple unknown radios. When interference happens, a quick
and accurate method to find and terminate the interfering radio
will be helpful. However, in indoor environments, it is not easy
to locate the interfering signal.

There are many previous research work on the topic of
wireless localization in the literature. However, none of them
are applicable for the problem of locating indoor interfering
radios. Traditional solutions to the wireless localization prob-
lem follows three research lines by measuring the values of
Received Signal Strength Indication (RSSI), Time of Arrival

(ToA) or Angle of Arrival (AoA). RSSI based solutions [1] [2]
collect RSSI values and then use signal propagation models
to compute the distances. However, under the circumstance
of interference, both interfering and working signals impinge
on antennas at the same time and the power is the sum of
all incoming signals, which makes it infeasible to differentiate
interfering radios from working signals. ToA based ranging
solutions [3] [4] require high time resolution measurement
and usually rely on dedicated hardware or leverage slower
waveforms like acoustic signals. AoA based algorithms [10]
[12] rely on antenna arrays to do angle estimation. Howev-
er, traditional AoA based algorithms cannot address all the
challenges encountered by our problem.

Locating indoor interfering radios using AoA based meth-
ods has many specific challenges. First, as the nature of the
interfering radios are not known to us, nor can we expect
cooperation from the interfering radios, a way to differentiate
the interfering radios from working signals is needed. On
the other hand, because of the multipath phenomenon, too
many signal components will impinge on the antenna array
simultaneously, which significantly increase the demand for
antenna numbers. The second challange is to isolate the LoS
componets from Non-LoS (NLoS) components. Among all the
multipath components, only the LoS component contributes to
calculation of signal source position using AoA, so the LoS
component must be isolated from all Non LoS components.

Recent research has made great advances to address these
challenges. In Pinpoint [16], an modified Access Point (AP)
infrastructure is leveraged to compute LoS AoA. Their algo-
rithms are based on cyclostationary signal analysis to identify
the source of interference. To meet the challenge of multipath
propagation, they isolate the LoS component by finding the
relative delays between LoS and NLoS components and the
relative delays between different antennas at APs. However,
as the difference of propagation distance between LoS com-
ponent and the second arriving multipath component is only
about several meters, which corresponds to tens of nanosec-
onds [13], it is hard to differentiate them without expensive
dedicated hardware with high sampling rate. Pinpoint uses a
modified frontend that was able to send and receive arbitrary
waveforms in the entire 100MHz ISM band [17]. Another
work ArrayTrack [5] proposes algorithms to eliminate the
effects of multipath by paring peaks in AoA spectrum. Their
multipath suppression algorithm could make 71% percent of
success to find the LoS by moving the mobile device for five
centimeters. However, in our scenario, we have no control to
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Fig. 1: System Model. WiFi communication between AP and client are working signals.
The interfering radio source is a cordless phone which is the target we are trying to
locate. MobTrack locates the interfering radio by compute the LoS AoA of the cordless
phone at multiple positions on its moving trace.

the interfering radio and can not move the source arbitrarily,
which makes the solution in ArrayTrack not feasible to our
problem. These systems achieve sub-meter location accuracy,
but the problem is that their performance relies heavily on
the number of cooperating APs. However, though the density
of WiFi APs has increased largely, it is not necessary and
infeasible to deploy 4 to 5 APs on the same channel in a single
area because of the distributed channel assignment algorithms
by the IEEE standards [18].

In this paper, we present MobTrack, a single device system
that locates indoor interfering radios. The goal of designing
MobTrack is to provide a lightweight, handheld system that
can locate interfering radios with sub-meter accuracy with as
less antennas as possible. MobTrack eliminates the depen-
dence on the AP infrastructure. With small antenna array, the
cost, complexity as well as size of this device will be also
reduced.

MobTrack system model is shown in Fig. 1. A MobTrack
device consists of an antenna array, signal processing firmware
and our novel algorithms to compute the LoS AoA and
estimate the source location. The device is started when an
interference is detected. By moving it around, our multipath
suppression algorithm can isolate the LoS component from all
other impinging components. At the same time, the angles of
the LoS component on the movement trace are collected to do
triangulation.

Based on cyclosationary signal analysis on existing proto-
cols, we design novel algorithms to classify the signal types
and find the cyclic frequencies. Different from PinPoint which
creates a dummy signal as the test signature, we analyze cyclo-
stationary signatures of different signal types theoretically and
store their cyclostationary signature in bi-frequency domain
locally. Thus we don’t need to store the dummy signals for
every cyclic frequencies. Another difference is that we adopt
Cyclic-MUSIC algorithm [11] to calculate AoAs. In contrast,
Pinpoint leverages a optimization method, whose target is
a residual function of both signal components delays and
the angle of arrival. Our algorithms doesn’t work on time
domain for the purpose of efficiency and designing goal of
a lightweight system without dedicated wireless frontends.

Fig. 2: MobTrack Architecture. Raw samples are phase aligned and then input into
the interference detection process, where cyclic frequencies α are extracted. Spacial
smoothed cyclic-music algorithm is applied to estimate the AoAs of the multipath
components of only the interfering radio. Multipath suppression algorithm is then applied
to isolate the LoS component and identify its AoA. LoS AoAs at different points are
used to locate the source by triangulation.

To address the problem of multipath propagation, we design
a novel algorithm that effectively find the LoS components
based on the stability difference of LoS and NLoS compo-
nents. The key insight of our multipath suppression algorithm
is that with the movement of MobTrack device, the values of
LoS AoA tend to be continuous, while reflected paths AoA
values are more segmented. Using this property, MobTrack
finds LoS AoA by selecting the longest continuous AoA line
on the angle-movement plane explained in II-C.

The main contributions of this paper are summarized as
follows:
• To the best of our knowledge, MobTrack is the first single

device indoor interference localization system without the
requirement of multiple pre-deployed Access Points.

• We propose a novel algorithm to eliminate the multipath
effect in the indoor environment. Our multipath suppres-
sion algorithm could robustly and efficiently isolate the
LoS component from other reflected components.

• We propose a novel signal type identification algorithm
for MobTrack to calculate the AoAs of only interfering
radios, which significantly reduces the requirement to
antenna numbers and device complexity.

A prototype system of MobTrack is implemented on Ettus
USRP platform with 6 antennas as the wireless frontend. The
location performances are evaluated on a testbed at 16 points
over one floor of our department building. Experimental results
show that within a movement of 1 meter, MobTrack achieves
a median 55cm location accuracy using data collected from 5
points with an LoS isolation correction of 95%.

The rest of the paper is organized as follows. The system
design details are presented in Section II. Implementation is
stated in Section III. Section IV elaborates the simulation and
experimental results. We discuss related work in Section V
and conclude the paper in Section VI.

II. SYSTEM DESIGN

We describe the system design of MobTrack following the
data flow in system architecture in Fig. 2. We assume that
the interfered communication is a WiFi link between an AP
and a client. The interference to this communication from a
nearby device is the signal we want to locate. MobTrack is a



movable device equipped with an antenna array. We choose
the number of antennas to be 6, which will be explained
in Section III. This device is carried by an operator moving
around in the interfered area to locate the interfering radio and
get an increasing accuracy continuously by moving towards it.

As we have stated in the introduction, there are two major
challenges to do indoor interference localization using a single
device: to identify the interfering signal type and to isolate the
LoS component. Our system design meets these challenges
as well as achieve our goal of a lightweight system. By
identifying signal type and using Cyclic-MUSIC algorithm,
we can significantly reduce the demand for the number of
antennas. The system is designed to be a single device, so
that we are able to move it to get angles from different points
and suppress multipath effect at the same time. The challenges
are addressed step by step. We follow the data flow and make
a brief introduction to each step first before diving into the
details.

1) Identify the interfering radio type (Section II-A):
MobTrack takes the phase-aligned signal samples as
input. It has to eliminate the influence of noise and
signals except the interfering radio first. The property it
utilizes is the cyclostationarity property of the interfering
radio. MobTrack correlates the received signal with
pre-stored signal signatures to determine the interfering
signal type. Then it picks a cyclic frequency α which
is unique to this interfering radio and pass it along with
the received samples to the next step.

2) Calculate the AoAs of only interfering radio (Sec-
tion II-B): Cyclic-Music algorithm takes advantage of
the signal selection property of cyclic frequencies. If α
selected is unique to the interfering radio, all impinging
components from other signals are filtered. Only AoAs
from the interfering radio are left. Furthermore, multi-
path components from the same signal source correlate
with each other, which degrades the performance of
MUSIC algorithm. To handle this problem, a spacial
smoothing method is adopted. In this step, we address
the fist challenge. The output of this step is the AoAs of
impinging components from the interfering radio only.

3) Isolate the LoS AoA among multiple NLoS AoAs
(Section II-C): At this step, MobTrack can finally
address the second challenge. It leverages a novel algo-
rithm called LongestCurveFitting to separate LoS signals
from NLoS signals and thus find the LoS AoA of
interfering radio. The output of this step is LoS AoAs
at multiple points on the device moving trace.

4) Triangulation to find the interfering radio (Sec-
tion II-D): The above steps help MobTrack figure
out the relative angle between itself and the targeted
interfering radio. It can now tell us the direction of the
interfering radio. By triangulation, we use least square
method to estimate its location. Thereby we can follow
its lead to find the target and turn it off.

Fig. 3: WiFi SCD Surface by simulation. SCD surface is bi-frequency, with one dimension
the frequency and the other the cyclic frequency. The peaks are induced by pilots on the
OFDM subcarriers. Sampling frequency is 20MHz with 64 points FFT. The pilots index
are -21,-7,7,21 and pilot gain is set to 3db.

A. Interference Identification

WiFi signals are packet based. As we assume that we don’t
know the nature of the interfering radio, it may be constant
or intermittent. Once the samples of a packet are received
from the antenna array, we test whether it is interfered using
our interference identification algorithm described below. If no
interfering radio is detected, the samples are dropped off and
MobTrack waits for the next packet. Otherwise, it is analyzed
to find its singal type. In this section, we introduce signal
cyclostationary properties first, and then we elaborate our in-
terference identification algorithm. The purpose of identifying
the interfering radio is to find its cyclic frequencies which are
used as input in Cyclic-MUSIC algorithm in Section II-B4.

1) Cyclostationary Property: Different types of signals
exhibit different cyclic signatures, on which we can rely to
detect interference or even determine the interference source
type. We first introduce some concept of signal cyclostationay
properties and then elaborate on the algorithms to find the
cyclic frequency α.

A signal with the property of cyclostationay correlates with
a frequency-shifted version of itself, which is named the
spectral coherence property. Define a Cyclic Autocorrelation
Function (CAF) by

Rαx(τ) ,< x(t+ τ/2)x∗(t− τ/2)e−j2παt > (1)

where the < · > is the time averaging operation.
If for some α and τ , Rαxx(τ) 6= 0, then this signal is

called a cyclostationary signal. For α = 0 , R0
x(τ) reduces

to conventional autocorrelation function.
Instead of Rαx(t), its Fourier transform is more often used

in cyclostationary signal analysis because of computation
efficiency [14],which is called the spectral correlation density
function (SCD). SCD is defined by

Sαx(f) =

∫ ∞
−∞

Rαx(τ)e−j2πfτdτ (2)

In discrete domain, continuous signal x(t) is sampled to be
a series x[n]. The values of SCD should be estimated from the
samples using algorithms like Fast Fourier Transform (FFT)
Accumulation (FAM) [19].



The simulated WiFi SCD surface is plotted in Fig. 3. SCD
surface is bi-frequency, with one dimension the frequency
and the other the cyclic frequency. The peaks are induced
by pilots on the OFDM subcarriers. Sampling frequency is
20MHz with 64 points FFT. The pilots index are -21,-7,7,21
and pilot gain is 3db. As [20] shown, WiFi signals exhibit
cyclostationary properties because of the OFDM structure like
pilots and cyclic prefixes. Similarly, other protocols also ex-
hibit similar cyclostationary properties. With different physical
layer implementations, these protocols has their unique cyclic
frequencies, on which we rely to differentiate them.

2) Interference Identification : We make a reasonable as-
sumption here that the WiFi signal modulation parameters are
known, including the number of subcarriers and the positions
of the pilot subcarriers. These parameters define the value of
cyclic frequencies.

MobTrack utilizes peak patterns on the SCD surface to
differentiate signal types. By doing cyclostationary analysis
on the signal universe (including WiFi, Bluetooth, ZigBee,
DECT cordless phone, etc), we calculate their possible SCD
peak patterns and store the ”ideal” SCD surfaces locally. An
”ideal” SCD surface take values of only 1 or 0. If there is a
peak at a coordinate (α, f), its value is 1. Otherwise, it’s 0.

Once the interfered samples are received and the corre-
sponding SCD surface is calculated, We calculate the correla-
tions of the SCD with each stored ”ideal” SCD surface. We
define a threshold CTH . If a correlation is found over CTH ,
then we say that the interfering radio of this type exists.

The interference identification algorithm is summarized in
Algorithm 1.

Algorithm 1 Interference identification algorithm

1: Analyze signal universe, store “ideal” surfaces SN
2: Calculate the sample surface Sc
3: for each “ideal” surface Si ∈ SN do
4: Calculate the correlation Cic of Si and Sc
5: if Cic > CTH then
6: Set Si as the interfering radio type
7: end if
8: end for

This algorithm may return two or more signal types. In this
situation, we assume more than one interference exists. We
can find unique cyclic frequencies for them separately and all
these interfering signals can be located. However, in this paper,
we focus on the scenario where there’s only one interference.

What should be noted is that unlike previous work on signal
classification using cyclostationary approaches [24] [17], we
don’t use machine learning methods. Instead of training the
algorithm when interference happens, we analyze the signal
universe and store their signatures.

B. AoA spectrum computation

Once the interfering radio is identified, we select a cyclic
frequency that is unique to the interfering radio, and use

Fig. 4: Phase Array Data Model. Multipath components from multiple sources impinge
on the antenna array. Antenna array is a Uniform Liner Array with interval distance
d = λ/2. Propagation phase delay between array elements can be used to infer the
incoming angle θ

Cyclic-MUSIC algorithm to calculate the AoA spectrum. Sig-
nal components impinging on the antenna array from different
directions with different power. AoA spectrum is the incoming
signal’s power as a function of angle of arrival. We locate
the peaks on the AoA spectrum and say that there is a
signal component at this direction. However, the directions
may or may not be the actual direction of the source because
of multipath propagation. Nor the highest peak means that
it is the direct path because the direct path signal may be
blocked. In this section, we first introduce the concept of phase
array model. Then we briefly illustrate MUSIC algorithm and
Cyclic-MUSIC algorithm.

1) Array Signal Measurement Model: For simplicity, we
use a Uniform Linear Array (ULA) in MobTrack, which
consists of M antennas with an interval of d between adjacent
antennas. The array signal model is illustrated in Fig. 4.
Assume I signals exist in the referred space and for the ith
signal, there are Ki multipath components perceptible by the
antenna array. Further, we assume that the signal sources are
far field sources, which means the impinging signals are plane
waves.

The signal received by the mth antenna can be expressed
as

xm(t) =

I∑
i=1

Ki∑
k=1

sik(t− (m− 1)dsinθik
c

) + nm(t) (3)

where sik(t) and θik are the wavefront of kth component of
ith signal impinging on the ULA and its AoA respectively.
nm(t) is additive measurement noise with zero mean value
and no cyclostationary property.

Since d = λ/2, we make the narrowband assumption and
the effect of propagation delay is simply a phase shift.

Denoting

a(θk) = [1, e−jπ sin θk , ..., e−jπ(M−1) sin θk ]T (4)

The antenna array signal measurement model can be ex-
pressed in a matrix form as

x(t) = A(θ)s(t) + i(t) + n(t) (5)

where x(t) = [x1(t), ..., xM (t)]T is the measurement vec-
tor; s(t) = [s1(t), ..., sK(t)]T is the wavefront vector ;
i(t) = [i1(t), ..., iM (t)]T is uninterested signals vector; n(t) =
[n1(t), ..., nM (t)]T is the measurement noise vector; A(θ) =



[a(θ1), ..., a(θK)]. Note that x(t), i(t),n(t), a(θk) ∈ CM ,
s(t) ∈ CK and A(θ) ∈ CM∗K and ()T denotes transpose.

As defined in Equation 4, a(θ) is the steering vector of the
array, which is a function of the AoA of the incoming signals.

2) MUSIC Algorithm: Conventional MUSIC [10] algo-
rithms are based on decomposition of the autocorrelation
matrix of the input signal x(t) = A(θ)s(t) + n(t)

Rxx , E{xx∗} = ARssA∗ + σ2I (6)

where A is composed of the steering vectors of the antenna
array, and σ2 is the variance of noise n(t). Rss = E{ss∗}
is the source autocorrelation matrix. If the signals s(t) are
modeled as stationary processes, and uncorrelated with the
noise, then Rss is a Hermitian matrix and ARssA∗ is positive
semidefinite whose rank is the number of the incoming signals
I . MUSIC requires that number of antenna M > I .

The autocorrelation matrix Rxx is then eigen-decomposed
to get M eigenvalues. The smallest M − I eigenvalues are all
equal to noise variance σ2. Using this property, the number of
incoming signals can be estimated.

Corresponding to the eigenvalues, the M eigenvectors span
two subspaces: signal subspace Es and noise subspace EN .
The eigenvectors whose eigenvalues are σ2 span the noise
subspace. For each ei ∈ EN , we have

Rxx(t)ei = ARssA∗ei + σ2ei

so
ARssA∗ei = 0

A∗ei = 0
(7)

Equation 7 means that for every steering vector a(θk) ∈ A,
a(θk) ⊥ ei. The set of a(θ) is named the array manifold [12].
For our azimuth-only AoA estimation problem, the array
manifold is a one-parameter ”line” in the M -dimensional
space spanned by the eigenvectors of Rxx(t).

As a(θk) ⊥ ei, the intersections of array manifold a(θ) and
signal subspace Es are the solutions of estimating θk. The
spacial spectrum function is selected to use the inverts of the
distance between a point moving along the array manifolds
and Es, who will peak at the signal AoAs

P (θ) =
1

a∗(θ)ENE∗Na(θ)
(8)

3) Spacial Smoothing to eliminate correlation: By selecting
cyclic frequency α, we have eliminated the influence of noise
and other signals. But in our application scenarios, there
is another challenge. Multipath components from the same
interference source are apparently correlated. If the multipath
components are fully correlated, the rank of Rαxx will be 1.
This will degrade the performance of eigen-decomposition
based algorithms or even make them infeasible. In order
to increase the rank of CAF so that we can estimate all
the multipath components, we adopts the spacial smoothing
algorithm [15] to eliminate the correlation between multipath
components. An illustration of spacial smoothing is shown in
Fig. 5.

Fig. 5: Subarray Spacial Smoothing Totally M antennas in P groups with Q antennas
in each group. M = P +Q− 1.

Fig. 6: Multipath Suppression. We record the peaks and plot it as a dot in this figure.
With the movement of MobTrack device, the LoS AoA changes continuously, but NLoS
components will disappear intermittently. By finding the longest line, we can isolate the
LoS component.

4) Cyclic MUSIC Algorithm [11]: The difference between
cyclic MUSIC algorithm and conventional MUSIC algorithm is
that instead of the autocorrelation matrix, the decomposition of
the cyclic autocorrelation matrix is leveraged here. Assuming
that all signals are not fully correlated, we can then choose a
cyclic frequency α, at which the K of them exhibit spectral
correlation. Because of the frequency selection property of
cyclic frequency α, the cyclic autocorrelation matrix of i(t)
and n(t) are all zeros, and the cyclic cross-correlation between
s(t) and i(t) and n(t) are also zeros. So we get

Rαxx = ARαssA
∗ (9)

whose rank is K and K < M .
The rest of the cyclic MUSIC algorithm is the same as

conventional MUSIC algorithm. It is worth noting that differ-
ent from autocorrelation matrix, the CAF matrix Rαxx is not
a Hermitian matrix. So the eigendecomposition method is not
applicable here and the singular value decomposition (SVD)
method must be applied.

Because of the signal selection property we stated above,
Cyclic-MUSIC does not require higher number of antennas
than the number of multipath components. Taking the unique
cyclic frequency of interfering radio as input, it successfully
output the AoAs of only the interfering radio. Taking advan-
tage of this property, we only need a number of antennas
to separate the multipath components from only one signal
source. In indoor environments, there are usually 5 multipath
components conceptacle. As MobTrack is movable, the block-
ing effect of LoS is eliminated when moving around. So we



Fig. 7: MobTrack Triangulation. We apply the well-known least square algorithm in
linear algebra to calculate a single estimation point. When employing the least square
method, the known variables are the 2D locations of the MobTrack and the θs in the
figure while the unknown variables are the 2D location of the estimation point.

equip MobTrack with 6 antennas as we can always find places
where LoS component is in the strongest three.

C. Multipath Suppression

Now we get the directions of all the components of the
interfering radio including both LoS and NLoS components.
The next step is to isolate the LOS component in order to find
the target interference. The algorithm we employ to achieve
multipath suppression is motivated by the observation that LoS
components and NLoS components have different stabilities
with the movement of the device. As illustrated in Fig. 6,
the LoS component is continuous compared to discrete NLoS
components when we move MobTrack and record the angle
data. This is because if the location of MobTrack change
successively, the angle between the target interference and
MobTrack will change consecutively. But this is not true
for multipath components, which bounce on walls or object
surface which is inconsecutively themselves. Based on this
observation, we develop an algorithm which can find the
longest continuous path in the angle-movement plane, which
is the LoS component.

The multipath suppression algorithm is summarized in
Algorithm 2. We name this algorithm LongestCurveFitting.
It takes the AoA spectrums as the inputs, finds the peaks
and records their coordinates. It then uses the Curve Fitting
algorithm to test which curve line the peak dots belong to. If
a curve line is segmented, it is removed from the candidate
set. If there is only one curve line left in the candidate set, we
terminate the function and set it as the LoS component.

An experimental result will be presented in Section IV.
Using the above algorithm, we are able to find the LoS AoAs
within a movement distance less than half a meter.

As long as we find the LoS AoAs from several points, we
can estimate the source location using triangulation methods.

D. Triangulation

As MobTrack is a moveable or handheld device, we can
simply find the interference by following the direction which
MobTrack is pointing to. We run MobTrack continuously
at different locations on the movement trace and then we

Algorithm 2 LongestCurveFitting

1: Set the LoS candidate set S to be Φ
2: while The LoS components is not found do
3: Find the peaks on current AoA Spectrum
4: For every peak do CurveFitting
5: Find the current longest curve C
6: if Length of C > LTH then
7: C is the line corresponding to LoS AoAs
8: end if
9: end while

Fig. 8: Prototype implementation. The MobTrack prototype is composed of six USRP
radios mounted on a movable case, which form an antenna array. Another USRP works
as the phase alignment reference, and one more works as the interferer(not shown in
picture).

adopt triangulation to estimate the location of interference
with AoAs displayed. As shown in Fig. 7, we observe that
the directions which MobTrack points to will not intersect
at a single point because of the estimation and measurement
errors. Thus, we apply the well-known least square algorithm
in linear algebra to calculate a single estimation point. When
employing the least square method, the known variables are the
2D locations of the MobTrack and the θs in the figure while the
unknown variables are the 2D location of the estimation point.
The matrix A and vector b in Ax = b are formed by the 2D
locations of the MobTrack and the θs. Because the directions
which MobTrack points to can not form a single point, so Ax
= b will have no solution. Then we project vector b onto the
column space of matrix A to get the projection vector p. By
solving Ax = p, we get the single estimation point we desire.

III. IMPLEMENTATION

We implement the MobTrack prototype on Ettus USRP
software defined radio platform, as shown in Fig. 8. The
system consists of 6 USRP-N200 software defined radio
platform. Four of the USRP devices are equipped with a
daughterboard XCVR2450, and two of them are equipped with
a daughterboard SBX, which provides the support of 2.4Ghz
WIFI channel. The distances between antennas are set to be
6.13cm, which is half the wavelength of 2.4G signal.

Fig. 9 explains the connections between the devices of
our prototype. Every two of the six USRPs are connected
using a MIMO cable, which provide communication as well
as synchronization between them. The master USRP in each
group is connected to the host computer via a Gigabyte
Ethernet switch. Another USRP N200 works as a phase
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Fig. 9: MobTrack prototype connections.Every two of the six USRPs are connected using
a MIMO cable. The master USRP in each group are connected to the host computer via a
Gigabyte Ethernet switch. All master USRPs are connected to an external clock for time
and frequency synchronization. A phase reference tone is provided by another USRP.

reference tone provider. The transmit antenna of this USRP
is cable connected to the six receivers using an SMA splitter.
The cables have the same length, which provide the receivers a
stable reference tone. The master USRP in each group as well
as the reference transmitter are all connected to an external
clock, which provides a synchronized 10MHZ reference clock
and the PPS signal for the purpose of frequency and time
synchronization.

The phase reference tone and signals received over the air
are sampled to GNURadio. Two band pass filters are used to
split them into separate data streams. The data streams are
then transmitted to a Matlab script via a named pipe. The
phase differences are calculated from the phase reference tone
and compensated to data streams over the air. And then start
our interference identification process.

IV. PERFORMANCE EVALUATION

To illustrate the performance of MobTrack in real indoor
environments, we present experiment results in this section
from the testbed described in IV-A. We first describe the test
bed setup methodology. The we present an experimental result
of LoS signal stability. After that, we present the location
accuracy MobTrack can achieve, comparing with the results of
Pinpoint. We also explore the effects of number point we use
to do triangulation on the movement trace on the performance
of MobTrack.

A. Test bed setup

The location performances are evaluated on a test bed over
one floor of our department building, as shown in Fig. 10.
The interfering radio is placed at the blue point in Room 314,
which is in the same room as the WiFi AP. Our device follows
the trace in the figure on the same floor. Most of the test points
are in the hall and some of them are in the lab mentioned
above. The distance of the whole trace are 20 meters. Along
this trace, we take a measurement every 25 centimeters. The
ground truth are measured before the experiment with an
accuracy of 1cm.

B. LoS Signal stability

To illustrate the difference of stabilities between LoS com-
ponent and NLoS components, we set up an experiment in our

Fig. 10: Testbed. This figure is a part of the floor our lab sits on. The dotted line in this
figure is the trace of executed experiments. The blue point in the lab is the interfering
radio we would like to locate. Following the trace, we conduct a test per 25 centimeters.

TABLE I: Percentage of segmented multipath curves

Distance 5cm 10cm 15cm
Percentage of Segmented 30% 75% 95%

Fig. 11: The stability of LoS and NLoS components. The distance between the transmitter
and MobTrack is 172cm. The distance between each location is 2.5cm.

office room. The transmitter works at frequency 2.412GHz and
locates in the same room as the MobTrack device. The distance
between the transmitter and MobTrack is 172cm. We move
MobTrack along the parallel direction of the antenna array and
the transmitter. In a distance of 1 meter, we record the angles
of arrive estimated by MobTrack, including both LoS and
NLoS components. The results are shown in Figure 11. The
distance between each location is 2.5cm. As we can see from
this figure. The LOS component AoA changes from 0 degree
to about -26 degree following a continuous curve. Our curve
fitting algorithm finds this line as the longest successfully.

On the other hand, NLoS components change intermittently.
We list the percentage of segmented curves in this Fig. 11
using LongestCurveFitting algorithm. From Table I, we can
see that most of the distance of multipath components is about
15cm, which means that by moving MobTrack for 15cm, the
multipath components almost always change their impinging
direction. This experiment verifies that our multipath suppres-
sion algorithm is feasible.



Fig. 12: Localization Accuracy with Different Calculation Points. The median error is
0.55m estimating from 5 locations.

C. Localization Accuracy with Different Calculation Points

This section presents the localization accuracy changes with
different calculation points. In Fig. 12, we estimate the location
of interfering radio by the information provided by MobTrack
at different locations. We employ respectively 2, 3, 4 and 5
different locations in the triangulation step in our estimation.
We can see that the more locations we select to do the
calculation, the more accurate results we can achieve. The
distances between two locations range from 10cm to 1 meter.
We prefer to use longer distance because the longer distance
between the points, the better performance it will achieve.
Estimating in 5 locations, MobTrack achieves a median local-
ization error of 0.55 meter. Comparing with Pinpoint locating
the interfering radio using 5 static APs with accuracy of 0.97
meter, our scheme performs better. The reason for this better
performance is that, MobTrack starts estimating the location
from the second point and leads moving towards the target.
It will perform the estimation repeatedly. At the 5th point,
MobTrack has moved 4 meters at most towards the interfering
radio. Besides, MobTrack’s antenna array contains 6 antennas,
while Pinpoint has 4 antennas.

D. Localization Accuracy with Different Moving Distance

As shown in Fig. 13, we also test if we can achieve a
valuable estimation within a short distance. We calculate the
location from 5 locations within different distances. And the
results shows we can achieve an accurate estimation even if we
only move around a meter. If we want to make an estimation in
half a meter, the accuracy drops, but still it can tell the location
with a median location error of 2 meters. This is vital for us,
because MobTrack is a single device designed for users to
carry with them, with the ability to find the interference in a
meter, MobTrack is proved practical.

V. RELATED WORK

RSSI based solutions can be archived into two categories.
One is the range based algorithms, which estimate the dis-
tances from multiple measurement points to the target us-
ing wireless signal propagation models and locate the target

Fig. 13: Localization Accuracy with Different Moving Distance. The longer distance
between the calculation points, the more accurate MobTrack achieve.

geometrically [1]. However, it can not distinguish different
signals. The other category is fingerprinting based [2] [21] [22]
[23] but they need extensive accurate environment calibration
workload before system deployment.

ToA based ranging solutions require dedicated hardware
with high sampling rate. Instead of measuring signal prop-
agation time directly, researchers usually turn to measuring
frequency differences [3] or using slower signals like acoustic
signals [4]. However, in order to distinguish LoS signal
and NLoS signals, ToA based ranging solutions must apply
extremely high sampling rate because the propagation distance
difference between LoS component and the second arriving
multipath component is only about tens of nanoseconds [13].

AoA based estimation algorithms [10], [12] relies on an-
tenna arrays. Signal samples collected from the antennas are
processed using eigenvalue decomposition based methods to
estimate signal AoAs. The challenge for AoA is the mul-
tipath phenomenon in our scenario. Multipath components
from the same source can be highly correlated, which makes
eigenstructure based AoA estimation algorithms inaccuracy or
even infeasible to estimate the AoAs. Nevertheless, MobTrack
follows the AoA based research line and solve the multipath
challenge.

Recent techniques require no costly equipments and they
can overcome the multipath challenge, but they assume a
high density of APs. For instance, EZ [7] utilizes over 100
APs, ArrayTrack [5] leverages several WiFi APs with 7 to 8
antennas and PinPoint [16] assumes 5 APs on a floor. Because
of the popularity of WiFi, the density requirement seems
to be acceptable. Nevertheless, there exists some practical
limitations. First of all, 4 to 5 strong APs with known locations
are necessary with multilateraion, which are not realistic
in most circumstances such enterprise or hospital network.
Second, FCC permits 802.11 b/g/n standard to employ 14
channels in the 2.4GHz frequency band, so it is difficult to find
4 to 5 strong APs on the same channel even if they do exist.
And this problem requires WiFi scanning technique, which is
an energy hungry operation and can reduce the battery life



of mobile devices by over 2-3 time [9] even if the scanning
operation is invoked once every 10 seconds for continuous
location tracking. Third, when the Aps are operating scanning,
regular data communication cannot happen, which impacts the
user experience, especially for real-time service like VoIP. In
comparison, MobTrack only utilize a single device and thereby
will not have the limitations above.

VI. CONCLUSION AND FUTURE WORK

MobTrack is a single device system that can locate indoor
interfering radios with sub-meter accuracy. Comparing to
previous solutions, it significantly reduces the requirement to
AP infrastructure and the number of antennas. By moving the
device around for a short distance within several meters, it de-
presses multipath effects and determines the LoS component.
Simultaneously, the AoAs at these locations are recorded to
estimate the location of the interfering radio by triangulation
methods. In order to decrease the physical size of this device
and make it suitable for handhold, the method of synthetic
array can be explored where the number of antennas can be
further reduced to two.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grants CNS-1156318, CNS-1446478, CNS-
1405747, CNS-1443889, and CNS-1343222.

REFERENCES

[1] D. Zhang, Y. Liu, X. Guo, M. Gao, and L. M. Ni, ”On distinguishing
the multiple radio paths in rss-based ranging,” in INFOCOM, 2012
Proceedings IEEE, march 2012, pp. 2201-2209.

[2] P. Bahl and V. N. Padmanabhan, ”RADAR: An in-building RF-based
user location and tracking system,” in INFOCOM. IEEE, March 2000,
tel Aviv, Israel.

[3] Fadel Adib, Zachary Kabelac, Dina Katabi, and Robert C. Miller, ”3D
tracking via body radio reflections,” in NSDI, 2014, USENIX Association,
Berkeley, CA, USA, 317-329.

[4] Hongbo Liu, Yu Gan, Jie Yang, Simon Sidhom, Yan Wang, Yingying
Chen, and Fan Ye, ”Push the limit of WiFi based localization for
smartphones,” in Mobicom, 2012, ACM, New York, NY, USA, 305-316

[5] Jie Xiong and Kyle Jamieson, ”ArrayTrack: a fine-grained indoor location
system,” in NSDI, 2013, USENIX Association, Berkeley, CA, USA, 71-
84.

[6] Nandakumar, Rajalakshmi, Krishna Kant Chintalapudi, and Venkata N.
Padmanabhan. ”Centaur: locating devices in an office environment.” Pro-
ceedings of the 18th annual international conference on Mobile computing
and networking. ACM, 2012. APA

[7] Chintalapudi, Krishna, Anand Padmanabha Iyer, and Venkata N. Padman-
abhan. ”Indoor localization without the pain.” Proceedings of the sixteenth
annual international conference on Mobile computing and networking.
ACM, 2010.

[8] Sen, Souvik, et al. ”Avoiding multipath to revive inbuilding wifi localiza-
tion.” Proceeding of the 11th annual international conference on Mobile
systems, applications, and services. ACM, 2013.

[9] Anand, Arjun, et al. ”A quantitative analysis of power consumption
for location-aware applications on smart phones.” Industrial Electronics,
2007. ISIE 2007. IEEE International Symposium on. IEEE, 2007.

[10] Schmidt, R.O., ”Multiple emitter location and signal parameter estima-
tion,” Antennas and Propagation, IEEE Transactions on , vol.34, no.3,
pp.276,280, Mar 1986

[11] S. V. Schell, Calabretta, and W. A. Gardner, ”Cyclic MUSIC algorithms
for signal selective DOA estimation,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 1989, pp. 2278C2281.

[12] Roy, R.; Kailath, T., ”ESPRIT-estimation of signal parameters via rota-
tional invariance techniques,” Acoustics, Speech and Signal Processing,
IEEE Transactions on , vol.37, no.7, pp.984,995, Jul 1989

[13] Takeuchi, T.; Sako, M.; Yoshida, S., ”Multipath delay estimation for
indoor wireless communication,” Vehicular Technology Conference, 1990
IEEE 40th , vol., no., pp.401,406, 6-9 May 1990

[14] Gardner, W.A, ”Exploitation of spectral redundancy in cyclostationary
signals,” Signal Processing Magazine, IEEE , vol.8, no.2, pp.14,36, April
1991

[15] Tie-Jun Shan; Wax, M.; Kailath, T., ”On spatial smoothing for direction-
of-arrival estimation of coherent signals,” Acoustics, Speech and Signal
Processing, IEEE Transactions on , vol.33, no.4, pp.806,811, Aug 1985

[16] Kiran Joshi, Steven Hong, and Sachin Katti, ”PinPoint: localizing
interfering radios’” in NSDI, 2013, USENIX Association, Berkeley, CA,
USA, 241-254.

[17] S. Hong, S. Katti, ”DOF: A Local Wireless Information Plane,” in ACM
SIGCOMM, 2011.

[18] Alex T. Mariakakis, Souvik Sen, Jeongkeun Lee, and Kyu-Han Kim,
”SAIL: single access point-based indoor localization,” in MobiSys, 2014,
ACM, New York, NY, USA, 315-328.

[19] Roberts, R.S.; Brown, W.A; Loomis, H.H., ”Computationally efficient
algorithms for cyclic spectral analysis,” Signal Processing Magazine,
IEEE , vol.8, no.2, pp.38,49, April 1991

[20] C. Du, H. Zeng, Y.T. Hou, W. Lou, ”On Cyclostationary Analysis of
WiFi Signals for Direction Estimation”, IEEE ICC 2015, June 8-12, 2015,
London, UK.

[21] Youssef, Moustafa, and Ashok Agrawala. ”The Horus WLAN location
determination system.” Proceedings of the 3rd international conference
on Mobile systems, applications, and services. ACM, 2005.

[22] Rai, Anshul, et al. ”Zee: zero-effort crowdsourcing for indoor localiza-
tion.” Proceedings of the 18th annual international conference on Mobile
computing and networking. ACM, 2012.

[23] Sen, Souvik, et al. ”You are facing the mona lisa: spot localization using
phy layer information.” Proceedings of the 10th international conference
on Mobile systems, applications, and services. ACM, 2012.

[24] K. Kim, I. A. Akbar, K. K. Bae, J.-S. Um, C. M. Spooner, and J. H.
Reed, ”Cyclostationary approaches to signal detection and classification
in cognitive radio,” IEEE DySpan 2007, Jan. 29 2007-Feb. 2 2007, La
Jolla, CA, USA


