
Verifiable Computation over Large
Database with Incremental Updates

Xiaofeng Chen, Jin Li, Jian Weng, Jianfeng Ma, and Wenjing Lou

Abstract—The notion of verifiable database (VDB) enables a resource-constrained client to securely outsource a very large database

to an untrusted server so that it could later retrieve a database record and update a record by assigning a new value. Also, any attempt

by the server to tamper with the data will be detected by the client. When the database undergoes frequent while small modifications,

the client must re-compute and update the encrypted version (ciphertext) on the server at all times. For very large data, it is extremely

expensive for the resources-constrained client to perform both operations from scratch. In this paper, we formalize the notion of

verifiable database with incremental updates (Inc-VDB). Besides, we propose a general Inc-VDB framework by incorporating the

primitive of vector commitment and the encrypt-then-incremental MAC mode of encryption. We also present a concrete Inc-VDB

scheme based on the computational Diffie-Hellman (CDH) assumption. Furthermore, we prove that our construction can achieve the

desired security properties.

Index Terms—Verifiable database, incremental cryptography, outsourcing computations, vector commitment

Ç

1 INTRODUCTION

WITH the availability of cloud services, the techniques
for securely outsourcing the prohibitively expensive

computations are getting widespread attention in the scien-
tific community. That is, the clients with resource-constraint
devices can outsource the heavy computation workloads
into the untrusted cloud servers and enjoy the unlimited
computing resources in a pay-per-use manner. Since the
cloud servers may return an invalid result in some cases,
one crucial requirement of outsourcing computation is that
the client has the ability to verify the validity of computa-
tion result efficiently.

The primitive of verifiable computation has beenwell stud-
ied by plenty of researchers in the past decades [9], [13], [14],
[34], [35], [42], [43], [45]. Most of the prior work focused on
generic solutions for an arbitrary function (encoded as a Bool-
ean circuit). Though, in general, the problem of verifiable
computation has been theoretically solved, the proposed solu-
tions are still much inefficient for real-world applications.
Therefore, it is still meaningful to seek for efficient protocols
for verifiable computation of specific functions.

Benabbas et al. [19] first proposed the notion of the verifi-
able database (VDB) in order to solve the problem of verifi-
able outsourcing storage. That is, assume that a resource
constrained client would like to store a very large database
on a server so that it could later retrieve a database record
and update a record by assigning a new value. If the server
attempts to tamper with the database, it will be detected by
the client with an overwhelming probability. Besides, the
computation and storage resources invested by the client
must not depend on the size of the database (except for an
initial setup phase).

Trivially, we can construct efficient VDB schemes based
on message authentication codes or digital signatures for a
static database. However, it is another thing if the client (fre-
quently) performs updates on the database. As noted in
[19], the main technical difficulty in this case is that the cli-
ent must have a mechanism to revoke the signatures given
to the server for the previous values. Otherwise, the mali-
cious server can utilize the previous (while valid) database
records and corresponding signatures to respond the cur-
rent query of the client. This is called the Backward Substi-
tution updates (BSU) attack on VDB. In order to solve this
issue, the client should keep track of every change locally.
However, this totally contradicts the goal of outsourcing,
i.e., the client should use much less resources than those
needed to store the database locally.

Benabbas et al. [19] presented the first practical verifiable
computation scheme for high degree polynomial functions
and used it to design an efficient VDB scheme. The construc-
tion relies on a constant size assumption in bilinear groups
of composite order, while does not support public verifiabil-
ity (i.e., only the owner of the database can verify the correct-
ness of the proofs). Basically, it is sufficient to just achieve
private verifiability for VDB schemes in most applications.
While in some special scenarios (especially in the case of the
database owner is not the database user), it is essential to
achieve public verifiability. For example, the client (or data

� X. Chen is with the State Key Laboratory of Integrated Service Networks
(ISN), Xidian University, Xi’an, China, and the State Key Laboratory of
Cryptology, PO Box 5159, Beijing 100878, China.
E-mail: xfchen@xidian.edu.cn.

� J. Li is with the School of Computer Science, Guangzhou University,
Guangzhou, China. E-mail: jinli71@gmail.com.

� J. Weng is with the Department of Computer Science, Jinan University,
Tianhe 510632, China. E-mail: cryptjweng@gmail.com.

� J. Ma is with the State Key Laboratory of Integrated Service Networks
(ISN), Xidian University, Xi’an, China. E-mail: jfma@mail.xidian.edu.cn.

� W. Lou is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, Falls Church, VA 22043.
E-mail: wjlou@vt.edu.

Manuscript received 19 July 2015; revised 4 Dec. 2015; accepted 18 Dec. 2015.
Date of publication 24 Dec. 2015; date of current version 14 Sept. 2016.
Recommended for acceptance by F. Rodr�ıguez-Henr�ıquez.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2512870

3184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:

owner) outsources a database which supports public traffic
information services to every driver (data user). In this case,
each user should be able to publicly verify the validity of the
proof by the cloud server in VDB schemes. Very recently,
Catalano and Fiore [22] proposed an elegant solution to build
VDB from a primitive named vector commitment. The con-
crete construction relies on standard constant-size assump-
tion and supports public verifiability.

The data records often contain some sensitive informa-
tion that should not be exposed to the cloud server. There-
fore, the client should encrypt the database and store the
encrypted version on the server. In some scenarios, the data
(plaintext) of client undergoes frequent while small modifi-
cations. For example, one anti-virus company outsources its
virus database to a cloud server. Also, the company must
add the new-discovered viruses to the database everyday.
Generally, the daily new-discovered viruses are a very tiny
part of whole database and almost all parts of database
remain unchanged. In this case, the client must re-compute
and update the encrypted version (ciphertext) on the server
at all times [10], [11]. For very large data, it is extremely
expensive for the resources-constrained client to re-compute
and update the ciphertext from scratch each time. Therefore,
it is meaningful to propose efficient constructions for VDB
with incremental updates (Inc-VDB, for short). Loosely
speaking, Inc-VDB means that re-computing and updating
the ciphertext in VDB are both incremental algorithms, i.e.,
the client can efficiently perform both operations with pre-
vious values, rather than from scratch.

Bellare et al. [10], [11] introduced the notion of incre-
mental cryptography to design cryptographic algorithms
whose output can be updated very efficiently when the
underlying input changes. For example, if a single block
of the data is modified (we can view the data as a
sequence of blocks), the client only needs to re-compute
the ciphertext on this certain block and the ciphertext of
other blocks remains identical [12], [46]. Nevertheless, we
argue that the incremental encryption does not provide a
full solution for constructing efficient Inc-VDB schemes.
The reasons are two-fold: First, previous incremental
encryption schemes cannot solve the case of distributed
updates on the data. That is, multiple blocks of the plain-
text are modified while the modification on each single
block is very small. The worst case is that every block of
the plaintext is updated while only 1 bit for each single
block is changed. If this case happens, the client must re-
compute the whole ciphertext from scratch. Second, pre-
vious incremental encryption schemes cannot necessarily
lead to incremental updates on VDB. That is, the update
algorithm of VDB is not incremental and the client still
needs to re-compute new updated token from scratch
each time. To the best of our knowledge, it seems that
there is no research work on constructing efficient Inc-
VDB schemes.

1.1 Our Contribution

In this paper, we further study the problem of constructing
verifiable database with efficient updates. Our contributions
are three-fold:

� We first introduce the notion of verifiable database
with incremental updates (Inc-VDB). The update

algorithm in Inc-VDB is an incremental one, i.e., the
client can efficiently compute the new ciphertext and
the updated tokens with previous values, rather
than from scratch. Thus, Inc-VDB schemes can lead
to huge efficiency gain when the database undergoes
frequent while small modifications.

� We propose a general Inc-VDB framework by incor-
porating the primitive of vector commitment [22]
and the encrypt-then-incremental MAC mode of
encryption [12]. We also present a concrete Inc-VDB
scheme based on the computational Diffie-Hellman
(CDH) assumption. Besides, the proposed Inc-VDB
scheme supports the public verifiability.

� We first introduce a new property called account-
ability for VDB schemes. That is, after the client
detected the tampering of the server, the client
should be able to provide a proof to convince the
judge of the facts. All of the existing VDB schemes
do not satisfy the property of accountability. We
prove that the proposed Inc-VDB scheme satisfies
the property of accountability.

This is the full version of the paper that has been pre-
sented in ESORICS 2014 [31]. The main differences from the
conference version are as follows: First, we present the
related work of secure outsourcing computations to illus-
trate the research progress. We also introduce the primitive
of vector commitment and Catalano-Fiore’s VDB frame-
work in Sections 2.3 and 2.4, respectively. Second, we add a
new Section 4 to present an incremental encryption mecha-
nism based on bit flipping. We also present the formal secu-
rity proof. Finally, we add a new Section 6 to provide a
thorough experimental evaluation of the proposed incre-
mental VDB scheme.

1.2 Related Work

Gennaro et al. [39] first formalized the notion of verifiable
computation. Though the solution allows a client to out-
source the computation of an arbitrary function, it is ineffi-
cient for practical applications due to the complicated fully
homomorphic encryption (FHE) techniques [37], [38].
Besides, another disadvantage of the schemes based on
FHE is that the client must repeat the expensive pre-proc-
essing stage if the malicious server tries to cheat and learns
a bit of information, i.e., the client has accepted or rejected
the computation result. Therefore, plenty of researchers
investigated verifiable computation for specific functions
in order to obtain much more efficient protocols such as
matrix multiplications and quadrature [1], [3], [6], [53], [54],
sequence comparisons [4], [16], and cryptographic algo-
rithms [21], [30], [32], [40], [41], [50].

Previous research works for VDB are mainly based on
accumulators [24], [25], [49] and authentication data struc-
tures [47], [48], [51], [52]. However, it seems that these solu-
tions either rely on non-constant size assumptions or
require expensive operation. Benabbas et al. [19] presented
the first practical VDB scheme based on the hardness of the
subgroup membership problem in bilinear groups. How-
ever, the scheme does not satisfy the property of public veri-
fiability. Catalano and Fiore [22] proposed an elegant
solution to construct the public verifiable VDB schemes
from vector commitment. Both of the schemes assumed that

CHEN ETAL.: VERIFIABLE COMPUTATION OVER LARGE DATABASE WITH INCREMENTAL UPDATES 3185

the size of the outsourced database should be fixed and the
client can know the outsourcing function in advance.
Recently, Backes et al. [8] presented a flexible VDB with two
additional properties that eliminates the assumption.

Generally, there are three kinds of approaches to achieve
the verifiability of outsourcing computations. The first one
is mostly suitable for the case that the verification itself is
never involved in any expensive computations. For exam-
ple, for the “inversion of one-way function” class of out-
sourcing computations [5], [27], [28], [29], [36], the client can
directly verify the result since the verification is just equiva-
lent to compute the one-way functions. The second
approach is that the client uses multiple servers to achieve
verifiability [26], [29], [41]. That is, the client sends the ran-
dom test query to multiple servers and it accepts only if all
the servers output the same result. Trivially, the approach
can only ensure the client to detect the error with probabil-
ity absolutely less than 1. The last approach is based on one
malicious server and might leverage some proof systems
[34], [42], [43], [45]. Obviously, an essential requirement is
that the client must verify the proofs efficiently.

1.3 Organization

This paper is organized as follows. Some preliminaries are
presented in Section 2. We present the formal definition and
security requirements of Inc-VDB in Section 3. In Section 4,
we propose an incremental encryption mechanism based on
bit flipping besides the formal security proof. In Section 5,
we firstly propose a general and efficient Inc-VDB frame-
work and then present a concrete Inc-VDB scheme. We also
present the security and efficiency analysis of the proposed
Inc-VDB scheme. The experimental evaluation of the pro-
posed scheme is given in Section 6. Finally, concluding
remarks will be made in Section 7.

2 PRELIMINARIES

In this section, we first introduce the basic definition and
properties of bilinear pairings. We then present the formal
definition of VDB. Besides, we also introduce the primitive
of vector commitment and Catalano-Fiore’s elegant VDB
framework.

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups of prime
order p. Let g be a generator of G1. A bilinear pairing is a
map e : G1 � G1 ! G2 with the following properties:

1) Bilinear: eðua; vbÞ ¼ eðu; vÞab for all u; v 2 G1, and
a;b 2 Z�p.

2) Non-degenerate: eðg; gÞ 6¼ 1:
3) Computable: There is an efficient algorithm to com-

pute eðu; vÞ for all u; v 2 G1:
The examples of such groups can be found in supersin-

gular elliptic curves or hyperelliptic curves over finite fields,
and the bilinear pairings can be derived from the Weil or
Tate pairings. In the following, we introduce the Computa-
tional Diffie-Hellman problem in G1.

Definition 1. The Computational Diffie-Hellman problem in G1

is defined as follows: given a triple ðg; gx; gyÞ for any
x; y 2R Zp as inputs, output gxy. We say that the CDH

assumption holds in G1 if for every probabilistic polynomial
time algorithm A, there exists a negligible function neglð�Þ
such that Pr½Að1k; g; gx; gyÞ ¼ gxy� � neglðkÞ for all security
parameter k.

A variant of CDH problem is the Square Computational
Diffie-Hellman (Squ-CDH) problem. That is, given ðg; gxÞ
for x 2R Zp as inputs, output g

x2 . It has been proved that the
Squ-CDH assumption is equivalent to the classical CDH
assumption [7].

2.2 Verifiable Database

Informally, a VDB scheme allows a resource-constraint cli-
ent to outsource the storage of a very large database to a
server in such a way that the client can later retrieve and
update the data records from the server. Besides, any
attempts to tamper with the data by the dishonest server
will be detected when the client queries the database. The
formal definition for VDB is given as follows [19], [22]:

Definition 2. A verifiable database scheme VDB ¼ ðSetup;
Query;Verify;UpdateÞ consists of four algorithms defined
below.

� Setupð1k;DBÞ: On input the security parameter k,
the setup algorithm is run by the client to generate a
secret key SK to be secretly stored by the client, and a
public key PK that is distributed to all users (including
the client itself) for verifying the proofs.

� QueryðPK; xÞ: On input an index x, the query algo-
rithm is run by the server, and returns a pair
t ¼ ðv;pÞ.

� VerifyðPK=SK; x; tÞ: The public/private verification
algorithm outputs a value v if t is correct with respect
to x, and an error ? otherwise.

� UpdateðSK; x; v0Þ: In the update algorithm, the client
firstly generates a token t0x with the secret key SK and
then sends the triples ðx; t0x; v0Þ to the server. Then, the
server uses v0 to update the database record in index x,
and t0x to update the public key PK.

Remark 1. There are two different kinds of verifiability for
the outputs of the query algorithm, i.e., t ¼ ðv;pÞ. In
the Catalano-Fiore’s scheme [22], anyone can verify the
validity of t with the public key PK. Therefore, it satis-
fies the property of public verifiability. However, in
some applications, only the client can verify the proofs
generated by the server since the secret key of the cli-
ent is involved in the verification. This is called the pri-
vate verifiability [19]. Trivially, a verifiable database
scheme should support both verifiability for various
applications.

2.3 Vector Commitment

Informally speaking, a vector commitment scheme [22]
allows to commit to an ordered sequence of values
ðm1; . . . ; mqÞ in such a way that the committer can later
open the commitment at specific positions. Furthermore,
anyone should not be able to open a commitment to
two different values at the same position (this is called
position binding). Besides, vector can be required to be hid-
ing. That is, any adversary cannot distinguish whether

3186 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

a commitment was created to a sequence ðm1; . . . ; mqÞ or to
ðm01; . . . ; m0qÞ, even after seeing some openings at some

positions. However, hiding is not a critical property in the
realization of vector commitment for some applications,
e.g., constructing verifiable database with efficient
updates. Besides the properties of position binding and
hiding, vector commitment needs to be concise, i.e., the
size of the commitment string and the opening are both
independent of q. In the following, we present a formal
definition of vector commitment [22].

Definition 3. A vector commitment scheme VC ¼ ðVC:KeyGen;
VC:Com;VC:Open;VC:Veri;VC:Update; VC:ProofUpdateÞ
consists of the following algorithms:

� VC:KeyGenð1k; qÞ: On input the security parameter k
and the size q ¼ polyðkÞ of the committed vector, the key
generation algorithm outputs some public parameters
PPwhich also implicitly define the message spaceM.

� VC:ComPPðm1; . . . ;mqÞ: On input a sequence of q
messages ðm1; . . . ;mqÞ 2 Mq, and the public parame-
ters PP, the committing algorithm outputs a commit-
ment string C and an auxiliary information aux.

� VC:OpenPPðm; i; auxÞ: This algorithm is run by the
committer to produce a proof pi that m is the ith com-
mitted message.

� VC:VerPPðC;m; i;piÞ: The verification algorithm out-
puts 1 only if pi is a valid proof that C is a commit-
ment to a sequence ðm1; . . . ;mqÞ such thatm ¼ mi.

� VC:UpdatePPðC;m; i;m0Þ: This algorithm is run by
the original committer who wants to update C by
changing the ith message to m0. It takes as input the
old message m at the position i, the new message m0,
outputs a new commitment C0 together with an update
information U .

� VC:ProofUpdatePPðC;U;m0; i;piÞ: The algorithm can
be run by any user who holds a proof pi for some message
at the position j with respect to. C. It allows the user to
compute an updated proof p0i (and the updated commit-
ment C0) such that p0i is valid with respect to C0 which
contains m0 as the new message at the position i. Basi-
cally, the value U contains the update information which
is needed to compute such values.

2.4 VDB Framework from Vector Commitment

Catalano-Fiore’s VDB general framework from vector com-
mitment is given as follows [22].

� Setupð1k;DBÞ: Let the database be DB ¼ ðx; vxÞ for
1 � x � q. Run the key generation algorithm of vector
commitment to obtain the public parameters

PP VC:KeyGenð1k; qÞ. Run the committing algo-
rithm to compute the commitment and auxiliary
information ðC; auxÞ VC:ComPPðv1; . . . ; vqÞ. Define
PK ¼ ðPP; C; aux; DBÞ as the public key of VDB
scheme, andSK ¼ = as the secret key of the client.

� QueryðPK; xÞ: On input an index x, the server firstly
runs the opening algorithm to compute px
VC:OpenPPðvx; x; auxÞ and then returns t ¼ ðvx;pxÞ.

� VerifyðPK; x; tÞ: Parse the proofs t ¼ ðvx;pxÞ. If
VC:VerPPðC; x; vx;pxÞ ¼ 1, then return vx. Otherwise,
return an error ?.

� UpdateðSK; x; v0xÞ: To update the record of index x,
the client firstly retrieves the current record vx
from the server. That is, the client obtains
t QueryðPK; xÞ from the server and checks that
VerifyðPK; x; tÞ ¼ vx 6¼?. Also, the client computes
t0x ¼ ðC0; UÞ VC:UpdatePPðC; vx; x; v0xÞ and sends
the server ðx; t0x; v0xÞ. Then, the server uses v0x to
update the database record of index x, and t0x to
update the public key.

3 VDB WITH INCREMENTAL UPDATES

In this section, we introduce the formal definition and secu-
rity requirements of VDB with incremental updates.

3.1 Formal Definition

Without loss of generality, we consider the database DB as
a set of tuples ðx;mxÞ in some appropriate domain, where x
is an index and mx is the corresponding value which can be
arbitrary payload sizes. In order to achieve the confidential-
ity of the data record mx, the client can use an arbitrary
semantically-secure encryption scheme ENC (the key is
implicit in the notation) to encrypt each mx. Trivially, given
the ciphertext vx ¼ ENCðmxÞ, only the client can compute
the record mx. Therefore, we only consider the case of
encrypted database ðx; vxÞ. This is also implicitly assumed
in the existing academic research.

Informally, verifiable database with incremental updates
(Inc-VDB) can be viewed as a special case of VDB in which
the updated record m0x is only slightly different from the
previous one mx (note that the corresponding ciphertexts v0x
and vx may be totally different). The distinct feature of Inc-
VDB is that the update algorithm is an incremental one.
That is, the client can efficiently compute a new token t0x
from the previous one, rather than re-computing it from
scratch (similarly, the server can efficiently update the pub-
lic key rather than re-computing it from scratch). Trivially,
Inc-VDB can lead to huge efficiency gains, especially in the
scenario when the database is subject to frequent, small
modification. In the following, we present a formal defini-
tion for Inc-VDB.

Definition 4. A verifiable database scheme with incremental
updates Inc-VDB ¼ ðSetup;Query;Verify; Inc-UpdateÞ con-
sists of four algorithms defined below.

� Setupð1k;DBÞ: On input the security parameter k,
the setup algorithm is run by the client to generate a
secret key SK to be secretly stored by the client, and a
public key PK that is distributed to all users (including
the client itself) for verifying the proofs.

� QueryðPK; xÞ: On input an index x, the query
algorithm is run by the server, and returns a pair
t ¼ ðv;pÞ.

� VerifyðPK=SK; x; tÞ: The public/private verification
algorithm outputs a value v if t is correct with respect
to x, and an error ? otherwise.

� Inc-UpdateðSK; x; v0Þ: In the update algorithm, the
client utilizes the secret key SK to compute a new
token t0x from the previous one in an incremental
manner rather than computing it from scratch.
Then, the client sends the triples ðx; t0x; v0Þ to the

CHEN ETAL.: VERIFIABLE COMPUTATION OVER LARGE DATABASE WITH INCREMENTAL UPDATES 3187

server. If the token t0x is valid, the server uses v0 to
update the database record in index x, and t0x to
incrementally update the public key PK.

3.2 Security Requirements

In the following, we introduce some security requirements
for Inc-VDB. Obviously, Inc-VDB should inherently satisfy
three security properties of VDB [19], i.e., security, correct-
ness, and efficiency. Besides, we also introduce a new prop-
erty named accountability for Inc-VDB.

The first requirement is the security of Inc-VDB scheme.
Intuitively, an Inc-VDB scheme is secure if a malicious
server cannot convince a verifier to accept an invalid out-
put, i.e., v 6¼ vx where vx is the value of database record in
the index x. Note that vx can be either the initial value
given by the client in the setup stage or the latest value
assigned by the client in the update procedure.

Definition 5 (Security). An Inc-VDB scheme is secure if for any
database DB 2 ½q� � f0; 1g�, where q ¼ polyðkÞ, and for any
probabilistic polynomial time (PPT) adversary A, we have

AdvAðInc-VDB; DB; kÞ � neglðkÞ;
where

AdvAðInc-VDB; DB; kÞ ¼ Pr½ExpInc-VDB
A ðDB; kÞ ¼ 1�

is defined as the advantage of A in the experiment as follows:

ExperimentExpInc-VDB
A ½DB; k�

ðPK;SKÞ SetupðDB; kÞ;
For i ¼ 1; . . . ; l ¼ polyðkÞ;

Verify query :

ðxi; tiÞ AðPK; t01; . . . ; t0i�1Þ;
vi VerifyðPK=SK; xi; tiÞ;

Inc-Update query :

ðxi; vðiÞxi Þ AðPK; t01; . . . ; t0i�1Þ;
t0i Inc-UpdateðSK; xi; v

ðiÞ
xi
Þ;

ðx̂; t̂Þ AðPK; t01; . . . ; t0lÞ;
v̂ VerifyðPK=SK; x̂; t̂Þ
If v̂ 6¼? and v̂ 6¼ v

ðlÞ
x̂ ; output 1; else output 0:

In the above experiment, we implicitly assign PK PKi

after every update query.
The second requirement is the correctness of Inc-VDB

scheme. That is, the value and proof generated by the hon-
est server can be always verified successfully and accepted
by the client.

Definition 6 (Correctness). An Inc-VDB scheme is correct if for
any database DB 2 ½q� � f0; 1g�, where q ¼ polyðkÞ, and for
any valid pair t ¼ ðv;pÞ generated by an honest server, the
output of verification algorithm is always the value v.

The third requirement is the efficiency of Inc-VDB
scheme. That is, the client in the verifiable database scheme

should not be involved in plenty of expensive computation
and storage (except for an initial pre-processing phase).1

Definition 7 (Efficiency). An Inc-VDB scheme is efficient if
for any database DB 2 ½q� � f0; 1g�, where q ¼ polyðkÞ, the
computation and storage resources invested by the client must
be independent of the size of the database DB. Besides, the
cryptographic operations performed by the client should be
incremental.

Finally, we introduce a new requirement named account-
ability for Inc-VDB scheme. That is, after the client has
detected the tampering of dishonest server, he should pro-
vide some evidence to convince a judge of the facts.

Definition 8 (Accountability). An Inc-VDB scheme is account
if for any database DB 2 ½q� � f0; 1g�, where q ¼ polyðkÞ, the
client can provide a proof for this misbehavior if the dishonest
server has tampered with the database.

4 INCREMENTAL ENCRYPTION BASED ON BIT

FLIPPING

In this section, we propose a new incremental encryption
based on the bit flipping operation. More precisely, we give
a general mechanism for converting any provable secure
encryption scheme into an incremental one. The construc-
tion P ¼ ðKG;ENC;DEC; Inc-ENC; Inc-DECÞ is defined as
follows:

� KG: On input the security parameter k, the key gen-
eration algorithm outputs the secret/public key pair
ðSK; PKÞ. Without loss of generality, let P0 ¼
ðKG;ENC;DECÞ be any IND-CCA secure (symmet-
ric or asymmetric) encryption scheme and the key is
implicit in the notation for simplicity. Trivially, the
public key PK is an empty string ifP0 is a symmetric
scheme.

� ENC: On input a message m, the encryption algo-
rithm outputs a ciphertext c ¼ ENCðmÞ.

� DEC: On input the ciphertext c, the decryption algo-
rithm outputs the messagem ¼ DECðcÞ.

� Inc-ENC: On input a slightly modified message m0,
the original message m, and the ciphertext c on m,
the incremental encryption algorithm outputs the
(incremental) ciphertext c0 ¼ Inc-ENCðm0Þ ¼ ðc; P Þ,
where P ¼ ðp1; p2; . . . ; pvÞ denotes the bit positions
where m0 and m have different values, i.e.,
m½pi� 6¼ m½pi� for 1 � i � v.

� Inc-DEC: On input the ciphertext c0 ¼ ðc; P Þ, the
incremental decryption algorithm outputs the mes-
sage m0. Trivially, it firstly decrypts c to obtain m
and then performs the bit flipping operation on the
location pi (1 � i � v) ofm.

In the following, we present the formal security proof of
our construction.

Theorem 4.1. If P0 is an IND-CCA secure (symmetric or asym-
metric) encryption scheme, then P is also an IND-CCA secure
encryption scheme.

1. In some scenarios, the client is allowed to invest a one-time expen-
sive computational effort. This is known as the amortized model of out-
sourcing computations [39].

3188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

Proof. We prove by contradiction. Assume that there exists a
polynomial time IND-CCA adversary A can successfully
attack the scheme P with a non-negligible probability � in
time T , then we can construct another polynomial time
IND-CCA adversary A0 that uses A as a subroutine to
attack the scheme P0. Without loss of generality, we
assume thatA canmake atmost q1 þ q2 decryption queries.

Let c0i ¼ ðci; PiÞ be a decryption query issued by A.
Trivially, A0 can relay the partial decryption query ci to
the challenger C inP0. Suppose the response of C ismi,A0

performs the bit flipping operation on the location Pi of
mi to obtainm0i. Then,A0 respondsm

0
i to the query c

0
i ofA.

After issuing q1 decryption queries, A chooses two
distinct (challenge) messages (m00, m

0
1) and sends them to

A0. Similarly, A0 can compute two corresponding (chal-
lenge) messages (m0, m1) for scheme P0, where mb

(b 2 f0; 1g) is obtained by performing the bit flipping
operation on the location P of m0b and P is some bit posi-
tions randomly chosen by A0.

Let the challenge ciphertext by C be c ¼ ENCðmbÞ.
Trivially, A0 can compute the corresponding challenge
ciphertext c0 ¼ ðc;PÞ for A. Then, A can issue further q2
decryption queries except c0 and A0 responds in the
same way as above.

Finally, A outputs its guess b0 2 f0; 1g. Then, A0 can
replay b0 as its guess in the scheme P0. Trivially, the suc-
cess probability of A0 is also �. tu

Remark 2. As pointed out in [11], incremental encryption
leaks some information that is kept secret when using a
traditional encryption scheme. In the proposed incre-
mental encryption scheme Inc-ENC, an adversary can
determine where a modification takes place, but still
cannot determine the symbol being modified (i.e., hide
details about the data record m and m0). This is similar
to previous incremental encryptions [11], [12], [46].
In order to achieve stronger privacy, it should also
encrypt the modified location information P . That is,
Inc-ENCðm0Þ ¼ ðENCðmÞ;ENCðP ÞÞ. On the other hand,
though we only focus on the bit flipping operation in
our construction, it can be extended to other operations
such as insert, delete, etc.

Remark 3. After performing l rounds of update, the cipher-
text is ðENCðmÞ; P1; . . . ; PlÞ. We present a more efficient
method to represent the ciphertext. We can give the fol-
lowing recursive definition if we view Pj as a set:

�P1 ¼ P1;
�Pjþ1 ¼ �Pj 	 Pjþ1 ¼ ð �Pj � Pjþ1Þ [ðPjþ1 � �PjÞ:

As a result, the ciphertext is now ðENCðmÞ; �PlÞ (or

ðENCðmÞ;ENCð �PlÞÞ to enhance the privacy). This ensures
to delete the identical positions information of Pj (thus
no bit flipping operation is requires in these positions)
and the ciphertext is also shortened.

5 INC-VDB FRAMEWORK FROM VECTOR

COMMITMENT

In this section, we present an efficient Inc-VDB framework
from vector commitment and the incremental encrypt-then-

MAC mode of encryption. Besides, we propose a concrete
Inc-VDB scheme based on the CDH assumption.

5.1 High Description

Catalano and Fiore presented an elegant construction for
building a general VDB framework from vector commit-
ment [22]. The main idea is as follows: Let C be the vector
commitment on the database. Given a query on index x by
the client, the server provides the value vx and the opening
of commitment as a proof that vx has not been tampered
with. During the update phase, the client computes a new
ciphertext v0x and a token t0x and then sends them to the
server. Finally, the server updates the database and the cor-
responding public key with the pair ðt0x; v0xÞ. We also use the
vector commitment to construct incremental VDB schemes.
However, the main difference is that the client in our con-
struction does not compute the updated ciphertext v0x and
the corresponding (updated) commitment C0 in the token
t0x. The main trick is that we use the above incremental
encryption to generate the ciphertext v0x. More precisely, we
define v0x ¼ ðvx; PxÞ, where Px ¼ ðp1; p2; . . . ; pvÞ denotes the
bit positions where m0x and mx have different values, i.e,
m0x½pi� 6¼ mx½pi� for 1 � i � v. Trivially, given v0x ¼ ðvx; PxÞ,
the client firstly decrypts vx to obtainmx, and then performs
the bit flipping operation on the positions of Px to obtain
m0x. Since the bit flipping operation is extremely fast, the
computation overhead of decrypting v0x is almost the same
as that of decrypting vx. Moreover, it requires much less
storage since jPxj
 jv0xj (note that we only consider the
case of incremental updates). Besides, we argue that the
incremental encryption scheme ðENC; P Þ is more suitable
for discrete and uniform update on the data record (note
that previous incremental encryption schemes mainly focus
on local updates, e.g., updates on a single block of the data).

Note that the secret key of the client should be involved
in the update algorithm. That is, only the client is allowed to
update the database. In order to achieve this goal, we utilize
the encrypt-then-incremental MAC mode of encryption
[12], i.e., an incremental encryption together with an incre-
mental MAC of the ciphertext (the encrypt-then-MAC
approach [18]). Trivially, we could use an incremental sig-
nature scheme to substitute the incremental MAC. In our
concrete construction, we adopt the (incremental) BLS sig-
nature scheme [17]. For every update, the client first verify
the current BLS signature on the commitment CR and all the

current modifications ðP ð1Þx ; . . . ; P ðT Þx Þ of the data record vx,

where P ðiÞx denotes the modification in the ith update for
1 � i � T . This ensures that the current database is not tam-
pered with by the server.2 If the verification holds, the client

then sends a new modification P ðTþ1Þx and the correspond-
ing (incremental) BLS signature to the server.

Since we also use the signature to achieve the integrity of
the database, it is essential to invoke the previous signatures
given to the server. Our trick is that we introduce a counter

2. Bellare, Goldreich, and Goldwasser pointed out that some incre-
mental signature schemes may suffer from the so-called substitution
attack in some scenarios. However, it assumed that the adversary can
successfully tamper with the data and the signer does not check the cor-
responding signatures. Obviously, the attack does not work in our
scheme.

CHEN ETAL.: VERIFIABLE COMPUTATION OVER LARGE DATABASE WITH INCREMENTAL UPDATES 3189

Tx to denote the update times of each index x. Also, the
server computes a BLS signature s on all counters Tx for
1 � x � q. After an update on the record vx is accomplished,
let Tx Tx þ 1. Then, the server computes an incremental
BLS signature on the updated counters (note that only the
value of Tx is slightly modified). Given a previous signature
s on the count Tx, the client can reject it by providing a new
signature s0 on the latest counter T 0x since Tx < T 0x. Note
that the server cannot deny his signature, therefore this is a
proof that the server is dishonest when a dispute occurred.

If we use different vector commitment schemes and
incremental encryption/signature schemes, we can obtain
various constructions for Inc-VDB schemes. That is, the par-
adigm by incorporating the primitive of vector commitment
and the encrypt-then-incremental MAC mode of encryption
actually provides a general framework for constructing
Inc-VDB schemes.

5.2 A Concrete Inc-VDB Scheme

In this section, we propose a concrete Inc-VDB scheme
based on the CDH assumption.

� Setupð1k;DBÞ: Let k be a security parameter. Let the
database be DB ¼ ðx; vxÞ for 1 � x � q. Let G1 and
G2 be two cyclic multiplicative groups of prime order
p equipped with a bilinear pairing e : G1 � G1 ! G2.
Let g be a generator of G1. Let H : G1 � f0; 1g� ! G1

be a cryptographic hash function. Randomly choose
q elements zi 2R Zp and compute hi ¼ gzi , hi;j ¼ gzizj ,
where 1 � i; j � q and i 6¼ j. Set PP ¼ ðp; q;G1;G2;
H; e; g; fhig1�i�q; fhi;jg1�i;j�q;i 6¼jÞ, and the message

spaceM¼ Zp.
3

Let ða; Y ¼ gaÞ and ðb; S ¼ gbÞ be the secret/public
key pair of the client and server, respectively, where
a;b 2R Z�p. Trivially, the validity of Y and S are

ensured by the corresponding certificate of a trusted

third party, i.e, certificate authority. LetCR ¼
Qq

i¼1 h
vi
i

be the root commitment on the database record vector
ðv1; v2; . . . ; vqÞ. For 1 � x � q, let Tx be a counter

for index x with the initial value 0 and Hð0Þx ¼
HðCR; x; 0Þa. The server can use the batch verification
technique of BLS signatures [23] to ensure the validity

of Hð0Þx for 1 � x � q, which requires only the work-
load of two pairings. Then, the server computes a sig-

nature s ¼ HðCR; 0; 0; . . . ; 0Þb on CR and all initial
counters ð0; 0; . . . ; 0Þ (note that all Tx has an initial
value 0). Also, set aux ¼ faux1; . . . ; auxqg, where

auxx ¼ ðHð0Þx ; 0Þ for 1 � x � q.
DefinePK ¼ ðPP; CR; aux; DBÞ andSK ¼ a.

� QueryðPK; xÞ: Assume that the current public key
PK ¼ ðPP; CR; aux; DBÞ. Given a query index x, the

server computes px ¼
Q

1�j�q;j6¼x h
vj
x;j and returns

the proofs

t ¼ ðvx;px;H
ðTxÞ
x ; P ð1Þx ; . . . ; P ðTxÞx ; TxÞ:

� VerifyðPK; x; tÞ: Parse the proofs t ¼ ðvx;px; HðTxÞx ;

P ð1Þx ; . . . ; P ðTxÞx ; TxÞ. If the counter Tx in t is less
than the one in s that the client stored locally, the
client rejects the proofs t. Otherwise, the client can
verify the validity of t by checking whether the
following two equations eðCR=h

vx
x ; hxÞ ¼ eðpx; gÞ

and eðHðTxÞx ; gÞ ¼ eðHðCR; x; P
ð1Þ
x ; . . . ; P ðTxÞx ; TxÞ; Y Þ

hold.4 If the proofs t are valid, the verifier accepts

them and outputs vðTxÞx ¼ ðvx; P ð1Þx ; . . . ; P ðTxÞx Þ. Other-
wise, outputs an error ?.

� Inc-UpdateðSK; x; P ðTxþ1Þx Þ: To update the record of
index x, the client firstly retrieves the current record

vðTxÞx from the server. That is, the client obtains
t QueryðPK;S; xÞ from the server and checks that

VerifyðPK; x; tÞ ¼ vðTxÞx 6¼?. Then, the client computes
the incremental signature

t0x ¼ HðTxþ1Þx ¼ HðCR; x; P
ð1Þ
x ; . . . ; P ðTxþ1Þx ; Tx þ 1Þa

and then sends ðt0x; P ðTxþ1Þx Þ to the server. If t0x is

valid, then the server adds P ðTxþ1Þx to the record of
index x, and updates auxx in PK, i.e., auxx
ðt0x; P ð1Þx ; . . . ; P ðTxþ1Þx ; Tx þ 1Þ. Also, the server com-
putes an updated incremental signature s ¼ HðCR;

T1; T2; . . . ; Tx þ 1; . . . ; TqÞb and sends it to the client.
If s is valid, the client updates it together with Tx þ 1
locally. Finally, set Tx Tx þ 1.

Remark 4. Note that the proof px ¼
Q

1�j�q;j6¼x h
vj
x;j is always

identical for all queries to the same index x. Therefore,
the server only needs to compute px once for the first
query on index x (this is different from the scheme [22]).
Trivially, the server requires much less computational
overhead for the query algorithms. Besides, we can use
the techniques in Remark 3 to shorten the proofs t.

Remark 5. It is trivial that the above framework supports
the property of public verifiability (note that any verifier
should also check the validity of the counter Tx). Simi-
larly, we can also adopt the idea of using a verifiable ran-
dom function to achieve private verifiability. For more
details, please refer to [22].

Remark 6. The storage overhead of client in our construc-
tion is all counters Tx and the latest BLS signature s.
Note that the number of Tx is dependent of q, we estimate
the storage overload of client for very large q.

Assume that q ¼ 108 and the counter Tx for each index x

is 106 (that is, the database has 108 records and for each
index x it has been updated 1 million times). This means

that total updated times for the database is 106�10
8
(this is a

giant update times in the real applications). However, the

storage of client is only about 7 � 108 bits (less that 700 M). It
is still tolerable even for a resource-limited user.

In the following we present a new solution to further
reduce the storage overload of client. The trick is to still use

3. Though the message spaceM in this construction is Zp, it can be
easily extended to support possibly large payload vi by using a colli-
sion-resistant hash functionH : f0; 1g� ! Zp.

4. If the verifier is client, then he needs only check whether the equa-
tion HðTxÞx ¼ HðCR; x; P

ð1Þ
x ; . . . ; P ðTxÞx ; TxÞy holds in order to decrease the

computation overload.

3190 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

vector commitment. The server computes the signature

s ¼ HðCR;CT Þb, where CT is the vector commitment on all
counters ðT1; T2; . . . ; TqÞ. Therefore, the client only requires
to store s and CT and the storage overhead is independent
of q. Trivially, the server should provide a valid opening
of CT as a proof during the verification phase. Due to the
property of vector commitment, the update of CT is still
incremental.

Remark 7. The existing VDB schemes [19], [22] and our con-
struction only support the query based on index. The rea-
son is that we just view the database as a set of tuples
ðx;mxÞ. In the real applications, these schemes could be
extended to allow queries based on some values. Besides,
for the simplicity of description, all three schemes only
considered the queries over single index in each update.
Nevertheless, they could also be extended to queries
over multiple indexes in one update. We appreciate an
anonymous referee for pointing out this issue.

5.3 Security Analysis

Theorem 5.1. The proposed Inc-VDB scheme is secure under the
CDH assumption holds.

Proof. Similar to [22], we prove the theorem by contradic-
tion. Assume there exists a polynomial-time adversary A
that has a non-negligible advantage � in the experiment

ExpInc-VDB
A ½DB; k� for some initial database DB, then we

can use A to build an efficient algorithm B to break the
Squ-CDH assumption (which is equivalent to CDH
assumption). That is, B takes as input a tuple ðg; gaÞ and
outputs ga

2
.

Without loss of generality, we assume that the secret/
public key pairs of B and A are ða; Y ¼ gaÞ and

ðb; S ¼ gbÞ, respectively. First, B randomly chooses an
element x� 2R Zq as a guess for the index x� on which A

succeeds in the experiment ExpInc-VDB
A ½DB; k�. Then, B

randomly chooses zi 2R Zp and computes hi ¼ gzi all
1 � i 6¼ x� � q. Let hx� ¼ ga. Besides, B computes:

hi;j ¼ gzizj for all 1 � i 6¼ j � q and i; j 6¼ x�;
hi;x� ¼ hx�;i ¼ ðgaÞzi for all 1 � i � q and i 6¼ x�.
Set PP ¼ ðp; q;G1;G2;H; e; g; fhig; fhi;jgÞ, where

1 � i 6¼ j � q. Given a database DB, B computes the

commitment CR ¼
Qq

i¼1 h
vi
i . Also, B computes Hð0Þx ¼

HðCR; x; 0Þa for 1 � x � q. Set aux ¼ faux1; . . . ; auxqg,
where auxx ¼ ðHð0Þx ; 0Þ for 1 � x � q.

Define PK ¼ ðPP; CR; aux; DBÞ and SK ¼ a. Note that
PK is perfectly distributed as the real ones. B sends PK to

A and A responds with s ¼ HðCR; 0; 0; . . . ; 0Þb.
To answer the verify and update queries of A in the

experiment, B just simply runs the real QueryðPK; xÞ and
Inc-UpdateðSK; x; P ðTxþ1Þx Þ algorithms and responds with

the same value. Note that the Inc-UpdateðSK; x; P ðTxþ1Þx Þ
algorithm requires the secret key a of B, and A cannot
perform this algorithm without the help of B. After
every update query, A responds with s ¼ HðCR; T1;

T2; . . . ; Tx þ 1; . . . ; TqÞb.
Suppose that ðx̂; t̂Þ be the tuple returned by A at the

end of the experiment, where t̂ ¼ ðv̂; p̂x̂; H
ðTx̂Þ
x̂ Þ and

v̂ ¼ ðv̂x̂; P̂ ð1Þx̂ ; . . . ; P̂
ðTx̂Þ
x̂ ; Tx̂Þ. Besides, note that if A wins

with a non-negligible advantage � in the experiment,

then we have v̂ 6¼?, v̂ 6¼ v
ðTx̂Þ
x̂ . Since H

ðTx̂Þ
x̂ is a valid BLS

signature generated with the secret key a of B, we have

P̂
ðiÞ
x̂ ¼ P

ðiÞ
x̂ for all 1 � i � Tx̂. Otherwise, A successfully

forged a new BLS signature. Therefore, we have v̂x̂ 6¼ vx̂.
If x̂ 6¼ x�, B aborts the simulation and fails. Otherwise,

note that hx̂ ¼ ga and eðCR; hx̂Þ ¼ eðhvx̂
x̂ ; hx̂Þeðpx̂; gÞ ¼

eðhv̂x̂
x̂ ; hx̂Þeðp̂x̂; gÞ, B can compute

ga
2 ¼ ðp̂x̂=px̂Þðvx̂�v̂x̂Þ

�1
:

The success probability of B is �=q. tu
Theorem 5.2. The proposed Inc-VDB scheme is correct.

Proof. If the server is assumed to be honest, then the proofs

t ¼ ðvx;px;H
ðTxÞ
x ; P ð1Þx ; . . . ; P ðTxÞx ; TxÞ:

First, note that CR=h
vx
x ¼

Q
1�j�q;j6¼x h

vj
j and px ¼Q

1�j�q;j6¼x h
vj
x;j, we have eðCR=h

vx
x ; hxÞ ¼ eðpx; gÞ: Second,

due to HðTxÞx ¼ HðCR; x; P
ð1Þ
x ; . . . ; P ðTxÞx ; TxÞa, we have

eðHðTxÞx ; gÞ ¼ eðHðCR; x; P
ð1Þ
x ; . . . ; P ðTxÞx ; TxÞ; Y Þ. Hence, the

output of the verification algorithm is always the value

vðTxÞx . tu
Theorem 5.3. The proposed Inc-VDB scheme is efficient.

Proof. It is trivial that the computational and storage
resources invested by the client in our scheme is inde-
pendent of the size of the database (except for a one-
time Setup phase). More precisely, in the Verify algo-
rithm, the client requires the workload of four pairings
and an exponentiation in G1 (note that it can be reduced
to two pairings and two exponentiations in G1). Besides,
in the Inc-Update algorithm, the client only requires the
workload of computing an incremental BLS signature.
That is, the computational overload of client is to per-
form an exponentiation in G1 and an incremental hash-
ing operation. On the other hand, the storage of client is
only two elements in G1 (please refer to Remark 6 for
more discussions). tu

Theorem 5.4. The proposed Inc-VDB scheme is accountable.

Proof. Given the proofs t with the counter Tx for index x,
the client firstly compares it with the latest counter Tc for
same index x that he stored locally. If Tx < Tc, then
the client sends the corresponding signature s on Tc to
the judge as a proof. Otherwise, he sends t to the judge
as a proof since the verification of t will fail if the server

has tampered with the database (i.e., either vx or P ðiÞx for
1 � i � Tx). tu

5.4 Efficiency Analysis

In this section, we present the efficiency analysis of the
proposed scheme and give a comparison with schemes
[19], [22].

First, all of the three schemes require a one-time expen-
sive computational effort in the Setup phase. Second, our

CHEN ETAL.: VERIFIABLE COMPUTATION OVER LARGE DATABASE WITH INCREMENTAL UPDATES 3191

proposed scheme simultaneously satisfies the properties of
public verifiability and accountability. Besides, our scheme
is efficient since the computational resources invested by
the client are independent on the size of the database.
Finally, the server invests almost all of the storage resources
in order to store and update the database. Trivially, as
shown in Remark 6, the storage overhead of client is only
two elements in G1.

Table 1 presents the comparison among the three
schemes. We denote by M1 (resp. M2) a multiplication in
G1 (resp. G2), by E an exponentiation in G1, by I an inverse
in G1, by P a computation of the pairing,5 by F an opera-
tion on a pseudo-random function, by H a regular hashing
operation,6 by E (resp. D) a regular encryption (resp.
decryption) operation, and by H an incremental hashing
operation [15]. We omit other operations such as addition
in G1 for all three schemes.

In the query algorithm of our scheme, the server does
not need to compute the proof each time as discussed in
Remark 2. Betises, in the verify and update algorithms,
the client in our scheme requires less computational over-
head since it does not require to perform the operations
of encryption and hashing from scratch. Therefore, our
scheme is much more efficient than schemes [19], [22] in
these three algorithms. On the other hand, the server in
update algorithm of our scheme requires a little more
computational overhead, i.e., an incremental BLS signa-
ture, in order to achieve accountability. If we use the
incremental hash-then-sign paradigm, the server only
performs the operations of an an exponentiation in G1

and an incremental hashing.

6 PERFORMANCE EVALUATION

In this section, we provide a thorough experimental evalua-
tion of the proposed Inc-VDB scheme. Our experiments are
simulated with the pairing-based cryptography (PBC)
library and OpenSSL open-source library on a LINUX
machine with Intel Core i7-4600U processors running at
2.70 GHz and 8 G memory. Throughout this experiment, in
order to precisely evaluate the computation complexity at

both client and server sides, we simulate both entities on
this LINUX machine.

Since the Type 1 pairing functions are actually shown to
be insecure (or very inefficient after some fixing) [2], we do
the experiment using the asymmetric pairings (i.e., either
Type 2 or Type 3 pairings). The elliptic curve we used is a
MNT d224-curve, where the base field size is 224-bit and
the embedding degree of the curve is 6 [44]. Also, we adopt
the famous CryptDB [20] database system in the experi-
ments and the dataset is the encrypted file with the length
of 8 MB.

We provide the time costs simulation for schemes [19],
[22] and our scheme in Figs. 1, 2 and 3. Also, we provide the
performance analysis of our incremental encryption in
Fig. 4. The time cost of query, verify and update algorithms
for all three schemes are shown in Figs. 1, 2, 3a and 3b,
respectively. Fig. 1 shows that the query time cost of our
scheme is always 0, and the query time cost of scheme [22]
is relatively small compared with scheme [19]. As shown in
Fig. 2, the verification time cost of the three schemes are all
linear with the commutating count, and our verification
algorithm is the most efficient one. The main reason is that
we use the incremental hash algorithm in our scheme (the
input for the incremental hash algorithm in our simulation
is 8 MB).

In Fig. 3a, we provide the efficiency comparison for
data update of the client side. The simulation results
show that the growth rate of our scheme is much smaller
than that of schemes [19], [22]. Fig. 3b shows the effi-
ciency comparison for data update of server side. The
scheme [22] does not need any computation cost in this

TABLE 1
Efficiency Comparison

Scheme Benabbas-Gennaro-Vahlis Scheme Catalano-Fiore Scheme Our Proposed Scheme

Computational Model Amortized Model Amortized Model Amortized Model
Computational Assumption Subgroup Member Assumption CDH Assumption CDH Assumption
Public Verifiability No Yes Yes
Accountability No No Yes
Server Computation (QueryÞ ðq � 1ÞM1 þ 2P ðq � 1ÞðM1 þ EÞ /

Verifier Computation (VerifyÞ 3M1 þ 1M2 þ 3E þ 2F þ 1P þ 1H 1M1 þ 1E þ 2P þ 1H 1M1 þ 1E þ 4P þ 1H þ 1H
Client Computation (UpdateÞ 1M1 þ 1M2 þ 3E þ 2F þ 1P þ 1E þ 1Dþ 1H 1M1 þ 1E þ 1E þ 1Dþ 2H 1E þ 1Dþ 1H
Server Computation (UpdateÞ 1M1 / 1E þ 1H

Fig. 1. Query comparison.

5. We argue that the groups G1 and G2 in Benabbas-Gennaro-
Vahlis’s scheme are different from those in our scheme since their
scheme uses bilinear groups of composite order. Actually, the opera-
tions in the composite order groups require much more expensive
computational overload though we use the same notions for both
schemes [33].

6. Note that regular means the output of operation should be com-
puted from scratch.

3192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

phase, and thus the computation time is always 0. Since
we introduce the pairing computation in the server data
update phase, the computation cost of our server side
update is relatively higher than that of the scheme [19].
However, we argue that the computational overhead of
query algorithm is only performed by the cloud server
rather than the resource-constrained client. Therefore, it is
reasonable for cloud outsourcing environment. On the
other hand, the simulation results in Fig. 4 indicate that
our incremental encryption scheme is much more efficient
than the normal encryption scheme when the number of
updated blocks are sufficiently large. In both verification
and update algorithms which are performed by client, the
simulation results indicate that our scheme is more effi-
cient than scheme [19]. Besides, since the scheme [22] suf-
fers from the FAU attack and the scheme [19] only
provides private verifiability, our scheme is most suitable
for real-world applications.

7 CONCLUSION

The primitive of verifiable database with efficient updates is
useful to solve the problem of verifiable outsourcing of stor-
age. However, the existing schemes cannot satisfy the prop-
erty of incremental update, i.e., the client must re-compute
the new ciphertext and the updated tokens from scratch
each time. In this paper, we first introduce the notion of
verifiable database with incremental updates (Inc-VDB)

that can lead to huge efficiency gain when the database
undergoes frequently while small modifications. Besides,
we propose a general Inc-VDB framework by incorporating
the primitive of vector commitment and the encrypt-then-
incremental MAC mode of encryption. We also present a
concrete Inc-VDB scheme based on the CDH assumption.

The proposed construction supports the data update
such as replacement and deletion operation. However, it
seems not be applicable of the insertion operation due to the
vector commitment. Thus, an interesting open problem is to
propose a general Inc-VDB construction that supports all
different updating operations.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Nos. 61272455 and 61572382), Doc-
toral Fund of Ministry of Education of China (No.
20130203110004), Program for New Century Excellent
Talents in University (No. NCET-13-0946), the Fundamental
Research Funds for the Central Universities (No.
BDY151402), National High Technology Research and
Development Program (863 Program) of China (No.
2015AA016007), and China 111 Project (No. B16037).
Besides, Lou’s work was supported by US National Science
Foundation under grant (CNS-1217889). An extend abstract
of this paper has been presented at the 19th European

Fig. 2. Verify comparison.

Fig. 3. Efficiency comparison for data update.

Fig. 4. Efficiency of IncENC.

CHEN ETAL.: VERIFIABLE COMPUTATION OVER LARGE DATABASE WITH INCREMENTAL UPDATES 3193

Symposium on Research in Computer Security (ESORICS
2014), LNCS 8712, Springer, pp. 148-162, 2014.

REFERENCES

[1] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear alge-
bra computations,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Security, pp. 48-59, 2010.

[2] G. Adj, A. Menezes, T. Oliveira and F. Rodr�ıguez-Henr�ıquez,
“Computing discrete logarithms in F36�137 and F36�163 using
magma,” in Proc. 5th Int. Workshop Arithmetic Finite Fields, 2015,
pp. 3–22.

[3] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford,
“Secure outsourcing of scientific computations,” Adv. Comput.,
vol. 54, pp. 216–272, 2001.

[4] M. J. Atallah and J. Li, “Secure outsourcing of sequence
comparisons,” Int. J. Inf. Security, vol. 4, pp. 277–287, 2005.

[5] M. Blanton, “Improved conditional e-payments,” in Proc. 6th Int.
Conf. Appl. Cryptograph. Netw. Security, 2008, pp. 188–206.

[6] D. Benjamin and M. J. Atallah, “Private and cheating-free out-
sourcing of algebraic computations,” in Proc. 6th Annu. Conf. Pri-
vacy, Security Trust, 2008, pp. 240–245.

[7] F. Bao, R. Deng, and H. Zhu, “Variations of Diffie-Hellman prob-
lem,” in Proc. 5th Int. Conf. Inf. Commun. Security, 2003, pp. 301–
312.

[8] M. Backes, D. Fiore, and R. M. Reischuk, “Verifiable delegation of
computation on outsourced data,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2013, pp. 863–874.

[9] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi-
prover interactive proofs: How to remove intractability
assumptions,” in Proc. ACM Symp. Theory Comput., 1988,
pp. 113–131.

[10] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryp-
tography: The case of hashing and signing,” in Proc. 14th Annu.
Int. Cryptol. Conf. Adv. Cryptol., 1994, pp. 216–233.

[11] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryp-
tography and application to virus protection,” in Proc. 27th ACM
Symp. Theory Comput., 1995, pp. 45–56.

[12] E. Buonanno, J. Katz, and M. Yung, “Incremental unforgeable
encryption,” in Proc. 8th Int. Workshop Fast Softw. Encryption, 2002,
pp. 109–124.

[13] M. Blum, M. Luby, and R. Rubinfeld, “Program result checking
against adaptive programs and in cryptographic settings,” in
Proc. DIMACS Workshop Distrib. Comput. Crypthography, 1991,
pp. 107–118.

[14] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting
with applications to numerical problems,” J. Comput. Syst. Sci.,
pp. 549–595, 1993.

[15] M. Bellare and D. Micciancioy, “A new paradigm for collision-free
hashing: Incrementality at reduced cost,” in Proc. Int. Conf. Theory
Appl. Cryptographic Techn., 1997, pp. 163–192.

[16] M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi, “Secure
and efficient outsourcing of sequence comparisons,” in Proc. 17th
Eur. Symp. Res. Comput. Security, 2012, pp. 505–522.

[17] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
Weil pairings,” in Proc. 7th Int. Conf. Theory Appl. Cryptol. Inf. Secu-
rity: Adv. Cryptol., 2001, pp. 514–532.

[18] M. Bellare and C. Namprempre, “Authenticated encryption: Rela-
tions among notions and analysis of the generic composition para-
digm,” in Proc. 6th Int. Conf. Theory Appl. Cryptol. Inf. Security,
2000, pp. 531–545.

[19] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Proc. 31st Annu. Conf. Adv.
Cryptol., 2011, pp. 111–131.

[20] R. A. Popa, N. Zeldovich, and H. Balakrishnan, “CryptDB: A prac-
tical encrypted relational DBMS,” MIT Comput. Sci. Artif. Intell.
Laboratory, Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-
2011-005, Jan. 2011.

[21] B. Chevallier-Mames, J. Coron, N.McCullagh, D. Naccache, andM.
Scott, “Secure delegation of elliptic-curve pairing,” in Proc. 9th IFIP
WG 8.8/11.2 Int. Conf. Smart Card Re. Adv. Appl., 2010, pp. 24–35.

[22] D. Catalano and D. Fiore, “Vector commitments and their
applications,” in Proc. 16th Int. Conf. Practice Theory Public-Key
Cryptography, 2013, pp. 55–72.

[23] J. Camenisch, S. Hohenberger, and M. Pedersen, “Batch verifica-
tion of short signatures,” in Proc. 26th Annu. Int. Conf. Theory Appl.
Cryptographic Techn., 2007, pp. 246–263.

[24] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator
based on bilinear maps and efficient revocation for anonymous
credentials,” in Proc. 12th Int. Conf. Practice Theory Public Key Cryp-
tography, 2009, pp. 481–500.

[25] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and
application to efficient revocation of anonymous credentials,” in
Proc. 22nd Annu. Int. Cryptol. Conf. Adv. Cryptol., 2002, pp. 61–76.

[26] R. Canetti, B. Riva, G. Rothblum, “Practical delegation of compu-
tation using multiple servers,” in Proc. 18th ACM Conf. Comput.
Commun. Security, 2011, pp. 445–454.

[27] B. Carbunar, M. Tripunitara, “Conditional payments for comput-
ing markets,” in Proc. 7th Int. Conf. Cryptol. Netw.. Security, 2008,
pp. 317–331.

[28] B. Carbunar, M. Tripunitara, “Fair payments for outsourced
computations,” in Proc. Annu. Conf. Sensor, Mesh Ad Hoc Commun.
Netw., 2010, pp. 529–537.

[29] X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments
for outsourcing computations,” IEEE Trans. Inf. Forensics Security,
vol. 7, no. 6, pp. 1687–1694, Dec. 2012.

[30] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” in Proc. Eur.
Conf. Res. Comput. Security, 2012, pp. 541–556.

[31] X. Chen, J. Li, J. Weng, J. Ma, andW. Lou, “Verifiable computation
over large database with incremental updates,” in Proc. 19th Eur.
Symp. Res. Comput. Security, 2012, pp. 148–162.

[32] D. Chaum and T. Pedersen, “Wallet databases with observers,” in
Proc. 12th Annu. Adv. Int. Cryptol. Conf. Adv. Cryptol., 1993, pp. 89–
105.

[33] A. Guillevic, “Comparing the pairing efficiency over composite-
order and prime-order elliptic curves,” in Proc. 11th Int. Conf.
Appl. Cryptography Netw. Security, 2013, pp. 357–372.

[34] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating com-
putation: Interactive proofs for muggles,” in Proc. ACM Symp. The-
ory Comput., 2008, pp. 113–122.

[35] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com-
plexity of interactive proof-systems,” SIAM J. Comput., vol. 18,
no. 1, pp. 186–208, 1989.

[36] P. Golle, I. Mironov, “Uncheatable distributed computations,” in
Proc. Conf. Topics Cryptol.: Cryptographer’s Track RSA, 2001,
pp. 425–440.

[37] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
Proc. 41st Annu. ACM Symp. Theory Comput., 2009, pp. 169–178.

[38] C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomor-
phic encryption scheme,” in Proc. 30th Annu. Int. Conf. Theory
Appl. Cryptographic Techn., 2011, pp. 129–148.

[39] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
Proc. 30th Annu. Conf. Adv. Cryptol., 2010, pp. 465–482.

[40] M. Green, S. Hohenberger, B. Waters. (2011). Outsourcing the
decryption of ABE ciphertexts. Proc. 20th USENIX Conf. Security.
The full version can be found at [Online]. Available: http://static.
usenix.org/events/sec11/tech/full-papers/Green.pdf

[41] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. 2nd Theory Cryptography
Conf., 2005, pp. 264–282.

[42] J. Kilian, “A note on efficient zero-knowledge proofs and
arguments,” in Proc. ACMSymp. Theory Comput., 1992, pp. 723–732.

[43] J. Kilian, “Improved efficient arguments (preliminary version),” in
Proc. 15th Annu. Int. Cryptol. Conf., 1995, pp. 311–324. 1995.

[44] B. Lynn. (2014). PBC library [Online]. Available: http://crypto.
stanford.edu/pbc

[45] S. Micali, “CS proofs,” in Proc. 35th Annu. Symp. Found. Comput.
Sci., 1994, pp. 436–453.

[46] I. Mironov, O. Pandey, O. Reingold, and G. Segev, “Incremental
deterministic public-key encryption,” in Proc. 31st Annu. Int. Conf.
Theory Appl. Cryptographic Techn., 2012, pp. 628–644.

[47] C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong,
and S. G. Stubblebine, “A general model for authenticated data
structures,” Algorithmica, vol. 39, no. 1, pp. 21–41, 2004.

[48] M. Naor and K. Nissim, “Certificate revocation and certificate
update,” in Proc. 7th Conf. USENIX Security Symp., 1998, vol. 7,
pp. 17–17.

[49] L.Nguyen, “Accumulators frombilinear pairings and applications,”
in Proc. Cryptographers Track RSAConf., 2005, pp. 75–292.

[50] B. Parno, M. Raykova and V. Vaikuntanathan, “How to delegate
and verify in public: Verifiable computation from attribute-based
encryption,” in Proc. 9th Theory of Cryptography Conf., 2012,
pp. 422–439.

3194 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

http://static.usenix.org/events/sec11/tech/full-papers/Green.pdf
http://static.usenix.org/events/sec11/tech/full-papers/Green.pdf
http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc

[51] C. Papamanthou and R. Tamassia, “Time and space efficient algo-
rithms for two-party authenticated data structures,” in Proc. 9th
Int. Conf. Inf. Commun. Security, 2007, pp. 1–15.

[52] R. Tamassia and N. Triandopoulos. (2010). Certification and
authentication of data structures. Proc. Alberto Mendelzon Workshop
Found. Data Manage. [Online]. Available: http://www.cs.bu.edu/
nikos/papers/cads.pdf

[53] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. 30th IEEE
Int. Conf. Comput. Commun., 2011, pp. 820–828.

[54] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud
for securely outsourcing large-scale systems of linear equations,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1172–1181, Jun.
2013.

Xiaofeng Chen received the BS and MS degrees
in mathematics from Northwest University, China,
in 1998 and 2000, respectively. He received the
PhD degree in cryptography from Xidian Univer-
sity in 2003. He is currently at Xidian University
as a professor. His research interests include
applied cryptography and cloud computing secu-
rity. He has published over 100 research papers
in refereed international conferences and jour-
nals. His work has been cited more than 3,000
times at Google Scholar. He is in the Editorial

Board of Security and Communication Networks (SCN), Computing and
Informatics (CAI), and International Journal of Embedded Systems
(IJES) etc. He has served as the program/general chair or program com-
mittee member in over 30 international conferences.

Jin Li received the BS degree in mathematics
in 2002 from Southwest University. He received
the PhD degree in information security from
Sun Yat-sen University at 2007. He is currently
at Guangzhou University as a professor. He
has been selected as one of science and tech-
nology new star in Guangdong province. His
research interests include applied cryptography
and security in cloud computing. He has pub-
lished over 50 research papers in refereed
international conferences and journals and has

served as the program chair or program committee member in many
international conferences.

Jian Weng received the MS and BS degrees in
computer science and engineering from South
China University of Technology, in 2004 and
2000, respectively, and the PhD degree in com-
puter science and engineering from Shanghai
Jiao Tong University, in 2008. From April 2008 to
March 2010, he was a postdoctor in the School of
Information Systems, Singapore Management
University. He is currently a professor and execu-
tive dean with the School of Information Technol-
ogy, Jinan University. He has published more

than 60 papers in cryptography conferences and journals such as Euro-
cryp, Asiacrypt, PKC, and IEEE TIFS. He served as PC co-chair or PC
member for more than 10 international conferences.

Jianfeng Ma received the BS degree in mathe-
matics from Shaanxi Normal University, China, in
1985, and the ME and PhD degrees in computer
software and communications engineering from
Xidian University, China, in 1988 and 1995,
respectively. From 1999 to 2001, he was with
Nanyang Technological University of Singapore
as a research fellow. He is currently a professor
in the School of Computer Science, Xidian Uni-
versity, China. His current research interests
include distributed systems, computer networks,

and information and network security.

Wenjing Lou received the BS and MS degrees in
computer science and engineering from Xi’an
Jiaotong University, China, the MASc degree in
computer communications from the Nanyang
Technological University in Singapore, and the
PhD degree in electrical and computer engineer-
ing from the University of Florida. She is currently
a professor in the Computer Science Depart-
ment, Virginia Polytechnic Institute and State Uni-
versity.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ETAL.: VERIFIABLE COMPUTATION OVER LARGE DATABASE WITH INCREMENTAL UPDATES 3195

http://www.cs.bu.edu/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

