
Privacy-Preserving Multi-Keyword Ranked
Search over Encrypted Cloud Data

Ning Cao, Member, IEEE, Cong Wang, Member, IEEE, Ming Li, Member, IEEE,

Kui Ren, Senior Member, IEEE, and Wenjing Lou, Senior Member, IEEE

Abstract—With the advent of cloud computing, data owners are motivated to outsource their complex data management systems

from local sites to the commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive

data have to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus,

enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and

documents in the cloud, it is necessary to allow multiple keywords in the search request and return documents in the order of their

relevance to these keywords. Related works on searchable encryption focus on single keyword search or Boolean keyword search,

and rarely sort the search results. In this paper, for the first time, we define and solve the challenging problem of privacy-preserving

multi-keyword ranked search over encrypted data in cloud computing (MRSE). We establish a set of strict privacy requirements for

such a secure cloud data utilization system. Among various multi-keyword semantics, we choose the efficient similarity measure of

“coordinate matching,” i.e., as many matches as possible, to capture the relevance of data documents to the search query. We

further use “inner product similarity” to quantitatively evaluate such similarity measure. We first propose a basic idea for the MRSE

based on secure inner product computation, and then give two significantly improved MRSE schemes to achieve various stringent

privacy requirements in two different threat models. To improve search experience of the data search service, we further extend

these two schemes to support more search semantics. Thorough analysis investigating privacy and efficiency guarantees of

proposed schemes is given. Experiments on the real-world data set further show proposed schemes indeed introduce low

overhead on computation and communication.

Index Terms—Cloud computing, searchable encryption, privacy-preserving, keyword search, ranked search

Ç

1 INTRODUCTION

CLOUD computing is the long dreamed vision of
computing as a utility, where cloud customers can

remotely store their data into the cloud so as to enjoy the
on-demand high-quality applications and services from a
shared pool of configurable computing resources [2], [3]. Its
great flexibility and economic savings are motivating both
individuals and enterprises to outsource their local com-
plex data management system into the cloud. To protect
data privacy and combat unsolicited accesses in the cloud
and beyond, sensitive data, for example, e-mails, personal
health records, photo albums, tax documents, financial
transactions, and so on, may have to be encrypted by data
owners before outsourcing to the commercial public cloud
[4]; this, however, obsoletes the traditional data utilization

service based on plaintext keyword search. The trivial
solution of downloading all the data and decrypting locally
is clearly impractical, due to the huge amount of
bandwidth cost in cloud scale systems. Moreover, aside
from eliminating the local storage management, storing
data into the cloud serves no purpose unless they can be
easily searched and utilized. Thus, exploring privacy-
preserving and effective search service over encrypted
cloud data is of paramount importance. Considering the
potentially large number of on-demand data users and
huge amount of outsourced data documents in the cloud,
this problem is particularly challenging as it is extremely
difficult to meet also the requirements of performance,
system usability, and scalability.

On the one hand, to meet the effective data retrieval
need, the large amount of documents demand the cloud
server to perform result relevance ranking, instead of
returning undifferentiated results. Such ranked search
system enables data users to find the most relevant
information quickly, rather than burdensomely sorting
through every match in the content collection [5]. Ranked
search can also elegantly eliminate unnecessary network
traffic by sending back only the most relevant data, which
is highly desirable in the “pay-as-you-use” cloud para-
digm. For privacy protection, such ranking operation,
however, should not leak any keyword related information.
On the other hand, to improve the search result accuracy as
well as to enhance the user searching experience, it is also
necessary for such ranking system to support multiple
keywords search, as single keyword search often yields far
too coarse results. As a common practice indicated by
today’s web search engines (e.g., Google search), data users

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

. N. Cao is with Walmart Labs, 444 Castro St, Mountain View, CA 94041.
E-mail: ncao@walmartlabs.com.

. C. Wang is with the Department of Computer Science, City University of
Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: congwang@cityu.edu.hk.

. M. Li is with the Department of Computer Science, Utah State University,
4205 Old Main Hill, Logan, UT 84322. E-mail: ming.li@usu.edu.

. K. Ren is with the Department of Computer Science and Engineering,
University at Buffalo, The State University of New York, 317 Davis Hall,
Buffalo, NY 14260. E-mail: kuiren@buffalo.edu.

. W. Lou is with the Department of Computer Science, Northern Virginia
Center, Virginia Polytechnic Institute and State University, 7054 Haycock
Road, Falls Church, VA 22043. E-mail: wjlou@vt.edu.

Manuscript received 6 Dec. 2012; accepted 31 Jan. 2013; published online 15
Feb. 2013.
Recommended for acceptance by D. Turgut.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-12-1210.
Digital Object Identifier no. 10.1109/TPDS.2013.45.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

may tend to provide a set of keywords instead of only one
as the indicator of their search interest to retrieve the most
relevant data. And each keyword in the search request is
able to help narrow down the search result further.
“Coordinate matching” [6], i.e., as many matches as
possible, is an efficient similarity measure among such
multi-keyword semantics to refine the result relevance,
and has been widely used in the plaintext information
retrieval (IR) community. However, how to apply it in the
encrypted cloud data search system remains a very
challenging task because of inherent security and privacy
obstacles, including various strict requirements like the
data privacy, the index privacy, the keyword privacy, and
many others (see Section 3.2).

In the literature, searchable encryption [7], [8], [9], [10],
[11], [12], [13], [14], [15] is a helpful technique that treats
encrypted data as documents and allows a user to securely
search through a single keyword and retrieve documents of
interest. However, direct application of these approaches to
the secure large scale cloud data utilization system would
not be necessarily suitable, as they are developed as
cryptoprimitives and cannot accommodate such high
service-level requirements like system usability, user
searching experience, and easy information discovery.
Although some recent designs have been proposed to
support Boolean keyword search [16], [17], [18], [19], [20],
[21], [22], [23], [24] as an attempt to enrich the search
flexibility, they are still not adequate to provide users with
acceptable result ranking functionality (see Section 7). Our
early works [25], [26] have been aware of this problem, and
provide solutions to the secure ranked search over
encrypted data problem but only for queries consisting of
a single keyword. How to design an efficient encrypted
data search mechanism that supports multi-keyword
semantics without privacy breaches still remains a challen-
ging open problem.

In this paper, for the first time, we define and solve the
problem of multi-keyword ranked search over encrypted
cloud data (MRSE) while preserving strict systemwise
privacy in the cloud computing paradigm. Among various
multi-keyword semantics, we choose the efficient similarity
measure of “coordinate matching,” i.e., as many matches as
possible, to capture the relevance of data documents to the
search query. Specifically, we use “inner product similar-
ity” [6], i.e., the number of query keywords appearing in a
document, to quantitatively evaluate such similarity mea-
sure of that document to the search query. During the index
construction, each document is associated with a binary
vector as a subindex where each bit represents whether
corresponding keyword is contained in the document. The
search query is also described as a binary vector where each
bit means whether corresponding keyword appears in this
search request, so the similarity could be exactly measured
by the inner product of the query vector with the data
vector. However, directly outsourcing the data vector or the
query vector will violate the index privacy or the search
privacy. To meet the challenge of supporting such multi-
keyword semantic without privacy breaches, we propose
a basic idea for the MRSE using secure inner product
computation, which is adapted from a secure k-nearest
neighbor (kNN) technique [27], and then give two sig-
nificantly improved MRSE schemes in a step-by-step
manner to achieve various stringent privacy requirements

in two threat models with increased attack capabilities. Our
contributions are summarized as follows:

1. For the first time, we explore the problem of multi-
keyword ranked search over encrypted cloud data,
and establish a set of strict privacy requirements for
such a secure cloud data utilization system.

2. We propose two MRSE schemes based on the
similarity measure of “coordinate matching” while
meeting different privacy requirements in two
different threat models.

3. We investigate some further enhancements of our
ranked search mechanism to support more search
semantics and dynamic data operations.

4. Thorough analysis investigating privacy and effi-
ciency guarantees of the proposed schemes is given,
and experiments on the real-world data set further
show the proposed schemes indeed introduce low
overhead on computation and communication.

Compared with the preliminary version [1] of this paper,
this journal version proposes two new mechanisms to
support more search semantics. This version also studies
the support of data/index dynamics in the mechanism
design. Moreover, we improve the experimental works by
adding the analysis and evaluation of two new schemes. In
addition to these improvements, we add more analysis on
secure inner product and the privacy part.

The remainder of this paper is organized as follows: In
Section 2, we introduce the system model, the threat model,
our design goals, and the preliminary. Section 3 describes
the MRSE framework and privacy requirements, followed by
Section 4, which describes the proposed schemes. Section 5
presents simulation results. We discuss related work on
both single and Boolean keyword searchable encryption in
Section 6, and conclude the paper in Section 7.

2 PROBLEM FORMULATION

2.1 System Model

Considering a cloud data hosting service involving three
different entities, as illustrated in Fig. 1: the data owner, the
data user, and the cloud server. The data owner has a
collection of data documents F to be outsourced to the
cloud server in the encrypted form C. To enable the
searching capability over C for effective data utilization,
the data owner, before outsourcing, will first build an
encrypted searchable index I from F , and then outsource
both the index I and the encrypted document collection C
to the cloud server. To search the document collection for t
given keywords, an authorized user acquires a correspond-
ing trapdoor T through search control mechanisms, for

CAO ET AL.: PRIVACY-PRESERVING MULTI-KEYWORD RANKED SEARCH OVER ENCRYPTED CLOUD DATA 223

Fig. 1. Architecture of the search over encrypted cloud data.

example, broadcast encryption [10]. Upon receiving T from
a data user, the cloud server is responsible to search the
index I and return the corresponding set of encrypted
documents. To improve the document retrieval accuracy,
the search result should be ranked by the cloud server
according to some ranking criteria (e.g., coordinate match-
ing, as will be introduced shortly). Moreover, to reduce the
communication cost, the data user may send an optional
number k along with the trapdoor T so that the cloud server
only sends back top-k documents that are most relevant to
the search query. Finally, the access control mechanism [28]
is employed to manage decryption capabilities given to
users and the data collection can be updated in terms of
inserting new documents, updating existing documents,
and deleting existing documents.

2.2 Threat Model

The cloud server is considered as “honest-but-curious” in
our model, which is consistent with related works on cloud
security [28], [29]. Specifically, the cloud server acts in an
“honest” fashion and correctly follows the designated
protocol specification. However, it is “curious” to infer
and analyze data (including index) in its storage and
message flows received during the protocol so as to learn
additional information. Based on what information the
cloud server knows, we consider two threat models with
different attack capabilities as follows.

Known ciphertext model. In this model, the cloud server is
supposed to only know encrypted data set C and searchable
index I , both of which are outsourced from the data owner.

Known background model. In this stronger model, the cloud
server is supposed to possess more knowledge than what can
be accessed in the known ciphertext model. Such information
may include the correlation relationship of given search
requests (trapdoors), as well as the data set related statistical
information. As an instance of possible attacks in this case,
the cloud server could use the known trapdoor information
combined with document/keyword frequency [30] to
deduce/identify certain keywords in the query.

2.3 Design Goals

To enable ranked search for effective utilization of out-
sourced cloud data under the aforementioned model, our
system design should simultaneously achieve security and
performance guarantees as follows.

. Multi-keyword ranked search. To design search
schemes which allow multi-keyword query and
provide result similarity ranking for effective data
retrieval, instead of returning undifferentiated re-
sults.

. Privacy-preserving. To prevent the cloud server from
learning additional information from the data set
and the index, and to meet privacy requirements
specified in Section 3.2.

. Efficiency. Above goals on functionality and privacy
should be achieved with low communication and
computation overhead.

2.4 Notations

. F—the plaintext document collection, denoted as a
set of m data documents F ¼ ðF1; F2; . . . ; FmÞ.

. C—the encrypted document collection stored in the
cloud server, denoted as C ¼ ðC1; C2; . . . ; CmÞ.

. W—the dictionary, i.e., the keyword set consisting of
n keyword, denoted as W ¼ ðW1;W2; . . . ;WnÞ.

. I—the searchable index associated with C, denoted
as ðI1; I2; . . . ; ImÞ where each subindex Ii is built
for Fi.

. fW—the subset ofW, representing the keywords in a
search request, denoted as fW ¼ ðWj1

;Wj2 ; . . . ;WjtÞ.
. TeW—the trapdoor for the search request fW.

. F eW—the ranked id list of all documents according to
their relevance to fW.

2.5 Preliminary on Coordinate Matching

As a hybrid of conjunctive search and disjunctive search,
“coordinate matching” [6] is an intermediate similarity
measure which uses the number of query keywords
appearing in the document to quantify the relevance of
that document to the query. When users know the exact
subset of the data set to be retrieved, Boolean queries
perform well with the precise search requirement specified
by the user. In cloud computing, however, this is not the
practical case, given the huge amount of outsourced data.
Therefore, it is more flexible for users to specify a list of
keywords indicating their interest and retrieve the most
relevant documents with a rank order.

3 FRAMEWORK AND PRIVACY REQUIREMENTS FOR

MRSE

In this section, we define the framework of multi-keyword
ranked search over encrypted cloud data (MRSE) and
establish various strict systemwise privacy requirements for
such a secure cloud data utilization system.

3.1 MRSE Framework

For easy presentation, operations on the data documents
are not shown in the framework since the data owner could
easily employ the traditional symmetric key cryptography
to encrypt and then outsource data. With focus on the
index and query, the MRSE system consists of four
algorithms as follows:

. Setup ð1‘Þ. Taking a security parameter ‘ as input, the
data owner outputs a symmetric key as SK.

. BuildIndex ðF ; SKÞ. Based on the data set F , the data
owner builds a searchable index I which is encrypted by
the symmetric key SK and then outsourced to the cloud
server. After the index construction, the document
collection can be independently encrypted and outsourced.

. Trapdoor ðfWÞ. With t keywords of interest infW as input,
this algorithm generates a corresponding trapdoor TeW .

. Query ðTeW ; k; IÞ. When the cloud server receives a query
request as (TeW , k), it performs the ranked search on
the index I with the help of trapdoor TeW , and finally
returns F eW , the ranked id list of top-k documents sorted
by their similarity with fW.

Neither the search control nor the access control is within
the scope of this paper. While the former is to regulate how
authorized users acquire trapdoors, the later is to manage
users’ access to outsourced documents.

224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

3.2 Privacy Requirements for MRSE

The representative privacy guarantee in the related litera-
ture, such as searchable encryption, is that the server should
learn nothing but search results. With this general privacy
description, we explore and establish a set of strict privacy
requirements specifically for the MRSE framework.

As for the data privacy, the data owner can resort to the
traditional symmetric key cryptography to encrypt the data
before outsourcing, and successfully prevent the cloud
server from prying into the outsourced data. With respect to
the index privacy, if the cloud server deduces any association
between keywords and encrypted documents from index, it
may learn the major subject of a document, even the content
of a short document [30]. Therefore, the searchable index
should be constructed to prevent the cloud server from
performing such kind of association attack. While data and
index privacy guarantees are demanded by default in the
related literature, various search privacy requirements in-
volved in the query procedure are more complex and
difficult to tackle as follows.

Keyword privacy. As users usually prefer to keep their
search from being exposed to others like the cloud server,
the most important concern is to hide what they are
searching, i.e., the keywords indicated by the corresponding
trapdoor. Although the trapdoor can be generated in a
cryptographic way to protect the query keywords, the cloud
server could do some statistical analysis over the search
result to make an estimate. As a kind of statistical
information, document frequency (i.e., the number of docu-
ments containing the keyword) is sufficient to identify the
keyword with high probability [31]. When the cloud server
knows some background information of the data set, this
keyword specific information may be utilized to reverse-
engineer the keyword.

Trapdoor unlinkability. The trapdoor generation function
should be a randomized one instead of being deterministic.
In particular, the cloud server should not be able to deduce
the relationship of any given trapdoors, for example, to
determine whether the two trapdoors are formed by the
same search request. Otherwise, the deterministic trapdoor
generation would give the cloud server advantage to
accumulate frequencies of different search requests regard-
ing different keyword(s), which may further violate the
aforementioned keyword privacy requirement. So the
fundamental protection for trapdoor unlinkability is to
introduce sufficient nondeterminacy into the trapdoor
generation procedure.

Access pattern. Within the ranked search, the access

pattern is the sequence of search results where every search

result is a set of documents with rank order. Specifically, the

search result for the query keyword setfW is denoted as F eW ,

consisting of the id list of all documents ranked by their

relevance to fW. Then the access pattern is denoted as

ðF eW1

;F eW2

; . . .Þ which are the results of sequential searches.

Although a few searchable encryption works, for example,

[19] has been proposed to utilize private information

retrieval (PIR) technique [32], to hide the access pattern,

our proposed schemes are not designed to protect the access

pattern for the efficiency concerns. This is because any PIR-

based technique must “touch” the whole data set out-

sourced on the server which is inefficient in the large-scale

cloud system.

4 PRIVACY-PRESERVING AND EFFICIENT MRSE

To efficiently achieve multi-keyword ranked search, we
propose to employ “inner product similarity” [6] to
quantitatively evaluate the efficient similarity measure
“coordinate matching.” Specifically, Di is a binary data
vector for document Fi where each bit Di½j� 2 f0; 1g
represents the existence of the corresponding keyword
Wj in that document, and Q is a binary query vector
indicating the keywords of interest where each bit Q½j� 2
f0; 1g represents the existence of the corresponding key-
word Wj in the query fW. The similarity score of document
Fi to query fW is therefore expressed as the inner product
of their binary column vectors, i.e., Di �Q. For the purpose
of ranking, the cloud server must be given the capability to
compare the similarity of different documents to the
query. But, to preserve strict systemwise privacy, data
vector Di, query vector Q and their inner product Di �Q
should not be exposed to the cloud server. In this section,
we first propose a basic idea for the MRSE using secure
inner product computation, which is adapted from a
secure kNN technique, and then show how to significantly
improve it to be privacy-preserving against different threat
models in the MRSE framework in a step-by-step manner.
We further discuss supporting more search semantics and
dynamic operation.

4.1 Secure Inner Product Computation

In the secure kNN scheme [27], euclidean distance between
a data record pi and a query vector q is used to select k
nearest database records. The secret key is composed of
one ðdþ 1Þ-bit vector as S and two ðdþ 1Þ � ðdþ 1Þ
invertible matrices as fM1;M2g, where d is the number of
fields for each record pi. First, every data vector pi and
query vector q are extended to ðdþ 1Þ-dimension vectors as
~pi and ~q, where the ðdþ 1Þth dimension is set to �0:5kp2

i k
and 1, respectively. Besides, the query vector ~q is scaled by
a random number r > 0 as ðrq; rÞ. Then, ~pi is split into two
random vectors as f~pi0; ~pi00g, and ~q is also split into two
random vectors as f~q 0;~q 00g. Note here that vector S
functions as a splitting indicator. Namely, if the jth bit of
S is 0, ~pi

0½j� and ~pi
00½j� are set as the same as ~pi½j�, while ~q 0½j�

and ~q 00½j� are set to two random numbers so that their sum
is equal to ~q½j�; if the jth bit of S is 1, the splitting process is
similar except that ~pi and ~q are switched. The split data
vector pair f~pi0; ~pi00g is encrypted as fMT

1 ~pi
0;MT

2 ~pi
00g, and

the split query vector pair f~q 0;~q 00g is encrypted as
fM�1

1 ~q 0;M�1
2 ~q 00g. In the query step, the product of data

vector pair and query vector pair, i.e., �0:5rðkpik2 � 2pi � qÞ,
is serving as the indicator of euclidean distance ðkpik2 �
2pi � q þ kqk2Þ to select k nearest neighbors.

As the MRSE is using the inner product similarity
instead of the euclidean distance, we need to do some
modifications on the data structure to fit the MRSE
framework. One way to do that is by eliminating the
dimension extension, the final result changes to be the
inner product as rpi � q. While the encryption of either data
record or query vector involves two multiplications of a
d� d matrix and a d-dimension vector with complexity
Oðd2Þ, the final inner product computation involves two
multiplications of two d-dimension vectors with complex-
ity OðdÞ. In the known ciphertext model, the splitting

CAO ET AL.: PRIVACY-PRESERVING MULTI-KEYWORD RANKED SEARCH OVER ENCRYPTED CLOUD DATA 225

vector S is unknown, so ~pi
0 and ~pi

00 are considered as two
random d-dimensional vectors. To solve the linear equa-
tions created by the encryption of data vectors, we have
2dm unknowns in m data vectors and 2d2 unknowns in
fM1;M2g. Since we have only 2dm equations, which are
less than the number of unknowns, there is no sufficient
information to solve either data vectors or fM1;M2g.
Similarly, ~q 0 and ~q 00 are also considered as two random
d-dimensional vectors. To solve the linear equations
created by the encryption of query vectors, we have 2d
unknowns in two query vectors and 2d2 unknowns in
fM1;M2g. Since we have only 2d equations here, which are
less than the number of unknowns, there is no sufficient
information to solve either query vectors or fM1;M2g.
Hence, we believe that without prior knowledge of secret
key, neither data vector nor query vector, after such a series
of processes like splitting and multiplication, can be
recovered by analyzing their corresponding ciphertexts.

4.2 MRSE_I: Privacy-Preserving Scheme in Known
Ciphertext Model

The adapted secure inner product computation scheme is
not good enough for our MRSE design. The major reason
is that the only randomness involved is the scale factor r
in the trapdoor generation, which does not provide
sufficient nondeterminacy in the overall scheme as
required by the trapdoor unlinkability requirement as well
as the keyword privacy requirement. To provide a more
advanced design for the MRSE, we now provide our
MRSE_I scheme as follows.

4.2.1 MRSE_I Scheme

In our more advanced design, instead of simply removing
the extended dimension in the query vector as we plan to
do at the first glance, we preserve this dimension extending
operation but assign a new random number t to the
extended dimension in each query vector. Such a newly
added randomness is expected to increase the difficulty
for the cloud server to learn the relationship among the
received trapdoors. In addition, as mentioned in the
keyword privacy requirement, randomness should also
be carefully calibrated in the search result to obfuscate
the document frequency and diminish the chances for
reidentification of keywords. Introducing some randomness
in the final similarity score is an effective way toward what
we expect here. More specifically, unlike the randomness
involved in the query vector, we insert a dummy keyword
into each data vector and assign a random value to it.
Each individual vector Di is extended to ðnþ 2Þ-dimension
instead of ðnþ 1Þ, where a random variable "i representing
the dummy keyword is stored in the extended dimension.
The whole scheme to achieve ranked search with multiple
keywords over encrypted data is as follows:

. Setup. The data owner randomly generates a
ðnþ 2Þ-bit vector as S and two ðnþ 2Þ � ðnþ 2Þ
invertible matrices fM1;M2g. The secret key SK is in
the form of a 3-tuple as fS;M1;M2g.

. BuildIndex ðF ; SKÞ. The data owner generates a
binary data vector Di for every document Fi, where
each binary bit Di½j� represents whether the
corresponding keyword Wj appears in the docu-

ment Fi. Subsequently, every plaintext subindex ~Di

is generated by applying dimension extending and
splitting procedures on Di. These procedures are
similar with those in the secure kNN computation
except that the ðnþ 1Þth entry in ~Di is set to a
random number "i, and the ðnþ 2Þth entry in ~Di is
set to 1 during the dimension extending. ~Di is
therefore equal to ðDi; "i; 1Þ. Finally, the subindex
Ii ¼ fMT

1
~Di
0;MT

2
~Di
00g is built for every encrypted

document Ci.
. Trapdoor ðfWÞ. With t keywords of interest in fW as

input, one binary vector Q is generated where each
bit Q½j� indicates whether Wj 2fW is true or false. Q
is first extended to nþ 1-dimension which is set to 1,
and then scaled by a random number r 6¼ 0, and
finally extended to a ðnþ 2Þ-dimension vector as ~Q
where the last dimension is set to another random
number t. ~Q is therefore equal to ðrQ; r; tÞ. After
applying the same splitting and encrypting pro-
cesses as above, the trapdoor TeW is generated as
fM�1

1
~Q0;M�1

2
~Q00g.

. Query ðTeW ; k; IÞ. With the trapdoor TeW , the cloud
server computes the similarity scores of each
document Fi as in (1). WLOG, we assume r > 0.
After sorting all scores, the cloud server returns the
top-k ranked id list F eW .

With t brought into the query vector and "i brought into
each data vector, the final similarity scores would be

Ii � TeW ¼ �MT
1
~Di
0;MT

2
~Di
00� � �M�1

1
~Q0;M�1

2
~Q00
�

¼ ~Di
0 � ~Q0 þ ~Di

00 � ~Q00

¼ ~Di � ~Q
¼ ðDi; "i; 1Þ � ðrQ; r; tÞ
¼ rðDi �Qþ "iÞ þ t:

ð1Þ

Note that in the original case, the final score is simply
rDi � q, which preserves the scale relationship for two
queries on the same keywords. But such an issue is no
longer valid in our improved scheme due to the random-
ness of both t and "i, which clearly demonstrates the
effectiveness and improved security strength of our MSRE_I
mechanism.

4.2.2 Analysis

We analyze this MRSE_I scheme from three aspects of
design goals described in Section 2.

Functionality and efficiency. Assume the number of query
keywords appearing in a document Fi is xi ¼ Di �Q. From
(1), the final similarity score as yi ¼ Ii � TeW ¼ rðxi þ "iÞ þ t
is a linear function of xi, where the coefficient r is set as a
positive random number. However, because the random
factor "i is introduced as a part of the similarity score, the
final search result on the basis of sorting similarity scores
may not be as accurate as that in original scheme. For the
consideration of search accuracy, we can let "i follow a
normal distribution Nð�; �2Þ, where the standard deviation
� functions as a flexible tradeoff parameter among
search accuracy and security. From the consideration of
effectiveness, � is expected to be smaller so as to obtain
high precision indicating the good purity of retrieved

226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

documents. To quantitatively evaluate the search accuracy,
we set a measure as precision Pk to capture the fraction of
returned top-k documents that are included in the real top-
k list. Detailed accuracy evaluation on the real-world data
set will be given in Section 5.

As for the efficiency, our inner product-based MRSE
scheme is an outstanding approach from the performance
perspective. In the steps like BuildIndex or Trapdoor, the
generation procedure of each subindex or trapdoor involves
two multiplications of a ðnþ 2Þ � ðnþ 2Þ matrix and a
ðnþ 2Þ-dimension vector. In the Query, the final similarity
score is computed through two multiplications of two
ðnþ 2Þ-dimension vectors.

Privacy. As for the data privacy, traditional symmetric key
encryption techniques could be properly utilized here and
is not within the scope of this paper. The index privacy is
well protected if the secret key SK is kept confidential since
such vector encryption method has been proved to be
secure in the known ciphertext model [27]. Although
we add two more dimensions to the vectors compared to
the adapted secure inner product computation, the number
of equations as 2ðnþ 2Þm is still less than the number of
unknowns as the sum of 2ðnþ 2Þm unknowns in m data
vectors and 2d2 unknowns in fM1;M2g. With the random-
ness introduced by the splitting process and the random
numbers r, and t, our basic scheme can generate two totally
different trapdoors for the same query fW. This nondeter-
ministic trapdoor generation can guarantee the trapdoor

unlinkability which is an unsolved privacy leakage problem
in related symmetric key-based searchable encryption
schemes because of the deterministic property of trapdoor
generation [10]. Moreover, with properly selected para-
meter � for the random factor "i, even the final score results
can be obfuscated very well, preventing the cloud server
from learning the relationships of given trapdoors and the
corresponding keywords. Note that although � is expected
to be small from the effectiveness point of view, the small
one will introduce small obfuscation into the final similarity
scores, which may weaken the protection of keyword
privacy and trapdoor unlinkability. As shown in Fig. 2, the
distribution of the final similarity scores with smaller � will
enable the cloud server to learn more statistical information
about the original similarity scores, and therefore � should
be set large enough from the consideration of privacy.

4.3 MRSE_II: Privacy-Preserving Scheme in Known
Background Model

When the cloud server has knowledge of some back-
ground information on the outsourced data set, for
example, the correlation relationship of two given trap-
doors, certain keyword privacy may not be guaranteed
anymore by the MRSE_I scheme. This is possible in the
known background model because the cloud server can
use scale analysis as follows to deduce the keyword
specific information, for example, document frequency,
which can be further combined with background informa-

tion to identify the keyword in a query at high probability.
After presenting how the cloud server uses scale analysis
attack to break the keyword privacy, we propose a more
advanced MRSE scheme to be privacy-preserving in the
known background model.

4.3.1 Scale Analysis Attack

Given two correlated trapdoors T1 and T2 for query
keywords fK1; K2g and fK1; K2; K3g, respectively, there
will be two special cases when searching on any three
documents as listed in Tables 1 and 2. In any of these two

cases, there exists a system of equations among final
similarity scores yi for T1 and y0i for T2 as follows:

y1 � y2 ¼ rð1þ "1 � "2Þ;
y01 � y02 ¼ r0ð1þ "1 � "2Þ;
y2 � y3 ¼ rð1þ "2 � "3Þ;
y02 � y03 ¼ r0ð1þ "2 � "3Þ;
y1 � y3 ¼ rð2þ "1 � "3Þ;
y01 � y03 ¼ r0ð2þ "1 � "3Þ:

8>>>>>><
>>>>>>:

ð2Þ

To this end, although the exact value of xi is encrypted as yi,
the cloud server could deduce that whether all the three
documents contain K3 or none of them contain K3 through
checking the following equivalence relationship among all
final similarity scores in two queries

y1 � y2

y01 � y02
¼ y2 � y3

y02 � y03
¼ y1 � y3

y01 � y03
: ð3Þ

By extending three documents to the whole data set, the
cloud server could further deduce two possible values of
document frequency of keyword K3. In the known back-
ground model, the server can identify the keyword K3 by

CAO ET AL.: PRIVACY-PRESERVING MULTI-KEYWORD RANKED SEARCH OVER ENCRYPTED CLOUD DATA 227

TABLE 1
K3 Appears in Every Document

Fig. 2. Distribution of final similarity score with different standard
deviations, 10k documents, 10 query keywords. (a) � ¼ 1. (b) � ¼ 0:5.

TABLE 2
K3 Does Not Appear in Either Document

referring to the keyword specific document frequency
information about the data set.

4.3.2 MRSE_II Scheme

The privacy leakage shown above is caused by the fixed
value of random variable "i in data vector Di. To eliminate
such fixed property in any specific document, more dummy
keywords instead of only one should be inserted into every
data vector Di. All the vectors are extended to ðnþ U þ 1Þ-
dimension instead of ðnþ 2Þ, where U is the number of
dummy keywords inserted. Improved details in the
MRSE_II scheme is presented as follows:

. Setup ð1nÞ. The data owner randomly generates a
ðnþ U þ 1Þ-bit vector as S and two ðnþ U þ 1Þ �
ðnþ U þ 1Þ invertible matrices fM1;M2g.

. BuildIndex ðF ; SKÞ. The ðnþ jþ 1Þth entry in ~Di

where j 2 ½1; U� is set to a random number "ðjÞ

during the dimension extending.
. Trapdoor ðfWÞ. By randomly selecting V out of U

dummy keywords, the corresponding entries in Q
are set to 1.

. Query ðTeW ; k; IÞ. The final similarity score computed
by cloud server is equal to rðxi þ

P
"
ðvÞ
i Þ þ ti where

the vth dummy keyword is included in the V
selected ones.

4.3.3 Analysis

Assume the probability of two
P
"
ðvÞ
i having the same value

should be less than 1=2!, it then means there should be at
least 2! different values of

P
"
ðvÞ
i for each data vector. The

number of different
P
"
ðvÞ
i is not larger than ðUV Þ, which is

maximized when U
V ¼ 2. Besides, considering ðUV Þ �

ðUV Þ
V ¼ 2V , it is greater than 2! when U ¼ 2! and V ¼ !.

So every data vector should include at least 2! dummy
entries, and every query vector will randomly select half
dummy entries. Here, ! can be considered as a system
parameter for the tradeoff between efficiency and privacy.
With properly setting the value of !, the MRSE_II scheme is
secure against scale analysis attack, and provides various
expected privacy guarantees within the known ciphertext
model or the known background model.

Moreover, every "ðjÞ is assumed to follow the same

uniform distribution Mð�0 � c; �0 þ cÞ, where the mean is �0

and the variance as �02 is c2=3. According to the central limit

theorem, the sum of ! independent random variables "ðjÞ

follows the Normal distribution, where the mean is !�0 and

the variance is !�02 ¼ !c2=3. To make
P
"
ðvÞ
i follow the

Normal distribution Nð�; �2Þ as above, the value of �0 is

set as �=! and the value of c is set as
ffiffiffi
3
!

q
� so that !�0 ¼ �

and !�02 ¼ �2. With such parameter setting, search accuracy

is statistically the same as that in MRSE_I scheme.

4.4 MRSE_I_TF

In the ranking principle “coordinate matching,” the presence
of keyword in the document or the query is shown as 1 in the
data vector or the query vector. Actually, there are more
factors which could make impact on the search usability. For
example, when one keyword appears in most documents in
the data set, the importance of this keyword in the query is
less than other keywords which appears in less documents.

Similarly, if one document contains a query keyword in
multiple locations, the user may prefer this to the other
document which contains the query keyword in only one
location. To capture these information in the search process,
we use the TF � IDF weighting rule within the vector space
model to calculate the similarity, where TF (or term
frequency) is the number of times a given term or keyword
(we will use them interchangeably hereafter) appears within
a file (to measure the importance of the term within the
particular file), and IDF (or inverse document frequency) is
obtained by dividing the number of files in the whole
collection by the number of files containing the term
(to measure the overall importance of the term within the
whole collection). Among several hundred variations of the
TF � IDF weighting scheme, no single combination of them
outperforms any of the others universally [33]. Thus, without
loss of generality, we choose an example formula that is
commonly used and widely seen in the literature (see [5,
chapter 4]) for the relevance score calculation

ScoreðFi;QÞ ¼
1

jFij
X
Wj2eW

ð1þ ln fi;jÞ � ln 1þm
fj

� �
: ð4Þ

Here fi;j denotes the TF of keyword Wj in file Fi; fj denotes
the number of files that contain keyword Wj which is called
document frequency; m denotes the total number of files in
the collection; and jFij is the euclidean length of file Fi,
obtained by ffiXn

j¼1

ð1þ ln fi;jÞ2
vuut ;

functioning as the normalization factor.
To calculate the relevance score as shown in (4) on the

server side, we propose a new search mechanism
MRSE_I_TF as follows which modify related data structures
in the previous scheme MRSE_I. As for the dictionary W,
the document frequency fj is attached to every keyword
Wj, which will be used in the generation of query
vector. In BuildIndex, for every keyword Wj appearing in
the document Fi, the corresponding entry Di½j� in
the data vector Di is changed from a binary value 1 to the
normalized term frequency, i.e.,

1þln fi;j
jFij . Similarly, the

query vector Q changes corresponding entries from 1 to
lnð1þ m

fj
Þ. Finally, the similarity score is as follows:

Ii � TeW ¼ rðDi �Qþ "iÞ þ t

¼ r
X
Wj2Q

1þ ln fi;j
jFij

� ln 1þm
fj

� �
þ "i

0
@

1
Aþ t

¼ rðScoreðFi;QÞ þ "iÞ þ t:

ð5Þ

Therefore, the similarity of the document and the query in
terms of the cosine of the angle between the document
vector and the query vector could be evaluated by
computing the inner product of subindex Ii and trapdoor
TeW . Although this similarity measurement introduces
more computation cost during the index construction
and trapdoor generation, it captures more related informa-
tion on the content of documents and query which returns
better results of users’ interest. As we will see in Section 5,
the additional cost of this measurement in BuildIndex and

228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Trapdoor is relatively small compared to the whole cost.
Besides, BuildIndex is a one-time computation for the
whole scheme.

4.5 MRSE_II_TF

Here, although some entries in Di have been changed from
binary value 1 to normalized term frequency, the scale
analysis attack presented in Section 4.3 still partially works
in the known background model. With similar setting in the
previous section, the first query contains two keywords as
fK1; K2g while the second query contains three keywords
as fK1; K2; K3g. Given three documents as an example, the
first keyword K1 appears in two documents as F1 and F2,
and the second keyword K2 appears in document F1. Note
that there are some differences between this attack and
previous one. If the third keyword K3 appears in each of
these three documents as shown in Table 1, such equiva-
lence relationship as shown in (3) does not exist among

these documents here. Here we only consider the case that
the third keyword K3 does not appear in any of these three
documents. The final similarity scores are shown in (6).

Recall that the scale analysis attack presented in
Section 4.3, it is caused by the fixed value of random
variable "i in each data vector Di which remains same
here. From (6), the cloud server can still deduce the
equivalence relationship as presented in (3). As a result,
the document frequency could be exposed to cloud server
and further used to identify this keyword in the known
background model. To this end, we can employ the same
solution as presented in MRSE_II to build the new
mechanism as MRSE_II_TF where more dummy key-
words instead of only one are inserted into data vectors

y1 ¼ r
�

1þ ln f1;1

jF1j
� ln 1þm

f1

� �

þ 1þ ln f1;2

jF1j
� ln 1þm

f2

� �
þ "1

�
þ t;

y2 ¼ r
1þ ln f2;1

jF2j
� ln 1þm

f1

� �
þ "2

� �
þ t;

y3 ¼ r"3 þ t;
y01 ¼ r0

�
1þ ln f1;1

jF1j
� ln 1þm

f1

� �

þ 1þ ln f1;2

jF1j
� ln 1þm

f2

� �
þ "1

�
þ t0;

y02 ¼ r0
1þ ln f2;1

jF2j
� ln 1þm

f1

� �
þ "2

� �
þ t0;

y03 ¼ r0"3 þ t0:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

4.6 Supporting Data Dynamics

After the data set is outsourced to the cloud server, it may
be updated in addition to being retrieved [34]. Along with
the updating operation on data documents, supporting the
score dynamics in the searchable index is thus of practical
importance. While we consider three dynamic data opera-
tions as inserting new documents, modifying existing
documents, and deleting existing documents, correspond-
ing operations on the searchable index includes generating
new index, updating existing index, and deleting existing
index. Since dynamic data operations also affect the
document frequency of corresponding keywords, we also
need to update the dictionary W.

For the operation of inserting new documents in the data
set, there may be some new keywords in new documents
which need to be inserted in the dictionary W. Remember
that every subindex in our scheme has fixed dimension as
same as the number of keywords in the old dictionary, so
the straightforward solution is to retrieve all the subindexes
from the cloud server, and then decrypt, rebuild, and
encrypt them before outsourcing to the cloud server.
However, this approach introduces much cost on computa-
tion and communication for both sides which is impractical
in the “pay-as-you-use” cloud paradigm. To reduce such
great cost, we preserve some blank entries in the dictionary
and set corresponding entries in each data vector as 0. If the
dictionary needs to index new keywords in the case of
inserting new documents, we just replace the blank entries
in the dictionary by new keywords, and generate sub-
indexes for new documents based on the updated dic-
tionary. The other documents and their subindexes stored
on the cloud server are not affected and therefore remain
the same as before. The number of preserved entries
functions as a tradeoff parameter to balance the storage
cost and the system scalability.

When existing documents are modified, corresponding
subindexes are also retrieved from the cloud server and
then updated in terms of the term frequency before
outsourcing. If new keywords are introduced during the
modification operation, we utilize the same method which
is proposed in the previous insertion operation. As a
special case of modification, the operation of deleting
existing documents introduce less computation and com-
munication cost since it only requires to update the
document frequency of all the keywords contained by
these documents.

5 PERFORMANCE ANALYSIS

In this section, we demonstrate a thorough experimental
evaluation of the proposed technique on a real-world data
set: the Enron Email Data Set [35]. We randomly select
different number of e-mails to build data set. The whole
experiment system is implemented by C language on a
Linux Server with Intel Xeon Processor 2.93 GHz. The
public utility routines by Numerical Recipes are employed
to compute the inverse of matrix. The performance of our
technique is evaluated regarding the efficiency of four
proposed MRSE schemes, as well as the tradeoff between
search precision and privacy.

5.1 Precision and Privacy

As presented in Section 4, dummy keywords are inserted
into each data vector and some of them are selected in
every query. Therefore, similarity scores of documents will
be not exactly accurate. In other words, when the cloud
server returns top-k documents based on similarity scores
of data vectors to query vector, some of real top-k relevant
documents for the query may be excluded. This is because
either their original similarity scores are decreased or the
similarity scores of some documents out of the real top-k
are increased, both of which are due to the impact of
dummy keywords inserted into data vectors. To evaluate
the purity of the k documents retrieved by user, we define
a measure as precision Pk ¼ k0=k where k0 is number of
real top-k documents that are returned by the cloud server.

CAO ET AL.: PRIVACY-PRESERVING MULTI-KEYWORD RANKED SEARCH OVER ENCRYPTED CLOUD DATA 229

Fig. 3a shows that the precision in MRSE scheme is
evidently affected by the standard deviation � of the
random variable ". From the consideration of effectiveness,
standard deviation � is expected to be smaller so as to
obtain high precision indicating the good purity of
retrieved documents.

However, user’s rank privacy may have been partially

leaked to the cloud server as a consequence of small �. As

described in Section 3.2, the access pattern is defined as the

sequence of ranked search results. Although search results

cannot be protected (excluding costly PIR technique), we

can still hide the rank order of retrieved documents as

much as possible. To evaluate this privacy guarantee, we

first define the rank perturbation as epi ¼ jri � r0ij=k, where ri
is the rank number of document Fi in the retrieved top-k

documents and r0i is its rank number in the real ranked

documents. The overall rank privacy measure at point k is

then defined as the average of all the epi for every document

i in the retrieved top-k documents, denoted as ePk ¼Pepi=k.

Fig. 3b shows the rank privacy at different points with two

standard deviations � ¼ 1 and � ¼ 0:5, respectively.
From these two figures, we can see that small � leads to

higher precision of search result but lower rank privacy
guarantee, while large � results in higher rank privacy
guarantee but lower precision. In other words, our scheme
provides a balance parameter for data users to satisfy their
different requirements on precision and rank privacy.

5.2 Efficiency

5.2.1 Index Construction

To build a searchable subindex Ii for each document Fi in
the data set F , the first step is to map the keyword set
extracted from the document Fi to a data vector Di,
followed by encrypting every data vector. The time cost of
mapping or encrypting depends directly on the dimension-
ality of data vector which is determined by the size of the
dictionary, i.e., the number of indexed keywords. And
the time cost of building the whole index is also related to
the number of subindex which is equal to the number of
documents in the data set. Fig. 4a shows that, given the
same dictionary where jWj ¼ 4;000, the time cost of
building the whole index is nearly linear with the size of
data set since the time cost of building each subindex is

fixed. Fig. 4b shows that the number of keywords indexed
in the dictionary determines the time cost of building a
subindex. As presented in the Section 4.2, the major
computation to generate a subindex in MRSE_I includes
the splitting process and two multiplications of a ðnþ 2Þ �
ðnþ 2Þ matrix and a ðnþ 2Þ-dimension vector where
n ¼ jWj, both of which have direct relationship with the
size of dictionary. The dimensionality of matrices in
MRSE_II is ðnþ U þ 1Þ � ðnþ U þ 1Þ so that its index
construction time with complexity Oðmðnþ UÞ2Þ is bigger
than that in MRSE_I with complexity Oðmn2Þ as shown in
Figs. 4a and 4b. Both the MRSE_I_TF and the MRSE_II_TF,
presented in Sections 4.4 and 4.5, respectively, introduce
more computation during the index construction since we
need to collect the term frequency information for each
keyword in every document and then perform the normal-
ization calculation. But, as shown in both figures, such
additional computation in the TF � IDF weighting rule is
insignificant considering much more computation are
caused by the splitting process and matrix multiplication.
Although the time of building index is not a negligible
overhead for the data owner, this is a one-time operation
before data outsourcing. Besides, Table 3 lists the storage
overhead of each subindex in two MRSE schemes within
different sizes of dictionary. The size of subindex is
absolutely linear with the dimensionality of data vector
which is determined by the number of keywords in the
dictionary. The sizes of subindex are very close in the two
MRSE schemes because of trivial differences in the
dimensionality of data vector.

5.2.2 Trapdoor Generation

Fig. 5a shows that the time to generate a trapdoor is greatly
affected by the number of keywords in the dictionary. Like
index construction, every trapdoor generation incurs two
multiplications of a matrix and a split query vector, where
the dimensionality of matrix or query vector is different

230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 3. With different choice of standard deviation � for the random
variable ", there exists tradeoff between (a) Precision, and (b) Rank
Privacy.

Fig. 4. Time cost of building index. (a) For the different size of data set
with the same dictionary, n ¼ 4;000. (b) For the same data set with
different size of dictionary, m ¼ 1;000.

TABLE 3
Size of Subindex/Trapdoor

in two proposed schemes and becomes larger with the
increasing size of dictionary. Fig. 5b demonstrates the
trapdoor generation cost in the MRSE_II scheme with
complexity Oððnþ UÞ2Þ is about 10 percent larger than that
in the MRSE_I scheme with complexity Oðn2Þ. The
MRSE_I_TF and MRSE_II_TF have similar difference where
the additional logarithm computation accounts for very
small proportion of the whole trapdoor generation. Like the
subindex generation, the difference of costs to generate
trapdoors is mainly caused by the different dimensionality
of vector and matrices in the two MRSE schemes. More
importantly, it shows that the number of query keywords
has little influence on the overhead of trapdoor generation,
which is a significant advantage over related works on
multi-keyword searchable encryption.

5.2.3 Query

Query execution in the cloud server consists of computing
and ranking similarity scores for all documents in the data
set. The computation of similarity scores for the whole data
collection is OðmnÞ in MRSE_I and MRSE_I_TF, and the
computation increases to Oðmðnþ UÞÞ in MRSE_II and
MRSE_II_TF. Fig. 6 shows the query time is dominated by
the number of documents in the data set while the number
of keywords in the query has very slight impact on it like
the cost of trapdoor generation above. The two schemes in
the known ciphertext model as MRSE_I and MRSE_I_TF
have very similar query speed since they have the same
dimensionality which is the major factor deciding the
computation cost in the query. The query speed difference
between MRSE_I and MRSE_I_TF or between MRSE_II and
MRSE_II_TF is also caused by the dimensionality of data
vector and query vector. With respect to the communication
cost in Query, the size of the trapdoor is the same as that of
the subindex listed in the Table 3, which keeps constant
given the same dictionary, no matter how many keywords
are contained in a query. While the computation and
communication cost in the query procedure is linear with
the number of query keywords in other multiple-keyword
search schemes [16], [18], our proposed schemes introduce
nearly constant overhead while increasing the number of
query keywords. Therefore, our schemes cannot be com-
promised by timing-based side channel attacks that try to
differentiate certain queries based on their query time.

6 RELATED WORK

6.1 Single Keyword Searchable Encryption

Traditional single keyword searchable encryption schemes
[7], [8], [9], [10], [11], [12], [13], [14], [15], [25], [26] usually
build an encrypted searchable index such that its content
is hidden to the server unless it is given appropriate
trapdoors generated via secret key(s) [4]. It is first studied
by Song et al. [7] in the symmetric key setting, and
improvements and advanced security definitions are given
in Goh [8], Chang et al. [9], and Curtmola et al. [10]. Our
early works [25], [26] solve secure ranked keyword search
which utilizes keyword frequency to rank results instead
of returning undifferentiated results. However, they only
supports single keyword search. In the public key setting,
Boneh et al. [11] present the first searchable encryption
construction, where anyone with public key can write to
the data stored on server but only authorized users with
private key can search. Public key solutions are usually
very computationally expensive however. Furthermore,
the keyword privacy could not be protected in the public
key setting since server could encrypt any keyword with
public key and then use the received trapdoor to evaluate
this ciphertext.

6.2 Boolean Keyword Searchable Encryption

To enrich search functionalities, conjunctive keyword
search [16], [17], [18], [19], [20] over encrypted data have
been proposed. These schemes incur large overhead caused
by their fundamental primitives, such as computation
cost by bilinear map, for example, [18], or communication
cost by secret sharing, for example, [17]. As a more general
search approach, predicate encryption schemes [21], [22],
[23] are recently proposed to support both conjunctive and
disjunctive search. Conjunctive keyword search returns
“all-or-nothing,” which means it only returns those docu-
ments in which all the keywords specified by the search
query appear; disjunctive keyword search returns undiffer-
entiated results, which means it returns every document
that contains a subset of the specific keywords, even only
one keyword of interest. In short, none of existing Boolean
keyword searchable encryption schemes support multiple
keywords ranked search over encrypted cloud data while
preserving privacy as we propose to explore in this paper.
Note that, inner product queries in predicate encryption
only predicates whether two vectors are orthogonal or not,

CAO ET AL.: PRIVACY-PRESERVING MULTI-KEYWORD RANKED SEARCH OVER ENCRYPTED CLOUD DATA 231

Fig. 5. Time cost of generating trapdoor. (a) For the same query
keywords within different sizes of dictionary, t ¼ 10. (b) For different
numbers of query keywords within the same dictionary, n ¼ 4;000.

Fig. 6. Time cost of query. (a) For the same query keywords in different
sizes of data set, t ¼ 10. (b) For different numbers of query keywords in
the same data set, m ¼ 1;000.

i.e., the inner product value is concealed except when it
equals zero. Without providing the capability to compare
concealed inner products, predicate encryption is not
qualified for performing ranked search. Furthermore, most
of these schemes are built upon the expensive evaluation of
pairing operations on elliptic curves. Such inefficiency
disadvantage also limits their practical performance when
deployed in the cloud. Our early work [1] has been aware of
this problem, and provides solutions to the multi-keyword
ranked search over encrypted data problem. In this paper,
we extend and improve more technical details as compared
to [1]. We propose two new schemes to support more search
semantics which improve the search experience of the
MRSE scheme, and also study the dynamic operation on the
data set and index which addresses some important yet
practical considerations for the MRSE design. On a different
front, the research on top-k retrieval [31] in database
community is also loosely connected to our problem.
Besides, Cao et. al. proposed a privacy-preserving graph
containment query scheme [36] which solves the search
problem with graph semantics.

7 CONCLUSION

In this paper, for the first time we define and solve the
problem of multi-keyword ranked search over encrypted
cloud data, and establish a variety of privacy requirements.
Among various multi-keyword semantics, we choose the
efficient similarity measure of “coordinate matching,” i.e., as
many matches as possible, to effectively capture the
relevance of outsourced documents to the query keywords,
and use “inner product similarity” to quantitatively
evaluate such similarity measure. For meeting the challenge
of supporting multi-keyword semantic without privacy
breaches, we propose a basic idea of MRSE using secure
inner product computation. Then, we give two improved
MRSE schemes to achieve various stringent privacy require-
ments in two different threat models. We also investigate
some further enhancements of our ranked search mechan-
ism, including supporting more search semantics, i.e., TF �
IDF, and dynamic data operations. Thorough analysis
investigating privacy and efficiency guarantees of proposed
schemes is given, and experiments on the real-world data
set show our proposed schemes introduce low overhead on
both computation and communication.

In our future work, we will explore checking the
integrity of the rank order in the search result assuming
the cloud server is untrusted.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grants CNS-1116939, CNS-1217889, CNS-
1218085, and CNS-1262277, and an ECS grant CityU138513
from the Research Grants Council of Hong Kong.

REFERENCES

[1] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-Preserving
Multi-Keyword Ranked Search over Encrypted Cloud Data,” Proc.
IEEE INFOCOM, pp. 829-837, Apr, 2011.

[2] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
Break in the Clouds: Towards a Cloud Definition,” ACM
SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50-55, 2009.

[3] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. Hou, “LT Codes-Based
Secure and Reliable Cloud Storage Service,” Proc. IEEE INFO-
COM, pp. 693-701, 2012.

[4] S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” Proc.
14th Int’l Conf. Financial Cryptograpy and Data Security, Jan. 2010.

[5] A. Singhal, “Modern Information Retrieval: A Brief Overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35-43, Mar. 2001.

[6] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann
Publishing, May 1999.

[7] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” Proc. IEEE Symp. Security and
Privacy, 2000.

[8] E.-J. Goh, “Secure Indexes,” Cryptology ePrint Archive, http://
eprint.iacr.org/2003/216. 2003.

[9] Y.-C. Chang and M. Mitzenmacher, “Privacy Preserving Keyword
Searches on Remote Encrypted Data,” Proc. Third Int’l Conf.
Applied Cryptography and Network Security, 2005.

[10] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
Symmetric Encryption: Improved Definitions and Efficient Con-
structions,” Proc. 13th ACM Conf. Computer and Comm. Security
(CCS ’06), 2006.

[11] D. Boneh, G.D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” Proc. Int’l Conf. Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2004.

[12] M. Bellare, A. Boldyreva, and A. ONeill, “Deterministic and
Efficiently Searchable Encryption,” Proc. 27th Ann. Int’l Cryptology
Conf. Advances in Cryptology (CRYPTO ’07), 2007.

[13] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.
Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable
Encryption Revisited: Consistency Properties, Relation to Anon-
ymous Ibe, and Extensions,” J. Cryptology, vol. 21, no. 3, pp. 350-
391, 2008.

[14] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
Keyword Search Over Encrypted Data in Cloud Computing,”
Proc. IEEE INFOCOM, Mar. 2010.

[15] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W.E.S. III, “Public Key
Encryption That Allows PIR Queries,” Proc. 27th Ann. Int’l
Cryptology Conf. Advances in Cryptology (CRYPTO ’07), 2007.

[16] P. Golle, J. Staddon, and B. Waters, “Secure Conjunctive Keyword
Search over Encrypted Data,” Proc. Applied Cryptography and
Network Security, pp. 31-45, 2004.

[17] L. Ballard, S. Kamara, and F. Monrose, “Achieving Efficient
Conjunctive Keyword Searches over Encrypted Data,” Proc.
Seventh Int’l Conf. Information and Comm. Security (ICICS ’05),
2005.

[18] D. Boneh and B. Waters, “Conjunctive, Subset, and Range Queries
on Encrypted Data,” Proc. Fourth Conf. Theory Cryptography (TCC),
pp. 535-554, 2007.

[19] R. Brinkman, “Searching in Encrypted Data,” PhD thesis, Univ. of
Twente, 2007.

[20] Y. Hwang and P. Lee, “Public Key Encryption with Conjunctive
Keyword Search and Its Extension to a Multi-User System,”
Pairing, vol. 4575, pp. 2-22, 2007.

[21] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption Supporting
Disjunctions, Polynomial Equations, and Inner Products,” Proc.
27th Ann. Int’l Conf. Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2008.

[22] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully Secure Functional Encryption: Attribute-Based Encryption
and (Hierarchical) Inner Product Encryption,” Proc. 29th Ann.
Int’l Conf. Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’10), 2010.

[23] E. Shen, E. Shi, and B. Waters, “Predicate Privacy in Encryption
Systems,” Proc. Sixth Theory of Cryptography Conf. Theory of
Cryptography (TCC), 2009.

[24] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized Private Keyword
Search over Encrypted Data in Cloud Computing,” Proc. 31st
Int’l Conf. Distributed Computing Systems (ICDCS ’10), pp. 383-
392, June 2011.

[25] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure Ranked
Keyword Search over Encrypted Cloud Data,” Proc. IEEE 30th Int’l
Conf. Distributed Computing Systems (ICDCS ’10), 2010.

[26] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling Secure and
Efficient Ranked Keyword Search over Outsourced Cloud Data,”
IEEE Trans. Parallel and Distributed Systems, vol. 23, no. 8, pp. 1467-
1479, Aug. 2012.

232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

[27] W.K. Wong, D.W. Cheung, B. Kao, and N. Mamoulis, “Secure
kNN Computation on Encrypted Databases,” Proc. 35th ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD), pp. 139-152,
2009.

[28] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-Grained Data Access Control in Cloud Computing,”
Proc. IEEE INFOCOM, 2010.

[29] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Computing,”
Proc. IEEE INFOCOM, 2010.

[30] S. Zerr, E. Demidova, D. Olmedilla, W. Nejdl, M. Winslett, and
S. Mitra, “Zerber: r-Confidential Indexing for Distributed
Documents,” Proc. 11th Int’l Conf. Extending Database Technology
(EDBT ’08), pp. 287-298, 2008.

[31] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, “Zerber+r: Top-k
Retrieval from a Confidential Index,” Proc. 12th Int’l Conf.
Extending Database Technology (EDBT ’09), pp. 439-449, 2009.

[32] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Crypto-
graphy from Anonymity,” Proc. IEEE 47th Ann. Symp. Foundations
of CS, pp. 239-248, 2006.

[33] J. Zobel and A. Moffat, “Exploring the Similarity Space,” ACM
SIGIR Forum, vol. 32, pp. 18-34, 1998.

[34] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward Secure
and Dependable Storage Services in Cloud Computing,” IEEE
Trans. Services Computing, vol. 5, no. 2, pp. 220-232, Apr.-June 2012.

[35] W.W. Cohen, “Enron Email Data Set,” http://www.cs.cmu.edu/
~enron/, 2013.

[36] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou, “Privacypreser-
ving Query over Encrypted Graph-Structured Data in Cloud
Computing,” Proc. Distributed Computing Systems (ICDCS),
pp. 393-402, June, 2011.

Ning Cao received the BE and ME degrees in
computer science from Xi’an Jiaotong Univer-
sity, China, and the PhD degree in electrical and
computer engineering from Worcester Polytech-
nic Institute. He is currently working at the
Walmart Labs. He previously worked at the
Research and System Infrastructure, Google
Inc. His research interests include the areas of
security, privacy, and reliability in Cloud Com-
puting, with current focus on search and storage.

He is a member of IEEE and a member of ACM.

Cong Wang received the BE and ME degrees
from Wuhan University, and the PhD degree
from Illinois Institute of Technology, all in
electrical and computer engineering. He is an
assistant professor in the Computer Science
Department at City University of Hong Kong.
He worked at the Palo Alto Research Center in
the summer of 2011. His research interests
include the areas of cloud computing security,
with current focus on secure data outsourcing

and secure computation outsourcing in public cloud. He is a member of
the ACM and a member of the IEEE.

Ming Li (S’08—M’11) received the PhD degree
in electrical and computer engineering from
Worcester Polytechnic Institute, the ME and
BE degrees in electronic and information en-
gineering from Beihang University, China. He
joined the Computer Science Department, Utah
State University, as an assistant professor in
2011. His research interests include the general
areas of cyber security and privacy, with current
emphases on data security and privacy in cloud

computing, security in wireless networks and cyber-physical systems.
He is a member of IEEE and ACM.

Kui Ren received the PhD degree from Worce-
ster Polytechnic Institute. He is currently an
associate professor of computer science and
engineering department at SUNY Buffalo. In the
past, he has been an associate/assistant pro-
fessor in the Electrical and Computer Engineer-
ing Department at I l l inois Insti tute of
Technology. His research interests include
Cloud Security, Wireless Security, and Smart-
phone-enabled Crowdsourcing Systems. His

research has been supported by the US National Science Foundation
(NSF), the US Department of Energy (DoE), AFRL, and Amazon. He is a
recipient of the NSF CAREER Award in 2011. He received the Best
Paper Award from IEEE ICNP 2011. Kui serves as an associate editor
for IEEE Transactions on Information Forensics and Security, IEEE
Wireless Communications, IEEE Transactions on Smart Grid, IEEE
Internet of Things Journal, IEEE Communications Surveys and
Tutorials, Elsevier Pervasive and Mobile Computing, and the Journal
of Communications and Networks. He is a senior member of the IEEE, a
member of the ACM, and a past board member of Internet Privacy Task
Force, State of Illinois. He is a senior member of the IEEE.

Wenjing Lou received the PhD degree in
electrical and computer engineering, the Uni-
versity of Florida, 2003. She is currently an
associate professor at Virginia Polytechnic
Institute and State University. Prior to joining
Virginia Tech in 2011, she was on the faculty of
Worcester Polytechnic Institute from 2003 to
2011. Her current research interests include
cyber security, with emphases on wireless
network security and data security and privacy

in cloud computing. She was a recipient of the US National
Science Foundation CAREER award in 2008. She is a senior member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CAO ET AL.: PRIVACY-PRESERVING MULTI-KEYWORD RANKED SEARCH OVER ENCRYPTED CLOUD DATA 233

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

