
1

Verifiable Privacy-Preserving Multi-keyword
Text Search in the Cloud Supporting

Similarity-based Ranking
Wenhai Sun, Bing Wang, Ning Cao, Member, IEEE, Ming Li, Member, IEEE,Wenjing Lou, Senior

Member, IEEE, Y. T. Hou, Senior Member, IEEE, Hui Li, Member, IEEE

Abstract—With the growing popularity of cloud computing, huge amount of documents are outsourced to the cloud for reduced
management cost and ease of access. Although encryption helps protecting user data confidentiality, it leaves the well-functioning
yet practically-efficient secure search functions over encrypted data a challenging problem. In this paper, we present a verifiable
privacy-preserving multi-keyword text search (MTS) scheme with similarity-based ranking to address this problem. To support
multi-keyword search and search result ranking, we propose to build the search index based on term frequency and the vector
space model with cosine similarity measure to achieve higher search result accuracy. To improve the search efficiency, we
propose a tree-based index structure and various adaptive methods for multi-dimensional (MD) algorithm so that the practical
search efficiency is much better than that of linear search. To further enhance the search privacy, we propose two secure
index schemes to meet the stringent privacy requirements under strong threat models, i.e., known ciphertext model and known
background model. In addition, we devise a scheme upon the proposed index tree structure to enable authenticity check over
the returned search results. Finally, we demonstrate the effectiveness and efficiency of the proposed schemes through extensive
experimental evaluation.

Index Terms—Cloud Computing, Privacy-preserving Search, Multi-keyword Search, Similarity-based Ranking, Verifiable Search

✦

1 INTRODUCTION

CLOUD computing is a new model of enterprise
IT infrastructure that enables ubiquitous, conve-

nient, and on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) [2]. Due
to the centralized management of elastic resources, all
players in this emerging X-as-a-service (XaaS) model,
including the cloud provider, application developers,
and end-users, can reap benefits. Especially, for the
end-users, they can outsource large volumes of data
and workloads to the cloud and enjoy the virtual-
ly unlimited computing resources in a pay-per-use
manner. Indeed, many companies, organizations, and
individual users have adopted the cloud platform
to facilitate their business operations, research, or
everyday needs [3].

• W. Sun is with the State Key Laboratory of Integrated Services
Networks, Xidian University, China and Virginia Polytechnic Institute
and State University, USA. E-mail: whsun@xidian.edu.cn.

• B. Wang, W. Lou and Y. T. Hou are with Virginia Polytechnic Institute
and State University, USA. E-mail: {bingwang, wjlou, thou}@vt.edu.

• N. Cao is with Worcester Polytechnic Institute, USA and with Google
Inc. as current affiliation. E-mail: ncao@wpi.edu.

• M. Li is with Utah State University, USA. E-mail: ming.li@usu.edu.
• H. Li is with the State Key Laboratory of Integrated Services Networks,

Xidian University, China. E-mail: lihui@mail.xidian.edu.cn.

A preliminary version [1] of this paper was presented at the 8th ACM
Symposium on Information, Computer and Communications Security
(ACM ASIACCS’13).

Despite the tremendous business and technical ad-
vantages, privacy concern is one of the primary hur-
dles that prevent the widespread adoption of the
cloud by potential users, especially if their sensitive
data are to be outsourced to and computed in the
cloud. Examples may include financial and medical
records, and social network profiles. Cloud service
providers (CSPs) usually enforce users’ data security
through mechanisms like firewalls and virtualization.
However, these mechanisms do not protect users’
privacy from the CSP itself since the CSP possesses
full control of the system hardware and lower levels
of software stack. There may exist disgruntled, prof-
iteered, or curious employees that can access users’
sensitive information for unauthorized purposes [4],
[5]. Although encryption before data outsourcing [6],
[7] can preserve data privacy against the CSP, it also
makes the effective data utilization, such as search
over encrypted data, a very challenging task. Without
being able to extract useful information from the
outsourced data in a secure and private manner, the
cloud will merely be a remote storage which provides
limited value to all parties.

One fundamental and common form of data uti-
lization is the search operation, i.e., to quickly sort
out information of interest from huge amount of
data. The information retrieval community has the
state-of-the-art techniques that are readily available
to achieve rich search functionalities, such as result

Digital Object Indentifier 10.1109/TPDS.2013.282 1045-9219/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

ranking and multi-keyword queries, on plaintext. For
example, cosine measure in the vector space model [8]
is a state-of-the-art similarity measure widely used in
plaintext information retrieval, which incorporates the
“term frequency (TF) × inverse document frequency
(IDF)” weight to evaluate the similarity between a
document and a particular query, and yield accurate
ranked search result. However, implementing a secure
version of such techniques over outsourced encrypt-
ed data in the cloud is not straightforward, and is
susceptible to privacy breach [9]. Although inverted
index (a.k.a. inverted file) is the most popular and ef-
ficient index data structure used in document retrieval
systems, it is not directly applicable in TF-based multi-
keyword encrypted text search environment [9], [10],
[11], since similarity scores cannot be order preserving
when query involves multiple keywords (we chose to
only give a very brief explanation that provides root
cause but not the details).

1.1 Related Work
In the literature, searchable encryption (SE) tech-
niques [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21] can partially address the need for secure out-
sourced data search as follows.
7.1 Searchable Encryption with Single Keyword:
Song et al. [16] propose the first SE scheme, where,
to search a certain keyword in a document, user has
to go through the whole document. After this work,
many improvements and novel schemes [17], [18],
[19], [20] have been proposed. Curtmola et al. [19]
propose an inverted index based SE scheme with
extremely efficient search process, but the keyword
privacy will be revealed if the corresponding keywords
have been searched. Frequency information is not
involved in the similarity evaluation processes of the
above techniques to provide accurate search function-
ality. In [9], [10], [11], the order-preserving techniques
are utilized to protect the sensitive frequency related
information. Due to the index and query built from
frequency related information and the inverted index
as the underlying index structure, they can achieve ac-
curate and efficient search at the same time. Boneh et
al. [12] propose the first PKC-based SE scheme, where
anyone with public key can write to the data stored on
server but only authorized users with private key can
search. However, all of the aforementioned solutions
only support single keyword search.
7.2 Searchable Encryption with Multiple Keywords:
In the public key setting, a lot of works have been
done to realize the conjunctive keyword search, subset
search, or range queries [13], [14], [15], but they
are too computationally intensive to be implement-
ed for practical use. Predicate encryption is another
promising technique to fulfill the search over en-
crypted data [22]. In [23], a logarithmic-time search
scheme is presented to support range queries, which

is orthogonal to our text search scenario. In text
retrieval scenario, Pang et al. [24] propose a vector
space model based secure search scheme. An access
manager is supposed to exist in their protocol except
for a document server, and additional overhead oc-
cur on the user side. Without the security analysis
for frequency information in their scheme, it is not
clear whether such sensitive information disclosure
could lead to keyword privacy infringement. Besides,
the practical search performance is absent from the
demonstration of their experiment. Cao et al. [21]
propose a privacy-preserving multi-keyword ranked
search scheme. Although with “coordinate matching”,
this scheme can produce the ranked search result
by the number of matched keywords, more accurate
ranked search result is not considered there, and the
search complexity is constant in that the cloud server
has to traverse all the indexes of the document set for
each search request.

None of the aforementioned works can achieve ac-
curate and efficient multi-keyword secure text search
supporting similarity-based ranking simultaneously.
7.3 Verifiable Search based on Authenticated Index
Structure: Due to possible software/hardware failure,
storage corruption, etc., cloud server may return erro-
neous or false search results. Search result verification
is a desirable feature that a robust search system
would like to provide to its users.

In the plaintext database scenario, verifiable search
functionality has been studied extensively since the
outsourced database model emerged, e.g., [25], [26].
Most of these works adopt Merkle hash tree and
cryptographic signature techniques to construct au-
thenticated tree structure upon which end users can
verify the correctness and completeness of the query
results. One the other hand, Pang et al. [27] also
use Merkle hash tree based authenticated structure
to enable verification function over the query results
generated by text search engines. Similar to the works
in the database, they only consider the verification-
specific issues regardless of the search privacy pre-
serving capabilities that we provide in this paper.

In encrypted data search scenario, Wang et al. [9]
use hash chain to construct a single keyword search
result verification scheme. In [23], the author adapts
the verification techniques in plaintext database to
the encrypted database but it is not applicable to our
encrypted text search scenario.

Thus, the quest for secure data search mechanisms
that can simultaneously achieve high efficiency and
functionality (such as expressive/usable queries) still
remains open up to date.

1.2 Our Contributions
In this paper, we address the challenges of construct-
ing practically efficient and flexible encrypted da-
ta search functionalities that support multi-keyword

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

queries, result ranking and result verification. In par-
ticular, to support multi-keyword queries and search
result ranking functionalities, we propose to build the
search index based on the vector space model and
adopt the cosine similarity measure that incorporates
the TF × IDF weight for higher search accuracy. To
improve the search efficiency, we divide the long
vector index into multiple layers and propose a tree-
based index structure, where each value in a node is a
sub-vector from the long index vector. We then apply
the search algorithm, adapted from the MD-algorithm
[28], so as to realize more efficient search functionality.
Our basic scheme for multi-keyword text search with
similarity-based ranking (BMTS) is secure under the
known ciphertext model. In order to further enhance
the search privacy, we propose another enhanced se-
cure index scheme (EMTS) against sensitive frequency
information leakage to meet more stringent priva-
cy requirements under a stronger threat model, i.e.,
known background model. Furthermore, we devise
a scheme to enable the authenticity check over the
returned search results by using hash and signature
techniques. Finally, we demonstrate the effectiveness
and efficiency of the proposed schemes through exten-
sive experimental evaluation. Our contributions are
summarized as follows:

1) By incorporating the state-of-the-art informa-
tion retrieval techniques, we propose a privacy-
preserving multi-keyword text search scheme sup-
porting similarity-based ranking, which enjoys the
same flexibility and search result accuracy as the state-
of-the-art multi-keyword search over plaintext.

2) We propose a randomization (phantom terms) ap-
proach in the enhanced scheme to prevent sensitive
frequency information leakage thus achieving better
privacy of keywords. We show that with the proposed
methods, user can balance between search precision
and privacy.

3) With improved security guarantee, EMTS is still
comparable in search time to BMTS. In addition,
we investigated various index building methods to
speed up the search of common cases. The results
demonstrate much improved search efficiency com-
pared with [21].

4) Upon the proposed index tree structure, we present
a mechanism to help users ensure the authenticity
of the returned search results in the multi-keyword
ranked encrypted text search scenario.

The remainder of this paper is organized as follows.
In Section 2, we present the system formulation. Then
we elaborate on the secure index schemes in Section
3. We discuss various index building methods to
accelerate the generic search process in Section 4 and
deal with the search result verification in Section 5.
Section 6 presents the intensive performance evalua-
tion. Finally, we draw the conclusion in Section 8.

Cloud server

Data userData owner

Search control (encrypted queries)
Access control (data decryption keys)

Secure index tree Search request

Top k ranked result
Encrypted documents

...

Fig. 1: Framework of the search over outsourced
encrypted cloud data

2 PROBLEM FORMULATION

2.1 System Model
The system model considered in this paper consists
of three entities: the data owner, the data user, and
the cloud server, as illustrated in Fig. 1. The data
owner outsources a huge size of document collection
DC = {d|d1, d2, . . . , dm} in the encrypted form C =
{c|c1, c2, . . . , cm}, together with an h-level searchable
index tree I generated from DC, to the cloud server.
We assume that the data user has the mutual au-
thentication capability with the data owner. As such,
search control mechanisms can be applied here, e.g.,
broadcast encryption [19], through which the data
user obtains the encrypted search query Q̃. Upon the
receipt of Q̃, the cloud server starts searching the
index tree I and will return the corresponding set of
encrypted documents, which have been well-ranked
by our frequency based similarity measures (as will
be introduced shortly). The data user may also send
a search parameter k along with the search query
Q̃ such that the cloud server only returns the top-k
most relevant documents. The capability of the user
to decrypt the received documents [6], [7] is a separate
issue and is out of the scope of this paper.

2.2 Threat Model
We assume that the cloud server acts in an “honest-
but-curious” manner, which is also employed by relat-
ed works on secure cloud data search [9], [21]. In other
words, the cloud server honestly follows the proto-
col execution, but curiosity propels him/her to the
speculation and analysis over the data and searchable
index tree available at the server. Depending on the
available information to the cloud server, two threat
models are considered here.
Known Ciphertext Model: Only the encrypted doc-
ument set C, searchable index tree I and encrypted
query vector Q̃, all of which are outsourced from the
data owner, are available to the cloud server. Specifi-
cally, we intend to protect the plaintext query/index
information against the cloud server and keep the
dictionary of n keywords T = {t|t1, t2, . . . , tn} as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

secret that was used to build the index tree I (We
also use T̄ and Ti to indicate a subset of T , where T̄
is the keywords in a search request and Ti constitutes
the ith level of I, i = 1, . . . , h).
Known Background Model: In this stronger model,
the cloud server is equipped with more knowledge
than what can be accessed in the known ciphertext
model. In particular, the attacker may extract the sta-
tistical information from a known comparable dataset
of the similar nature to the targeted dataset, e.g., the
TF distribution information of a specific keyword.
Given such statistical information, the cloud server
is able to launch statistical attack to deduce/identify
specific keywords in the query [9], [10], [11].

2.3 Design Goals
To enable effective, efficient and secure multi-keyword
ranked search over encrypted cloud data under the
aforementioned models, our mechanism is aiming to
achieve the following design goals.
Accuracy-improved Multi-keyword Ranked Search:
To design an encrypted cloud data search scheme
which not only supports the effective multi-keyword
search functionality, but also, by adoption of the
vector space model, achieves the accuracy-improved
similarity-based search result ranking.
Search Efficiency: Instead of linear search [21], we
explore a tree-based index structure and an efficient
search algorithm to achieve better practical search
efficiency.
Authenticity of Search Result: To make the proposed
encrypted data search scheme verifiable and assure
data user of authenticity of the returned search results.
Privacy Goals: The general goal is to protect user
privacy by preventing the cloud server from learning
information of the document set, the index tree, and
the queries. In particular, search privacy requirements
that we are concerned with are 1) Index Confidentiality:
the underlying plaintext information pertaining to the
encrypted index tree, e.g., keywords and TF of key-
words; 2) Query Confidentiality: the plaintext informa-
tion regarding the encrypted query, e.g., keywords in
the query and document frequency (DF) of these key-
words; 3) Query Unlinkability: whether two or more
encrypted queries are from the same search request; 4)
Keyword Privacy: the identification of specific keyword
in the index tree, in the query or in the document set.
Note that protecting access pattern, i.e., the sequence of
returned documents, is extremely expensive since the
algorithm has to “touch” the whole document set [29].
We do not aim to protect it in this work for efficiency
concerns.

2.4 Preliminaries
Vector Space Model: Among many similarity mea-
sures in plaintext information retrieval, vector space

Fig. 2: Illustration of the MD-algorithm on the MDB-
tree & Authentication for proposed secure index tree

model [8] is the most popular one, supporting both
conjunctive search and disjunctive search. Specifically,
document rankings are realized by comparing the
deviation of angles, i.e., cosine values, between each
document vector and the query vector. The cosine
measure allows accurate rankings due to the “TF×IDF
rule”, where TF denotes the occurrence count of a ter-
m within a document, and IDF is obtained by dividing
the total number of documents in the collection by the
number of documents containing the term. We adopt
the similarity evaluation function for cosine measure
Cos(Dd, Q) from [8], where Dd is the index vector of
document d for all the keywords in T and Q is the
query vector for keyword set T̄ . Both Dd and Q are
unit vectors.
MD-algorithm: The MD-algorithm [28] is used to find
the k-best matches in a database that is structured as
an MDB-tree [30], as shown in Fig. 2. In the database
scenario, each level of the MDB-tree represents an
attribute domain and each attribute in that domain is
assigned an attribute value. All the attributes sharing
the same value in the upper domain forms a child
node. As such, a set of objects is allowed to be indexed
in one data structure. An important search parameter,
the prediction threshold value P̂i for each level i, is
obtained from the maximum attribute value Pi at each
level, for example, in Fig. 2, P̂i = Pi = 1.0. Fig. 2 also
shows an example that, when k = 3, the set of objects,
E, K, and J, are returned to the user and the cross signs
in the figure indicate that it is not necessary to access
the nodes below1.

3 SECURE INDEX SCHEME
To achieve accurate multi-keyword ranked search, we
adopt the cosine measure to evaluate similarity scores.
In particular, we divide the original long document
index vector Dd into multiple sub-vectors such that
each sub-vector Dd,i represents a subset of keywords

1. More details of the vector space model, the MD-algorithm and
the MDB-tree can be found in the supplementary file of this paper,
[8] and [28]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Secure index tree

D1 Dd,1

Dd,2

Dd,h

...

GenIndex

Search
request

...

GenIndex

GenIndex

...

Dm

Documents Index vectors

Dd

Tree-based
search algorithm

Q

Qh

Q1

Q2

Query

Query vector

GenQuery

GenQuery

GenQuery

...... ...

Ranked top k
search result

...

Fig. 3: Overview of secure index scheme

Ti of T , and becomes a part of the ith level of the
index tree I, as shown in Fig. 3. The query vector
Q is divided in the same way as Dd is done. Let Qi

be the query sub-vector at the ith level. As such, the
final similarity score for document d can be obtained
by summing up the scores from each level. Based on
these similarity scores, the cloud server determines
the relevance of document d to the query Q and sends
the top-k most relevant documents back to the user.
By using the level-wise secure inner product scheme,
the document index vector Dd,i and the query vector
Qi are both well protected.

3.1 BMTS in Known Ciphertext Model
In order to facilitate the relevance rankings, the sim-
ilarity scores, i.e., cosine values, are revealed to the
cloud server, which differs from the schemes adopted
in [21], [31]. In other words, we do not apply the
dimension extension technique to our basic scheme
in the known ciphertext model. For each level i of I,
BMTS scheme can be described as follows:

Setup In this initialization phase, the secret key SKi

is produced by the data owner, including: 1) a |Ti|-bit
randomly generated vector Si, where |Ti| is the length
of Ti; 2) two (|Ti| × |Ti|) invertible random matrices
{M1,i,M2,i}. Hence, SKi can be denoted as a 3-tuple
{Si,M1,i,M2,i}.

GenIndex (DC, SKi) For each document d, the data
owner generates an index vector Dd,i according to Ti,
and each dimension is a normalized TF weight wd,t.
Next, the splitting procedure is applied to Dd,i, which
splits Dd,i into two random vectors as {Dd,i

′, Dd,i
′′}.

Specifically, with the |Ti|-bit vector Si as a splitting
indicator, if the jth bit of Si is 0, Dd,i

′[j] and Dd,i
′′[j]

are set as the same as Dd,i[j]; if the jth bit of Si is 1,
Dd,i

′[j] and Dd,i
′′[j] are set to two random numbers so

that their sum is equal to Dd,i[j]. Finally, the encrypted
index vector D̃d,i is built as {MT

1,iDd,i
′,MT

2,iDd,i
′′}.

GenQuery(T̄ , SKi) With the keywords of interest
in T̄ , the query vector Qi is generated, where each
dimension is a normalized IDF weight wq,t (wq,t = 0
for any keyword t not present in Qi). Subsequently,
Qi is split into two random vectors as {Qi

′, Qi
′′} with

the similar splitting procedure. The difference is that

if the jth bit of Si is 0, Qi
′[j] and Qi

′′[j] are set to two
random numbers so that their sum is equal to Qi[j];
if the jth bit of Si is 1, Qi

′[j] and Qi
′′[j] are set as the

same as Qi[j]. Finally, the encrypted query vector Q̃i

is yielded as {M−1

1,i Qi
′,M−1

2,i Qi
′′}.

SimEvaluation (D̃d,i, Q̃i) The cloud server executes
similarity evaluation with query vector Q̃i as in Eq. 1.

The similarity score at the ith level is:

Cos(D̃d,i, Q̃i)

={MT
1,iDd,i

′,MT
2,iDd,i

′′} · {M−1

1,i Qi
′,M−1

2,i Qi
′′}

=Dd,i
′ ·Qi

′ +Dd,i
′′ ·Qi

′′

=Dd,i ·Qi.

(1)

Hence, the final similarity score for document d is∑h

i=1
Dd,i ·Qi = Dd ·Q.

Security Analysis We analyze BMTS with respect
to the search privacy requirements as described in
section 2.

1) Index confidentiality and Query confidentiality:
In BMTS, D̃d,i and Q̃i are obfuscated vectors. As long
as the secret key SKi is kept confidential, the cloud
server cannot infer the original vectors Dd,i or Qi.
Neither can it deduce the keywords nor the TF and
IDF information included in the documents or queries
from the result similarity scores, which appear to be
random values to the server. This has been proven in
the known ciphertext model in [31].

2) Query unlinkability: The adopted vector encryp-
tion method provides non-deterministic encryption,
in light of the random vector splitting procedure.
Thus the same search keywords will be encrypted to
different query vector Q̃. The non-linkability of search
requests can be provided to this extent. However, if a
cloud server is capable of tracking the nodes visited
and the intermediate similarity results, it is possible
for the cloud server to link the same search request
based on the same similarity scores. In this case the
search pattern or the access pattern will be leaked even
in the known ciphertext model.

3) Keyword privacy: In the known background, the
highly motivated attacker can identify a particular

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

keyword by exploiting the distribution of similarity
score of this keyword (The detail explanation can be
found in the supplementary file of this paper).

In order to enhance security and boost search effi-
ciency, search evaluation may be only executed at cer-
tain levels where the user-intended keywords reside;
for the other levels, we can render these similarity
scores some fixed values, e.g., 0, during the execution
of both similarity score prediction and evaluation in
the search process.

3.2 EMTS in Known Background Model

The previous security analysis shows that in the
known background model, keyword privacy breach is
possible, due to the distance-preserving property of
BMTS, i.e., the cosine value calculated from D̃d,i and
Q̃i is equal to the one from Dd,i and Qi. In order
to break such equality, we introduce some tunable
randomness into the similarity score evaluation, by
which the cloud server cannot differentiate keywords
from the particular similarity score distributions. In
addition, this randomness can be calibrated by the us-
er to represent the user’s preference for more accurate
ranked search result versus better-protected keyword
privacy. Specifically, Ui phantom terms are added into
the query vector Qi, and we extend the index vector
Dd,i from |Ti| dimensions to |Ti|+Ui dimensions. We
denote the subset of h levels where the keywords of
interest reside as w and its size |w| ≤ h.

Our EMTS scheme is performed almost the same
as BMTS, except that at the ith level: 1) in Setup
phase, Si becomes (|Ti| + Ui)-bit long. M1,i and M2,i

are (|Ti|+Ui)× (|Ti|+ Ui) dimensional matrices; 2) in
GenIndex phase, by choosing Vi out of Ui phantom
terms, the corresponding entries in the (|Ti| + Ui)-
dimensional index vector Dd,i are set to 1; 3) when
generating encrypted query, the (|Ti| + j)th entry in
Qi where j ∈ [1, Ui] is set to a random number εi,j ;
4) The cloud server executes similarity evaluation and
obtains the final similarity score for document d equal
to (Dd · Q +

∑
i∈w

∑
j∈V̄i

εi,j), where V̄i is the set of
the Vi selected phantom terms, and it is different for
each index vector at level i.

Security Analysis We analyze EMTS again regarding
the aforementioned search privacy requirements.

1) Index confidentiality and Query confidentiality:
EMTS can protect index and query confidentiality in
both the known ciphertext model and the known
background model, which is inherited from BMTS.

2) Query unlinkability: The introduction of randomly
generated εi,j will allow EMTS to produce different
similarity scores even for the same search request.
The value of εi,j can be adjusted to control the
level of variance thus the level of unlinkability. It
is worth noting that this query-side randomization

technique significantly differs from [21], where ran-
domization occurs on the index vector side and is
not possible to be tweaked as an effective privacy-
preserving parameter for users. Query unlinkability
is thus much enhanced compared with BMTS to the
extent that there is no easy way for the attacker to
link the queries. However, since we do not intend
to protect access pattern for efficiency reasons, the
returned results from the same request will always
bear some similarity which could be exploited with
powerful statistical analysis by the very motivated
cloud server. This is a trade-off that one has to make
between efficiency and privacy.
3) Keyword privacy: By carefully selecting phan-
tom terms in the query, the final similarity scores
in EMTS are obfuscated such that the corresponding
distribution is not keyword specific any more, from
which the attacker is not able to reverse-engineer
the underlying keyword as in BMTS (See the more
detailed discussion in the supplementary file).
Remarks Recently Yao et al. [32] find that this under-
lying encryption method [31] is susceptible to chosen
plaintext attack. However, it is not applicable under
our defined threat models, since in order to launch
such attack, the cloud server has to acquire the vector
representation of the query, which are only possessed
by the data owner and protected by BMTS and EMTS.

4 EFFICIENCY OF THE TREE-BASED
SEARCH ALGORITHM
In the plaintext information retrieval community,
many well-developed techniques have been adopted
to accelerate the search process, e.g., inverted index
[33], B-tree [34], etc. However, in the ciphertext s-
cenario, they cannot be implemented in a straight-
forward manner. In [9], [10], [11], [19], the inverted
index based search methods are employed to achieve
an extremely efficient search process. However, these
schemes are only designed for single keyword search.
Efficient range search in database [23] can be realized
by using B+-tree, but it is not applicable to the text
search scenario. The similarity score in our scheme is a
value depending on the query and has to be evaluated
in the runtime, which makes the fixed tree structures,
such as B-tree or B+-tree, not suitable here. In this pa-
per, we propose a tree-based search algorithm, which
is adapted from MDB-tree based MD-algorithm, to
enable efficient multi-keyword ranked search. In what
follows, we briefly introduce our tree-based search
algorithm and present some experimental results from
our implementation of the proposed tree-based search
algorithm on a real-world document set: the recent
ten years’ INFOCOM publications. We identify key
factors that affect the search efficiency and propose
strategies in building the index tree that effectively
speed up the search process.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

4.1 Tree-based Search Algorithm
The MD-algorithm is originally designed for plaintext
database search. In the case of privacy-preserving
similarity-based multi-keyword ranked text search,
it cannot be applied in a straightforward manner.
Instead of a numerical “attribute value” for each
attribute in the MDB-tree, our index tree structure
has to be built on vectors. The secure index scheme
described in section 3 is for this purpose and it enables
the search algorithm to take the inputs of the encrypt-
ed searchable index tree and the encrypted query, and
ensures that the search algorithm is conducted in a
secure way to protect important search privacy in the
whole search process.

Another remarkable difference between our search
algorithm and the MD-algorithm is that we cannot
set P̂i to Pi as running the MD-algorithm in database
scenario, since Pi varies for queries in our scenario
and has to be securely evaluated (as described in
section 3) in the runtime.

4.2 Impact of Prediction Threshold Value
An important factor that affects the search efficiency
is the prediction threshold value P̂i at each level i.
To ensure the search precision, P̂i ≥ Pi should hold
where Pi is the maximum similarity score at level
i. The tighter the prediction value of P̂i, the higher
the search efficiency. The reason is that the search
process can be terminated earlier without going into
unnecessary nodes. On the other hand, when P̂i < Pi,
the search precision (a quantitative measure for search
accuracy, cf. section 6) drops while the rank privacy
(a privacy measure. cf. section 6) increases.
Strategy 1 Based on this observation, our first efficien-
cy enhancement aims to produce a better estimation of
P̂i that approximates to its ideal value Pi. We propose
the following strategy to achieve this. During the
index tree generation phase, the data owner retains
a vector Ei for each level i. This vector consists of
the maximum values at each dimension among all the
indexes at this level. Subsequently, during the query
generation phase, P̂i is equal to the inner product of
Ei and Qi, and P̂i will be set to 1 if it is greater
than 1, thus Pi ≤ P̂i ≤ 1. P̂i can be taken as an
additional search parameter to be sent with Q̃i to the
cloud server. As for EMTS, we add the maximum∑

j∈V̄i
εi,j from Qi to P̂i, and refer to this sum as the

final prediction threshold value.

4.3 Impact of Intended Keyword Position
Another factor we observed that affects the search
efficiency is the position of the search keywords on the
index tree. The higher level the intended keywords
reside, the higher the search efficiency. This is very d-
ifferent from using the MD-algorithm in database sce-
nario where all the attributes are involved in searching

the relevant objects. In the text search scenario, people
are likely to complete a search with a query only
comprising five keywords or less [35]. Consequently,
the search algorithm needs to go through a larger
number of nodes to evaluate an intended keyword
if it resides at a lower level.
Strategy 2 The insight from this observation is that the
average search time can be improved by strategically
arranging keyword position in the index tree – the
most frequently searched keywords on the top levels.
In practice, the information on the search keyword
distribution can be extracted from the user search
history.

4.4 Impact of Index Vector Clustering
Another idea for improving the search efficiency is to
cluster “similar” index vectors.The improved efficien-
cy comes from the reduced number of accessed nodes
in the index tree, but at the expense of lower search
precision. The bigger each cluster is, the higher the
search efficiency, but the lower the search precision.
Strategy 3 To maximize the possibility of clustering,
the length of the index vector at each level should
be as short as possible (but at least achieve 80-bit
symmetric key security [31]) in order to group the
“similar” indexes. Inspired by the k-means method,
which is the most widely used clustering technique
in the data mining community [36], we use Euclidean
distance (Ed) as a metric to cluster “close enough”
vectors, e.g., when Ed < 1. For EMTS, we may
first cluster original index vectors, and then execute
dimension extension.
Remarks The original combination of the MD-
algorithm and the MDB-tree is not directly applicable
for efficient search over vector indexes. From the ex-
tensive experiments on our prototype implementation
of the search algorithm (cf. the supplementary file
for detailed experimental result), we identified three
efficiency-crucial factors and proposed effective strate-
gies to improve the practical search efficiency with
our vector indexes. Although the worst case search
complexity is no better than linear search that is the
state-of-the-art search efficiency in the multi-keyword
encrypted text search scenario, this much less time-
consuming tree-based search algorithm represents a
solid step forward on the utilization of encrypted
cloud data in practice. From the security point of
view, the entire search process does not introduce
new privacy vulnerability when used with our secure
index scheme. In particular, our scheme is secure
against search time analysis, i.e., the cloud server can-
not infer specific keyword by the difference of search
time, even if he/she knows that the keyword resides
at a certain level. In fact, for efficiency, the cloud
server performs level-selected similarity evaluation
(see section 3), such that he/she has already possessed
the keyword position information. There are at least

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

80 dimensions in an index vector at each level, and
all the words falling into this level have almost the
same search time. This effectively blinds one keyword
within at least 79 other keywords at the same level.
In addition, the cloud server has no knowledge about
which concrete set of keywords are selected to build
this level without the dictionary T . Therefore, it is not
possible to differentiate these keywords or identify a
particular keyword of interest.

5 SEARCH RESULT VERIFICATION
Due to possible data corruption, software malfunc-
tion, and intention to save computational resources
by the cloud server, etc., search result returned to the
user may be false or contain errors. A mechanism to
verify the authenticity of the search results by the user
is desirable. Thus in this section we aim to design
an authenticity check mechanism over the returned
search results to address this problem. First, we have
the following definition.

Definition. The authenticity of the returned search results
includes three aspects: 1) Correctness: the returned search
results do exist in the dataset and remain unmodified; 2)
Completeness: no qualified documents are omitted from
the search results; 3) Freshness: the returned results are
acquired from the latest version of the dataset.

Our design should allow the user to verify the
above properties. The main idea behind our scheme
is to let cloud server return the minimum sub-tree
of the proposed secure index tree. Then data user
searches this minimum tree using the same search
algorithm as the cloud server did, which suffices to
assure user of the authenticity of the query results.
However, to realize this design goal, we must be able
to have the returned minimum index tree authenti-
cated first. After that, by using the proposed search
algorithm, we could achieve the defined objectives
readily. Data owner could turn the existing secure
index tree structure into an authenticated one through
cryptographic signature σ (e.g., RSA signature) and
collision-resistant hash function h (e.g., SHA-1) as
follows.

At the leaf node, the data owner computes the hash
values hIDi

of each document IDi within this node
in the forms of {h(IDi||Φ(IDi))}1≤i≤z , where || repre-
sents concatenation, Φ(IDi) denotes the content of the
document IDi and z is the total number of documents
in this leaf node. Then the data owner could generate
the hash value of this node as h(hID1

||...||hIDz
). For

example, in Fig. 2, the leaf node hash value h1 can be
generated from documents A,B and thus is defined to
be h(hA||hB). For each non-leaf node at the ith level,
every index D̃d,i is with its hash value h(D̃d,i||hchild),
where hchild is the hash value of its child node. Let
h(D̃d,i) = h(e1||...||eni

), in which e is the coordinate
of the vector index D̃d,i and ni is its dimension. The

hash value of this non-leaf node can be generated by
hashing all the index hash values within. For instance,
in Fig. 2, h10 = h(D̃A,3||h1) and the hash value of this
node is h(h10||h11). Similarly, the data owner hashes
all the index hash values inside the root node to obtain
hr, e.g., hr = h(h25||h26||h27) in Fig. 2. Then the data
owner signs this hash value σ(hr) and outsources it
to the cloud server.

To execute the query result verification, the cloud
server sends back the final ranked search results
along with minimum secure index tree, and the cor-
responding auxiliary information aux including the
hash values of the unreturned documents in the leaf
nodes in this minimum tree, the hash values of the
necessary non-leaf nodes outside the sub-tree, which
are not accessed in the search process, and the root
signature σ(hr). Given these information, the data
user can validate the tree structure by verifying the
signature σ(hr), i.e., the order of the nodes (leaf
and non-leaf nodes), the order and integrity of the
vector indexes in the non-leaf nodes, and the order
and integrity of documents in the leaf nodes. Take
Fig. 2 for example, the requested documents are E,
K and J. The minimum index tree returned is also
shown in Fig. 2 but without the structures below the
cross signs. Set the auxiliary information aux to be
{hI , h(h19||h20), h(h14||h15)}, σ(hr). As such, the data
user can compute hr easily and verify the root sig-
nature. Now the data user can search this minimum
secure index tree with the encrypted query Q̃ and be
convinced that all the intended documents with the
keywords of interest have been returned.
Remarks Only data owner can issue the valid root
signature σ(hr). Thus, any data corruption would lead
to a mismatch with the signed root of the secure
index tree. By verifying σ(hr), data user can be as-
sured of the existence of the returned documents in
the dataset and their integrity. After searching the
verified sub-tree by using the same search algorithm,
data user is able to check whether the ranking order
of the returned documents is correct and all the
qualified documents are retrieved. As a result, the
proposed scheme can achieve the defined objectives
of Correctness and Completeness. For Freshness, the data
owner could add time stamp into the root signature
as σ(hr||ts), where ts indicates the date of index
update last time. Data user can obtain this information
from the data owner along with the encrypted query.
As such, we make the whole secure search system
verifiable and the proposed search result verification
scheme satisfies our design goal.

6 PERFORMANCE EVALUATION
To evaluate the overall performance of our proposed
techniques, we implemented the entire secure search
system using JAVA on a Linux Server with Intel Core
i3 Processor 3.3GHz. The document set is built from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

50 70 90 110 130 150
50

60

70

80

90

100

Number of retrieved documents

P
r
e

c
is

io
n

 (
%

)

σ = 0.03

σ = 0.05

(a)

50 70 90 110 130 150
0

10

20

30

40

50

Number of retrieved documents

R
a

n
k

 p
r
iv

a
c

y
 (

%
)

σ = 0.03

σ = 0.05

(b)
Fig. 4: By choosing different standard deviation σ, the
trade-off, between (a) Precision, and (b) Rank privacy,
can be achieved.

5 10 15 20 25 30 35
0

5

10

15

20

25

30

Number of documents (× 10
2
)

T
im

e
 o

f
 b

u
il

d
in

g
 i

n
d

e
x

 t
r
e

e
 (

s
)

BMTS

EMTS

(a)

4 5 6 7 8 9
4

6

8

10

12

14

16

Number of keywords in the dictionary (× 10
3
)

T
im

e
 o

f
 b

u
il

d
in

g
 i

n
d

e
x

 t
r
e

e
 (

s
)

BMTS

EMTS

(b)
Fig. 5: Time cost for building index tree. (a) For the
different size of document set with the same dictio-
nary, n = 4000. (b) For the different size of dictionary
with the same document set, m = 1000.

1 3 5 7 9
15

25

35

45

55

Number of levels

T
im

e
 o

f
g

e
n

e
ra

ti
n

g
 e

n
c

ry
p

te
d

 q
u

e
ry

 (
m

s
)

BMTS

EMTS

(a)

1 3 5 7 9
18

19

20

21

22

23

Number of keywords of interest

T
im

e
 o

f
g

e
n

e
ra

ti
n

g
 e

n
c

ry
p

te
d

 q
u

e
ry

 (
m

s
)

BMTS

EMTS

(b)
Fig. 6: Time cost for generating encrypted query, when
|Ti| = 80. (a) For the different number of levels where
user intended keywords reside. (b) For the different
number of keywords of interest in one level.

the recent ten years’ IEEE INFOCOM publications,
including about 3600 publications, from which we ex-
tract about 9000 keywords. In this section we present
the detailed performance result. The documents and
keywords used in the evaluation are selected random-
ly from the created document sets.
1) Precision and Privacy To evaluate the impact on
the accuracy of search result introduced by phantom
terms in EMTS, we adopt the definition of “precision”
in [21]. Namely, the “precision” of a top-k search is
defined as Pk = k′/k where k′ is the number of

5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

Number of documents (× 102)

S
e
a
rc

h
 t

im
e
 (

m
s
)

Cao et al.
Baseline
BMTS
EMTS

(a)

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Number of retrieved documents

S
e
a
rc

h
 t

im
e
 (

m
s
)

Cao et al.
Baseline
BMTS
EMTS

(b)
Fig. 7: Search efficiency, with the same 10 keywords.
(a) For the different size of document set with the
same dictionary, n = 4000, k = 10. (b) For the dif-
ferent number of retrieved documents with the same
document set and dictionary, m = 1000, n = 4000.

the real top-k documents that are returned by the
cloud server. Fig. 4(a) shows that with a small σ,
the effectiveness of the search scheme is not affected
much. The user can still enjoy almost the same search
result as BMTS. On the other hand, we evaluate the
“rank privacy” obtained from introducing phantom
terms, whose definition is also adopted from [21], i.e.,
the rank privacy at point k is calculated as P̃k =∑

p̃k/k
2. For every document d in the returned top-k

documents, let the rank perturbation p̃k be |ud − ud
′|,

where ud is the rank number of document d in the
returned top-k documents and it is set to k if greater
than k, and ud

′ is its rank number in the real ranked
documents. As shown in Fig. 4(b), large σ provides
better protection of rank information in EMTS. It is
worth noting that σ is a tunable search parameter at
the discretion of the user. The selection of different
σ reflects his/her predilection for the better effective-
ness of the search scheme or the better protected rank
privacy and keyword privacy (see section 3.2).
2) Construction for Index Tree Fig. 5(a) shows that
the time cost for building the index tree is nearly
linear to the number of the documents, given the
same dictionary. Fig. 5(b) shows that with the same
document set, the index construction time is propor-
tional to the number of keywords in the dictionary.
On the other hand, considering the massive storage
capacity and low storage cost in the cloud, the storage
overhead is practical and completely affordable (cf.
the supplementary file of this paper).
3) Query Generation Fig. 6(a) demonstrates that
when |Ti| is fixed, the time cost for generating an
encrypted query is only linear to the number of levels
where the searched keywords reside. Since we may
place the most frequently searched keywords on the
top levels of I, a good portion of queries are only
generated for a few limited levels. As such, when |Ti|
is chosen properly, the average query generation can
be extremely efficient, as shown in Fig. 6(b).
4) Search Efficiency The time cost of our proposed
encrypted cloud data search is much more efficient

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

than [21] and baseline search as shown in Fig. 7(a).
In addition, with the increased size of document set,
our two proposed schemes enjoy almost the same and
nearly constant search time. Fig. 7(b) demonstrates
that when user requests more relevant documents, our
search algorithm is still extremely efficient.

7 CONCLUSION
In this paper, we first exploit the popular similarity
measure, i.e., vector space model with cosine measure,
to effectively procure the accurate search result. We
propose two secure index schemes to meet various
privacy requirements in the two threat models. Even-
tually, the leakage of sensitive frequency information
can be avoided. To boost search efficiency, we propose
a tree-based index structure for the whole document
set. From the utilization of the prototype of our secure
search system, we identify three essential efficiency-
related factors, by which the efficiency of the search
algorithm upon our index tree can be significantly
improved. In addition, we make the whole search
process verifiable in case that users want to ensure
the authenticity of the returned search results. Finally,
thorough evaluation on the real-world document set
demonstrates the performance of BMTS and EMTS in
terms of search effectiveness, efficiency and privacy.

ACKNOWLEDGMENTS
We would like to thank Matúš Ondreička for his
helpful comments and sharing the source code of
MD-algorithm. This work was supported in part by
the NSFC 61272457, the FRFCU K50511010001, the
PCSIRT 1078, the National 111 Project B08038 and
the U.S. NSF grants CNS-1217889, CNS-1155988 and
CNS-1218085.

REFERENCES
[1] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and

H. Li, “Privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking,” in Proc. of ACM
ASIACCS, 2013, pp. 71–82.

[2] Cloud Security Alliance, “Security guidance for critical
areas of focus in cloud computing v3.0,” http://www.
cloudsecurityalliance.org, 2011.

[3] J. Sheridan and C. Cooper, “Defending the cloud,”
http://www.reactionpenetrationtesting.co.uk/Defending%
20the%20Cloud%20v1.0.pdf, 2012.

[4] Z. Slocum, “Your google docs: Soon in search results?” http:
//news.cnet.com/8301-17939 109-1035713%207-2.html, 2009.

[5] B. Krebs, “Payment processor breach may be largest ev-
er,” http://voices.washingtonpost.com/securityfix/2009/01/
payment processor breach may b.html, 2009.

[6] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and
secure sharing of personal health records in cloud computing
using attribute-based encryption,” IEEE TPDS, vol. 24, no. 1,
pp. 131–143, 2013.

[7] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure,
scalable, and fine-grained data access control in cloud com-
puting,” in Proc. of IEEE INFOCOM, 2010, pp. 1–9.

[8] I. H. Witten, A. Moffat, and T. C. Bell, “Managing gigabytes:
Compressing and indexing documents and images,” Morgan
Kaufmann Publishing, San Francisco, May 1999.

[9] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and
efficient ranked keyword search over outsourced cloud data,”
IEEE TPDS, vol. 23, no. 8, pp. 1467–1479, 2012.

[10] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A. L. Varna, S. He,
M. Wu, and D. W. Oard, “Confidentiality-preserving rank-
ordered search,” in Proc. of the 2007 ACM Workshop on Storage
Security and Survivability, 2007, pp. 7–12.

[11] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, “Zerber+r:
Top-k retrieval from a confidential index,” in Proc. of EDBT,
2009, pp. 439–449.

[12] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Proc. of
EUROCRYPT, 2004, pp. 506–522.

[13] P. Golle, J. Staddon, and B. R. Waters, “Secure conjunctive
keyword search over encrypted data,” in Proc. of ACNS, 2004,
pp. 31–45.

[14] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proc. of TCC, 2007, pp. 535–
554.

[15] Y. Hwang and P. Lee, “Public key encryption with conjunctive
keyword search and its extension to a multi-user system,” in
Pairing, 2007, pp. 2–22.

[16] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. of S&P, 2000, pp. 44–55.

[17] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive. http:
//eprint.iacr.org/2003/216, 2003.

[18] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving key-
word searches on remote encrypted data,” in Proc. of ACNS,
2005, pp. 391–421.

[19] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved definitions and
efficient constructions,” in Proc. of ACM CCS, 2006, pp. 79–88.

[20] P. Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker,
“Computationally efficient searchable symmetric encryption,”
Secure Data Management, pp. 87–100, 2010.

[21] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
preserving multi-keyword ranked search over encrypted cloud
data,” in Proc. of IEEE INFOCOM, 2011, pp. 829–837.

[22] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in Proc. of TCC, 2009, pp. 457–473.

[23] Y. Lu, “Privacy-preserving logarithmic-time search on encrypt-
ed data in cloud,” in Proc. of NDSS, 2012.

[24] H. Pang, J. Shen, and R. Krishnan, “Privacy-preserving
similarity-based text retrieval,” ACM Transactions on Internet
Technology, vol. 10, no. 1, p. 4, 2010.

[25] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in
Proc. of SIGMOD, 2006, pp. 121–132.

[26] H. Pang and K.-L. Tan, “Authenticating query results in edge
computing,” in Proc. of ICDE, 2004, pp. 560–571.

[27] H. Pang and K. Mouratidis, “Authenticating the query results
of text search engines,” Proc. VLDB Endow., vol. 1, no. 1, pp.
126–137, Aug. 2008.

[28] M. Ondreička and J. Pokorný, “Extending fagin’s algorithm
for more users based on multidimensional b-tree,” in Proc. of
ADBIS, 2008, pp. 199–214.

[29] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” Journal of the ACM, vol. 45, no. 6, pp.
965–981, 1998.

[30] P. Scheuermann and M. Ouksel, “Multidimensional b-trees for
associative searching in database systems,” Information systems,
vol. 7, no. 2, pp. 123–137, 1982.

[31] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis,
“Secure knn computation on encrypted databases,” in Proc.
of SIGMOD, 2009, pp. 139–152.

[32] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,”
in Proc. of ICDE, 2013.

[33] NIST, “NIST’s dictionary of algorithms and data struc-
tures: inverted index,” http://xlinux.nist.gov/dads/HTML/
invertedIndex.html.

[34] D. Comer, “Ubiquitous b-tree,” ACM computing surveys,
vol. 11, no. 2, pp. 121–137, 1979.

[35] “Keyword and search engines statistics,” http://www.
keyworddiscovery.com/keyword-stats.html?date=2013-01-01,
2013.

[36] A. Rajaraman and J. D. Ullman, “Mining of massive datasets,”
Cambridge University Press, Dec. 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Wenhai Sun received his B.S. degree in In-
formation Security from Xidian University, X-
i’an, China, in 2007. Since 2009, he has been
a Ph.D. student in a combined M.S./Ph.D.
program in the School of Telecommunica-
tions Engineering at Xidian University. From
2011 to 2013, he was a visiting Ph.D stu-
dent in the Cyber Security Lab at Virginia
Tech. His research interests are cryptogra-
phy, cloud computing security and wireless
network security.

Bing Wang received his BS and ME degree
in computer science in Fudan University and
Shanghai Jiaotong University in 2008 and
2011 respectively. He is currently working to-
ward Ph.D. degree in the Computer Science
Department at Virginia Tech. His research
interests are in the areas of applied cryp-
tography and network security, with current
focus on secure data service outsourcing in
Cloud Computing. He is a student member of
the IEEE.

Ning Cao received his BE and ME degrees
in Computer Science from Xi’an Jiaotong
University in China, and his Ph.D. degree
in Electrical and Computer Engineering from
Worcester Polytechnic Institute. He joined
the Research and System Infrastructure at
Google Inc. in 2012. His research interests
are in the areas of security, privacy, and
reliability in Cloud Computing, with current
focus on search and storage. He is a member
of IEEE and a member of ACM.

Ming Li (S’08 - M’11) received his Ph.D.
in Electrical and Computer Engineering from
Worcester Polytechnic Institute, M.E and B.E
in Electronic and Information Engineering
from Beihang University in China. He joined
the Computer Science Department at Utah
State University as an assistant professor
in 2011. His research interests are in the
general areas of cyber security and privacy,
with current emphases on data security and
privacy in cloud computing, security in wire-

less networks and cyber-physical systems. He is a member of IEEE
and ACM.

Wenjing Lou is an associate professor at
Virginia Polytechnic Institute and State Uni-
versity. Prior to joining Virginia Tech in 2011,
she was a faculty member at Worcester Poly-
technic Institute from 2003 to 2011. She re-
ceived her Ph.D. in Electrical and Computer
Engineering at the University of Florida in
2003. Her current research interests are in
cyber security, with emphases on wireless
network security and data security and pri-
vacy in cloud computing. She was a recipient

of the U.S. National Science Foundation CAREER award in 2008.

Y. Thomas Hou (S91-M98-SM04) is a Pro-
fessor in the Bradley Department of Electrical
and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA. His research interest-
s are cross-layer optimization for wireless
networks. He is also interested in wireless
security. He has published extensively in
leading journals and top-tier conferences and
received five best paper awards from IEEE
(including IEEE INFOCOM 2008 Best Pa-
per Award and IEEE ICNP 2002 Best Paper

Award) and one Distinguished Paper Award from ACM. Prof. Hou
is currently serving as an Area Editor of IEEE Transactions on
Wireless Communications, an Associate Editor of IEEE Transactions
on Mobile Computing, an Editor of IEEE Journal on Selected Areas
in Communications (Cognitive Radio Series), and an Editor of IEEE
Wireless Communications. He is the Chair of IEEE INFOCOM Steer-
ing Committee.

Hui Li received B.Sc. degree from Fudan
University in 1990, M.Sc. and Ph.D. degrees
from Xidian University in 1993 and 1998.
In 2009, he was with Department of ECE,
University of Waterloo as a visiting scholar.
Since 2005, he has been a professor in the
school of Telecommunications Engineering,
Xidian University, China. His research inter-
ests are in the areas of cryptography, security
of cloud computing,wireless network security
and information theory. He served as TPC

co-chair of ISPEC 2009 and IAS 2009, general co-chair of E-
Forensic 2010, ProvSec 2011 and ISC 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

