
MUSHI: Toward Multiple Level Security Cloud
with Strong Hardware Level Isolation

Ning Zhang∗ Ming Li† Wenjing Lou∗ Y. Thomas Hou∗
∗Complex Network and Security Research Laboratory, College of Engineering, Virginia Tech, VA

†Department of Computer Science, Utah State University, Logan, UT

Abstract—Multiple Level Security (MLS) has always been a
center of focus since the usage of computers in military and
intelligence systems. Extensive studies have been done on how
to utilize virtualization technologies to provide multiple level
secured execution in the cloud, yet the general assumption is that
all components in the cloud service provider are trusted. With
the advanced persistent threats currently faced by the military
and intelligence community, it is unrealistic to assume complex
information systems can remain trustworthy all the time. In
this work, we present MUltiple level Security cloud with strong
Hardware level Isolation (MUSHI), a novel framework that can
provide hardware level isolation and protection to individual
guest virtual machine (VM) execution. With MUSHI, a user can
maintain confidentiality and integrity of her VM in a multicore
environment even in the presence of malicious attacks from both
within and outside the cloud infrastructure.

I. INTRODUCTION

Cloud computing has defined a new paradigm shift in mod-

ern world computing. With virtualization as the key enabling

technology, service providers are now able to dynamically

provision infrastructure to meet the ever changing demand

from users. In addition, such economy of scale has provided

opportunities for better service at lower price. US military has

always been striving for information supremacy, it is antici-

pated that the military system will also adapt to the new cloud

computing paradigm[1], [2]. However the sensitive nature of

multiple classification military system has created a unique

challenge for system deployments. Information lost due to

security breach in commercial market can usually be converted

to certain monetary value, yet incidents in military system

can sometimes imply death of millions. Therefore information

assurance is of critical importance in MLS systems.

One of the fundamental design principles of multilevel

security system is the spatial and temporal separation of infor-

mation of different classification levels [3], [4], [5], [6], [7].

Virtualization software is the component that enables sharing

of physical devices while enforcing isolation between VMs

of different users in the cloud environment. This implicitly

implies that the virtualization software and hardware will have

to be trusted. It has been generally accepted that there is

risk of attacks on the hypervisor from malicious guest VMs

as demonstrated by several recent attacks and vulnerability

reports [8], [9], [10], [11]. However, hypervisor is not the only

attack surface. An adversary could also attempt to compromise

the management software residing in the hosting and man-

agement servers with vulnerabilities in [8], [9], [12]. Lastly,

adversaries might even use social engineering to compromise

accounts of the management personnel. Given the advanced

persistent threats faced by the military today, it is unrealistic

to assume the cloud infrastructure can be secured against

various types of malicious activity including social engineering

at all time. To address this challenge, we proposed MUSHI,

a hardware level isolated parallel execution environment to

enable secured operations in the presence of both malicious

cloud host and collocated malicious VMs. Specifically MUSHI

has the following unique attributes

• Our system does not rely on a secured cloud infrastruc-

ture, therefore the security properties of user’s informa-

tion remains the same even if the hosting infrastructure is

compromised. We believe this is a necessary requirement

for future computing systems in the military environment.

• MUSHI depends on a very small set of Trusted Comput-

ing Base (TCB) including only the hardware, hardware

assisted virtualization, BIOS and System Management

Mode (SMM). It makes the task of analyzing and pro-

tecting the system much more manageable.

• The architecture can be realized with commodity hard-

ware. In MUSHI, we rely on SMM memory (SMRAM),

which is readily available in current generation of proces-

sors, for the isolation between the host and VM. Trusted

Platform Module (TPM) is used for remote attestation

of VM image integrity. Furthermore, in order to remove

the attack surfaces available to malicious VM, MUSHI

rely on currently available hardware virtualization of I/O

device [13], [14].

II. PREVIOUS WORKS

Multilevel security is a well-studied topic [6], [5]. Early

systems use the reference monitor in security kernel to en-

force the MLS policy within the system. Recently, Multiple

Independent Level Security (MILS) has emerged as a new

paradigm of designing MLS system[7], [4], which aims to

separate the two types of service provided in traditional mono-

lithic kernel, namely maintaining spatial temporal separation

and security policy enforcement. Applying this concept of

multilevel security system design to cloud, we would need

to have separation and policy enforcement in MLS cloud as

well. The policy enforcement is not the focus of this paper,

978-1-4673-3/12/$31.00 ©2013 IEEE978-1-4673-3/12/$31.00 ©2013 IEEE

though it can be achieved via network separation through cryp-

tographic operations along with high speed guards. MUSHI

aims to provide the separation functionality in the MLS

system. Providing isolation between virtual machine on the

same physical platform has been an active area of research

in the past decade due to the rapid development of cloud

technology in the commercial market. There are generally

three approaches to provide isolation of individual VM in

the cloud environment, hypervisor based approach[15], [16],

[17], [7], [18], [19], [20], hardware assisted isolated execution

environment [21], [22], [23], and using direct hardware access

to provide necessary isolation needed [24], [13]. Within the

hypervisor based approach, research generally focuses on

either minimizing hypervisor [15], [16], [17], [7], [18] or

hardening it [20], [25]. In hardware assisted isolated execution

environment [21], [22], [23], systems use hardware functions

to maintain the isolation. Our work is inspired by SICE[22] in

which Azab et al. proposed to use SMM memory (SMRAM)

to isolate individual workloads from potentially malicious

hypervisors. However, the system still relies on the correctness

of security manager and device emulation in the legacy host.

There is still an attack vector from the guest VM to security

manager. Furthermore the malicious legacy host who emulates

all the devices can also launch an MMIO attacks [26] on the

isolated workload, in which the malicious legacy host might

intentionally map the MMIO memory of a manipulated device

such that it overlaps with an original intended endpoint. The

last type relies completely on the isolation provided by the

hardware [24] [13]. In [24], [13], Szefer et al. proposed to

completely remove the hypervisor layer, such that malicious

VM will not have an attack surface to reach legacy host.

However, this system assumes that infrastructure is always

trusted which can be violated. MUSHI aims to remove such

trust dependency on the legacy host.

III. BACKGROUND

A. System Management Mode

System Management Mode (SMM) is a special CPU mode

that is different than protected mode and real address mode. Its

main purpose is to perform platform specific system resource

management such as power control. SMM is entered via sys-

tem management interrupted (SMI) which could be triggered

by both software and hardware. Upon entering SMM mode,

the microprocessor saves its entire state in a separate memory

region known as system management memory (SMRAM),

and continues to execute the SMI handler which also resides

within SMRAM. When SMI handler finishes execution, a

special instruction RSM is executed to exit SMM. Within

SMM Mode, all memory protection and interrupts including

the non-maskable ones are disabled. Both AMD and Intel

provide locking capability such that access to SMRAM out-

side SMM is disabled. In AMD architecture, SMRAM can

be defined dynamically through two mode specific registers

(MSR) SMM Addr and SMM Mask which are both local

to a processor core. SMM Addr identifies the base address

and SMM Mask determines the range. The protection on this

dynamic range of SMRAM can be locked or unlocked by

writing a 64bit password onto the SMM KEY MSR [27]. A

technique to safe guard memory using this per core SMRAM

range capability was proposed by Azab et al. in SICE[22]

called memory double view. The special protection offered

by SMRAM was used in memory double view to protect the

memory space of individual VM from the malicious legacy

host. The SMM Addr and SMM Mask of the processor cores

that legacy host runs on are configured such that SMRAM

covers the entire memory region of individual VMs to protect.

On the other hand, the access to memory of legacy host

or other physically collocated VMs by the malicious VM is

prevented with nested paging mechanism configured upon VM

setup.

B. Kernel Modification for Hardware Level Virtualization

The concept of eliminating the hypervisor was first proposed

by Keller et al[24]. It was later implemented with a prototype

demonstration by Szefer et al. [13]. The key idea behind

NoHype[24] is to remove the surface that a malicious VMs

can use to attack the hypervisor. This way, even if there

are vulnerabilities in the hypervisor, there will not be an

attack vector for the malicious VM to penetrate through.

Kernel modules of the virtual machines that would require

privilege instructions were modified such that they would

cache the results during the assisted boot up. Later in the

execution, it would not be neccessary to run any privilege

instruction, because the results are readily available. When

the user modules are loaded, the VM should be able to remain

in VM mode without causing any VM exit. As a result, the

hypervisor is completely removed from the execution, and thus

the attack surface.

C. Secure Boot and Trusted Platform Module

Trusted computing is a standard defined by trusted com-

puting group[28]. This technology aims to build a provable

chain of trust based on the trusted platform module (TPM),

which is a microcontroller that provides storage for keys

and a set of limited cryptographic operations. TPM also

has platform configuration registers (PCR) that are used to

store measurements for attestations. Furthermore, in order to

facilitate remote attestation, each TPM is equipped with an

attestation identity key (AIK) which is used to sign PCRs.

IV. SYSTEM MODEL

In this section, the overall system would be presented first

followed by threat model and design goal.

A. System Overview

For simplicity, we assume there are only three types of

servers within the cloud, load balancing server, image server

and hosting server. Load balancing sever is responsible for

resource allocation. Each VM image is composed of two

separate partial images, the kernel image, which contains the

OS and user image which contains user application or files.

Kernel image is shared among users of same virtual platforms.

Fig. 1. MUSHI Architecture

The content in the user image is sensitive, thus encrypted with

a secret key maintained by the user. The VM image server

stores these two types of images. There are attackers within

and outside the cloud infrastructure. Shown in Fig. 1 is a

typical deployment view of MUSHI. Legacy host coordinates

resource management. SMI handler resides in SMRAM that

is protected from all processor cores for bootstrapping trust in

VM execution. Individual user virtual machine runs directly

on the hardware after trusted startup.

B. Threat Model and Assumption

Threat Model: We consider two types of adversaries. The

first type is the insider adversaries who can be employees

that work for the cloud service provider or people who have

gained access to infrastructure’s internal network by social

engineering or other means. They have control over the all

servers, thus capable of changing any user’s image or the

legacy host on the hosting servers. The goal of the insider

adversaries is to steal documents and applications from the

user’s VM. Furthermore, these adversaries would not expose

their insider access with a simple deny of service attack

(DoS).The second type is the outsider adversaries who reside

outside the cloud infrastructure. In particular, we consider

them the malicious users who have control over the VMs

residing on the same physical server. This type of adversary

is capable to using various VM Exit to exploit the software

bugs in the hypervisor. As a result, both types of adversaries

are capable of gaining control of the host system and thus

compromising the confidentiality, integrity and availability of

legitimate user’s VM. The goal of outsider adversaries is

similar to the insider in that they want to compromise the

confidentiality and integrity of the target user’s VM. However,

since it is relatively easy to gain access a guest VM, they are

not concerned of being exposed and might launch DoS attack

on neighboring VMs.

Assumptions: We assume physical security will be in place

such that the hardware will be protected in controlled environ-

ment. Therefore any hardware level attacks such as physically

probing the bus and memory would not be possible. Further-

more, we assume the platform MUSHI runs on is equipped

with TCG’s trusted boot [28] hardware that has Core Root of

Trust for Measurement (CRTM) along with trusted platform

module (TPM).

C. System Design Goal

The goal of MUSHI is to provide a trusted isolated environ-

ment for virtual machine execution, which is one of founding

piece towards a trusted multilevel security cloud environment.

Virtual machines should be instantiated securely and they

should remain that way throughout the life cycle. In MUSHI,

we try to achieve the following

Trusted Execution Upon startup of VM, the integrity of both

the kernel and user image and MUSHI should be attested to

the user, thus the trusted initial state.

Isolation The VMs running on the same physical platform

should be isolated. This isolation will provide the confiden-

tiality and integrity service to the user VM during execution.

However it is not in the scope of the system to prevent side

channel attacks such as timing, heat or power analysis or

potential covert channels.

User Image Confidentiality Besides run time protection,

MUSHI also aim to provide data at rest confidentiality service

by encrypting the user image with key provided by the user.

V. MUSHI DESIGN

Recall that threat model of MUSHI includes insider and

outsider adversaries. Even with a compromised hosting infras-

tructure, MUSHI aims to provide trusted execution environ-

ment based on a very small TCB with commodity hardware.

In the remaining of the section, we will first discuss the

changes needed to build MUSHI into the current hosting

platform, followed by the details on three key phases for the

life cycle of a user virtual machine, from the request of user

to start the virtual machine to the shutdown of the virtual

system, including resource allocation, trusted startup and VM

execution/exit.

A. Hosting System Integrtion with MUSHI

MUSHI which enables the trusted execution environment

will need to be integrated into the server system. Furthermore,

the hosting system should be able to attest to a remote

user the integrity of MUSHI during the trusted execution

environment initialization of the VM. There are two main

integrated components of MUSHI in the hosting server. The

first one is the generation of key pair used later to facilitate

communication between MUSHI and the remote attester. The

second component is the insertion of MUSHI into the SMI

handler of the system, and further creating a measurement

that later can be used for attestation. For the first component,

besides the regular steps of a trusted boot of the platform, the

initialization code will need to first generate a public/private

key pair, Ksmm and K−1
smm. The public key Ksmm will be

extended onto the TPM’s PCR, and thus its integrity can be

guaranteed, while the private key K−1
smm is stored in SMRAM.

Then MUSHI is copied into SMRAM and inserted into the

SMI handler table. And the initialization will measure the

MUSHI and extends the measurement onto the TPM’s PCR,

and immediately lock the SMM to prevent any changes even

by the hypervisor, and thus the integrity of SMM including

Fig. 2. MUSHI execution flow from initialization to exit

MUSHI can be maintained and attested to with the mea-

surement later. Note that the confidentiality of the private

key K−1
smm can be is guaranteed because SMRAM is locked

immediately after measurement of MUSHI, malicious VM or

hypervisor will not be able to access it due to the property

of SMRAM lock. One can implement MUSHI by using the

coreboot[29], an open source BIOS, or by modifying the BIOS

image binary such that SMM Mode remains unlocked until

initialization code takes the measurement and locks it down.

B. Life Cycle of User Virtual Machine

A detail execution flow of a user VM life cycle is shown

in Fig. 2, which we will give detail descriptions for

1) Resource Allocation: When a user requests for a virtual

machine, the load balancing server will communicate with an

available hosting server to allocate the physical resource for

the user. The legacy host on the hosting server will then request

the kernel image and the encrypted user image from the image

server. The kernel image is shared among many users who

designated the same virtualized platform, while the user image

contains modules and files that are unique to individual user or

user groups. The legacy host will load boot agent, which will

assist system startup of the VM image, into memory. Once

both images are received and loaded into memory, legacy

host will save all the run time parameters of the requested

virtual machine and trigger a SMI to invoke MUSHI. The

triggering of SMI is end of the resource allocation phase.

Once in SMM mode, the processors cores allocated to the user

VM will start preparation while the other cores will resume

normal operation. For the allocated cores, the parameters and

run time images are copied into SMM memory for the integrity

verification in the trusted startup phase.

2) Trusted Startup of User VM: Trusted startup of a user

VM consists of two main steps, the remote attestation of

integrity and the assisted start up for hardware only virtu-

alization.

Remote Attestation: There are three goals in the remote

attestation step. First, the integrity of MUSHI needs to be

attested. Second, the integrity of images and parameters needs

to be attested. Lastly, a secure communication channel needs

to be established to retrieve the user image encryption key.

To accomplish these three goals, MUSHI first generates a

new public/private key pair, Kcom and K−1
com, which will be

used later for secure communication with the remote user. The

user then generates a random nonce, and request MUSHI to

perform the attestation. With this nonce, MUSHI generates

two signed values. The first one contains static measurement

of TPM’s PCR signed with the AIK key stored in the TPM

platform, which attests the integrity of MUSHI as well as the

Ksmm, the public key generated during the system startup.

Then the second value is signed with the K−1
smm, consist of

the measurement of the images, VM parameters as well as

the public key used for communication Kcom. User will only

accept this measurement if the signature can be verified with

the public key Ksmm attested in the first signed value. This

will allow the remote user to verify integrity of the user VM

and the public key used for key transmission. And the public

key of the user can be appended to the user image. With this

setup, remote user and MUSHI can then established a secure

connection which is then used to transmit the decryption key

for the user image. Once the key is retrieved from the user,

MUSHI will move the images into the intended memory

region, and decrypts the user image. At this point, all the

preparation for VM execution is done, and the system should

move onto assisted startup of the virtual machine. However

SMM cannot change most of the processor state, we can use

the technique in [22] to modify the page table instead. Once

modification is made, MUSHI will exit SMM mode, and hands

the execution control over to boot agent, and thus the starting

of the assisted startup step.

Assisted Startup: The boot agent will act temporarily as

a traditional hypervisor during the assisted startup process.

Processor and device discovery is one of the very first steps

performed by operating system in a system startup. However,

the virtualize environment which were specified by the user

and finalized by the resource allocator is most likely not the

same as actual platform hardware. A typical VM requested

by user will most like use a very small portion of the server

resources, such as 2 processor core out of 40 total available

in the hosting server. As a result, when the operating system

performs processor and device discovery, the hypervisor like

boot agent will have to perform filtering or emulation such that

the user virtual machine will be initiated with the designated

resources. For PCI device discovery, the operating system use

values in a known range of memory as indicator, and the boot

agent will have to emulate some of the memory read such that

it would appear to the VM that such device does not exist.

The same emulation capability will have to be included for

the processors as well. In particular, boot agent will have to

instrument the discovery of clock frequency, core identifier

and processor features. Once system resource discovery is

done, the guest OS can continue to boot and load modules.

Though we now can bootstrap the guest OS in a virtualize

environment, there is still the issue of privilege instructions. In

traditional virtualization, privilege instructions are trapped and

emulated by the hypervisor, however this will entail continuous

interaction between the hypervisor and virtual machine which

is undesirable. In this case, the operating systems will need to

be modified such that results of privilege instructions such as

CPUID are cached, and thus eliminating VM exits, removing

the attack interface from VM to hypervisor. Once user image is

loaded, the boot agent will then setup the environment for the

guest virtual machine by setting up the appropriate hardware

virtualization structures giving the full processor core control

to guest VM. Then boot agent will execute the VM in hardware

virtualized environment, and then execution move into the next

phase of the life cycle.

3) User VM Execution and Exit: At this point, the control

is handed off to guest virtual machine and user applications.

When the guest shuts down the virtual machine or attempt

any malicious activity, there will be a VM exit that will

cause the execution context to fall back to the boot agent.

Regardless what cause the VM exit, boot agent will save off

the VM image if necessary, then perform any sanitization

needed and terminate the VM execution, and free up the

allocated resource. Meanwhile, a malicious legacy host might

attempt to send nonmaskable inter processor interrupts (IPI)

to disrupt the control flow of the isolated user virtual machine

which would also cause a VM exit as well, however it is

our assumption that adversaries who has gained insider access

to the infrastructure will not expose themself by performing

simple deny of service attack.

VI. DESIGN ANALYSIS

A. Security Analysis

1) Trusted Execution: In the proposed architecture, MUSHI

is part of the trusted boot process which can be attested by

the TPM. Building upon this trust, the integrity of the boot

agent, kernel image and user image are attested to the user

with the MUSHI in isolated SMRAM environment, therefore

we’ve established chain of trust in our system startup.

2) Isolation of VM to legacy host and VM to VM: The

run time isolation of individual VM from the legacy host

and neighboring VM can provide run time confidentiality and

integrity. With such isolation, the memory content and control

flows can be protected. This is achieved by isolating processor,

memory and I/O device.

Isolation of Processor Individual cores are dedicated to

each guest VM, thus processors owned by different users are

separated. A malicious legacy host can still send nonmaskable

inter processor interrupts (IPI) to the user VM, which will

cause a VM exit. However, the only action that boot agent

performs after user VM execution is to shut down. Therefore

there is no way for the legacy host to alter control flow in user

VM by issuing interrupts.

Isolation of Memory Isolation of memory is achieved

through two mechanisms. The memory of user VM is iso-

lated from the malicious legacy host by SMRAM protection.

Even though there are attacks on SMRAM based on cache

poisoning[30], the mitigation[22] is fairly straight forward.

This memory is also isolated from neighboring VM via

extended page table, which is set up by the boot agent

and requires privilege instruction to change, yet any VM

exit will trigger shutdown of the virtual machine, therefore

malicious VMs will not be able tamper with memory content

of neighboring VM.

Isolation of I/O Device The virtualization of hardware

devices is assumed to be provided by hardware, in which case,

the virtualized hardware will appear as if it is a real physical

hardware to the software system. And the isolation of I/O

device is achieved by assigning different physical device or

hardware virtualized device to individual VMs.

3) Data at Rest: For many DoD developed applications, it

might not be desirable make the executable public. Malicious

attackers can gain much better understanding by analyzing the

binary images. Therefore in MUSHI, we aim to provide data

at rest security by encrypting the user image with secret keys

provided by the user. During execution, user will provide the

key only if the attestation on isolated execution is successful.

Therefore, even if an adversary gains internal access of the

cloud infrastructure, she will not be able to look inside the user

applications due to memory protection provided by MUSHI.

The key for decrypting this application image is transmitted

during the attestation using a secure channel, and thus it is

confidentiality is guaranteed. The management of user keys

can be accomplished using existing key infrastructures and is

not in the scope of MUSHI.

4) Availability: MUSHI could not defend against insider

who has controlled over the malicious legacy host for DoS

attacks. An insider could simply remotely shutdown various

servers in the cloud to deny access. However, it could defend

against malicious neighboring VM quite effectively, since

processor and memory are both isolated. The remaining share

resource contains the bus and virtualized I/O devices, and it

was demonstrated in [13] that such I/O DoS has little effect.

5) Covert Channels: Eliminating side channels in a shared

infrastructure is almost an impossible task. It is generally

accepted that high speed covert channels in MLS systems

are highly undesirable. In MUSHI, individual VMs gets their

own dedicated memory and processors, which reduces some

of the high bandwidth covert channel like L1 cache or shared

memory locations. However since the I/O infrastructure is still

shared, it is possible to construct covert channels from the

latency in the bus and etc. Detail analysis on the specific

system will need to be performed before deployment.

B. Performance

In MUSHI, each VM has its own dedicated resource.

Therefore user experience should be more stable since there is

no oversubscription. Furthermore, since hypervisor is removed

and device emulation is done via hardware, there should be an

overall system improvement. The magnitude of improvement

will be heavily system specific [13]. For the measurement of

the images and decryption of user images, it is only a onetime

cost that is associated with each VM start, and will not affect

the operational performance.

C. Deployment

MUSHI relies on several hardware features to protect VM.

Even though the security attributes of these features has been

a topic in several research work and prototypes [22], [13],

[24]. Careful examination of the hardware platform is still

needed prior to deployment. In addition, BIOS image binary

modification is not be scalable if the cloud infrastructure

is highly heterogeneous, which will likely be the case. In

addition, if a hardware mechanism is used to protect BIOS

rom from malicious legacy host, it would be impossible to

push an update to MUSHI remotely. For the future, it would

be necessary to build MUSHI into UEFI[31] as a signed driver.

VII. CONCLUSION

In this work, we have expanded on the previous work’s

threat model in that we assume more realistic adversaries

due to sensitive nature of information in military systems.

Adversaries exist both inside and outside the cloud infrastruc-

ture. They can attack via the host server or the collocated

VM. We have proposed a novel trusted isolated execution

architecture for cloud based MLS systems that is capable of

providing user confidentiality and integrity in the presence of

such adversaries.

REFERENCES

[1] “High-priority requirements to further usg agency cloud computing
adoption.” http://www.nist.gov/itl/cloud/upload/SP 500 293 volumeI-
2.pdf.

[2] “Federal cloud computing strategy.” http://www.cio.gov/documents
/federal-cloud-computing-strategy.pdf, Feb. 2011.

[3] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre, “The mils component
integration approach to secure information sharing,” in Digital Avionics
Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pp. 1.C.2–1
–1.C.2–14, oct. 2008.

[4] J. M. Rushby, “Proof of separability: A verification technique for a
class of a security kernels,” in Proceedings of the 5th Colloquium on
International Symposium on Programming, (London, UK, UK), pp. 352–
367, Springer-Verlag, 1982.

[5] Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense, DOD 5200.28-STD.

[6] J. P. Anderson, “Computer security technology planning study. tech-
nical report esd-tr-73-51, us air force.” http://seclab.cs.ucdavis.edu/
projects/history/seminal.html, 1972.

[7] J. M. Rushby, “Design and verification of secure systems,” in Proceed-
ings of the eighth ACM symposium on Operating systems principles,
SOSP ’81, (New York, NY, USA), pp. 12–21, ACM, 1981.

[8] “Vulnerability report for xen 4.x.” http://secunia.com/advisories/product/
33176/?task=advisories 2012, Feb. 2012.

[9] “National vulnerability database.” http://nvd.nist.gov/.
[10] J. r. R Wojtczuk, “Xen 0wning triology,” Black Hat Conference, 2008.
[11] K. Kortchinsky, “Cloudburst: A vmware guest to host escape,” Black

Hat Conference, 2009.

[12] A. Minozhenko, “How to hack vmware vcenter server in 60 seconds,”
Defcon, 2012.

[13] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
hypervisor attack surface for a more secure cloud,” in Proceedings of
the 18th ACM conference on Computer and communications security,
CCS ’11, (New York, NY, USA), pp. 401–412, ACM, 2011.

[14] “Pci sig: Pci-sig single root i/o virtualization.”
http://www.pcisig.com/specifications/iov/single root.

[15] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an os kernel,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, (New York, NY, USA), pp. 207–220, ACM, 2009.

[16] U. Steinberg and B. Kauer, “Nova: a microhypervisor-based secure vir-
tualization architecture,” in Proceedings of the 5th European conference
on Computer systems, EuroSys ’10, (New York, NY, USA), pp. 209–222,
ACM, 2010.

[17] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“Trustvisor: Efficient tcb reduction and attestation,” in Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, (Washington,
DC, USA), pp. 143–158, IEEE Computer Society, 2010.

[18] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, SOSP ’07, (New York, NY, USA), pp. 335–350, ACM, 2007.

[19] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” SIGOPS Oper.
Syst. Rev., vol. 37, pp. 193–206, Oct. 2003.

[20] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10, (Washington, DC,
USA), pp. 380–395, IEEE Computer Society, 2010.

[21] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: an execution infrastructure for tcb minimization,” SIGOPS
Oper. Syst. Rev., vol. 42, pp. 315–328, Apr. 2008.

[22] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM conference on Computer and communications
security, CCS ’11, (New York, NY, USA), pp. 375–388, ACM, 2011.

[23] F. Z. A. S. Kun Sun, Jiang Wang, “Secureswitch: Bios-assisted isolation
and switch between trusted and untrusted commodity oses,” Tech. Rep.
GMU-CS-TR-2011-7, Department of Computer Science, George Mason
University, Fairfax, VA , USA, 2011.

[24] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype: virtualized
cloud infrastructure without the virtualization,” in Proceedings of the
37th annual international symposium on Computer architecture, ISCA
’10, (New York, NY, USA), pp. 350–361, ACM, 2010.

[25] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“Hypersentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM conference on Computer and
communications security, CCS ’10, (New York, NY, USA), pp. 38–49,
ACM, 2010.

[26] Z. Zhou, V. Gligor, J. Newsome, and J. M. McCune, “Building veriable
trusted path on commodity x86 computers,” in Proceedings of the 2012
IEEE Symposium on Security and Privacy, SP ’12, (San Fransico, CA,
USA), IEEE Computer Society, 2012.

[27] “Advanced micro devices. amd64 architecture programmers manual,”
vol. 2, Sept. 2007.

[28] “Trusted computing group.” http://www.trustedcomputinggroup.org/.
[29] “Core boot.” http://www.coreboot.org.
[30] R. Wojtczuk and J. Rutkowska, “Attacking SMM Memory via Intel CPU

Cache Poisoning,” Mar. 2009.
[31] “Uefi specification.” http://www.uefi.org/home.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

