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Cross-Layer Optimization for MIMO-Based
Wireless Ad Hoc Networks: Routing, Power
Allocation, and Bandwidth Allocation

Jia Liu, Student Member, IEEE, Y. Thomas Hou, Senior Member, IEEE, Yi Shi, Member, IEEE, and
Hanif D. Sherali

Abstract—MIMO-based communications systems have great
potential to improve network capacity for wireless ad hoc
networks. Due to unique physical layer characteristics associ-
ated with MIMO, network performance is tightly coupled with
mechanisms at physical, link, and routing layers. So far, research
on MIMO-based wireless ad hoc networks is still in its infancy
and few results are available. In this paper, we consider the
problem of jointly optimizing power and bandwidth allocation
at each node and multi-hop/multi-path routing in a MIMO-based
wireless ad hoc network. We develop a solution procedure to this
cross-layer optimization problem and use simulations to validate
the efficacy of this solution.

Index Terms—Multiple-input multiple-output (MIMO), multi-
hop ad hoc network, cross-layer optimization.

I. INTRODUCTION

W IRELESS ad hoc network has been a focal research
area in the research community for some years. A

critical factor affecting the future prospect of such networks
for practical deployment is network capacity. Multiple-input
multiple-output (MIMO) system, which employs multiple
antennas, is shown to be capable of increasing channel ca-
pacity substantially than conventional communication systems
without the cost of additional spectrum [1]–[3]. As a result,
MIMO has been recognized as an enabling technology for
high capacity wireless ad hoc networks.
However, compared to the research on single-user MIMO,

for which many results are available (see [4], [5] and refer-
ences therein), research on multiuser MIMO systems is still
in its infancy and many fundamental problems, particularly
for multi-hop ad hoc networks, remain unsolved. Employing
MIMO in an ad hoc network is far from trivial. As discussed
by Winters [6], a MIMO-based ad hoc network with each node
equipped with M antennas does not necessarily mean that the
network capacity is also increased by M -fold. The potential
network capacity gain with the use of MIMO depends on the
coordinated mechanisms at the physical, link, and network
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layers. An improperly designed algorithm could diminish
any potential capacity gain from MIMO. As a result, joint
optimization across multiple layers is not only desirable, but
also necessary.
In this paper, we investigate cross-layer optimization for

MIMO-based ad hoc networks. The goal is to support a
set of user communication sessions such that some network
utility is maximized. However, to achieve high capacity for
such networks, many challenging problems must be addressed.
One problem is how to determine optimal power allocation
at each transmitting node, optimal bandwidth allocation for
each transmission, and optimal flow routing for the network.
This problem is considerably more challenging than that for
conventional single antenna-based wireless ad hoc networks.
This is because, compared to the simple scalar channels in
the single antenna case, power allocations are now performed
over complex matrix channels. Also, compared to single-user
MIMO systems, power allocation for multiple outgoing links
at a node has to be jointly considered.
For this challenging cross-layer optimization problem, we

show that it has some special structure which allows us to
decompose the original problem into a set of subproblems in
its dual domain. Specifically, our solution procedure first de-
couples the dual problem into a network layer subproblem and
a link-physical layer subproblem. For the link-physical layer
subproblem (corresponding to multi-antenna power allocation
and bandwidth allocation), which is the most difficult part in
the dual problem, we employ techniques in matrix differential
calculus and develop an algorithm based on gradient projection
(GP). By exploiting the piece-wise quadratic structure of
the projection subproblem, our proposed GP method enjoys
polynomial-time complexity.
Then, for the dual problem, we propose two strategies,

i.e., a cutting-plane method based on outer-linearization and
the subgradient-based scheme. Our proposed cutting-plane
method allows an easy recovery of primal feasible and optimal
solutions.
Finally, based on the subgradient-based approach, we design

a distributed algorithm that achieves the same optimal solution
as that of the centralized algorithm. We show that the excess
link capacity of each link can be used for message exchange
in our distributed algorithm.
The remainder of this paper is organized as follows. In

Section II, we present the network model and problem formu-
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lation. Section III presents our decomposition framework and
key subproblems to be solved at each layer. In Section IV,
we focus on the challenging physical-link layer subproblem
and the design of gradient projection method. In Section V,
we propose the cutting-plane and the subgradient methods for
solving the dual problem, respectively. Section VI discusses
the design of a distributed algorithm. Section VII presents nu-
merical results. Section VIII reviews related work. Section IX
concludes this paper.

II. NETWORK MODEL

We consider an FDMA MIMO-based ad hoc network,
where each node has been assigned non-overlapping (possibly
reused) frequency bands for its incoming and outgoing links
so that nodes can simultaneously transmit and receive, and
cause no interference among each other. There is a vast amount
of literature on how to perform channel assignments and its
discussion is beyond the scope of this paper. In this paper, we
focus on how to jointly optimize routing at the network layer,
bandwidth allocation at the link layer, and power allocation at
the physical layer.
We first introduce notation for matrices, vectors, and com-

plex scalars in this paper. We use boldface to denote matrices
and vectors. For a matrix A, A† denotes the conjugate trans-
pose. Tr{A} denotes the trace of A. Diag{A1, . . . ,An} rep-
resents the block diagonal matrix with matrices A1, . . . ,An

on its main diagonal. We denote I the identity matrix with
dimension determined from the context. A � 0 represents
that A is Hermitian and positive semidefinite (PSD). 1 and
0 denote vectors whose elements are all ones and zeros,
respectively, and their dimensions are determined from the
context. (v)m represents the m-th entry of vector v. For a
real vector v and a real matrix A, v ≥ 0 and A ≥ 0 mean
that all entries in v and A are nonnegative, respectively. We
let ei be the unit column vector where the i-th entry is 1 and
all the other entries are 0. The dimension of ei is determined
from the context as well. The operator “〈·, ·〉” represents vector
or matrix inner product operation.

A. MIMO Power Allocation

Let the matrix Hl ∈ Cnr×nt represent the wireless channel
gain matrix from the transmitting node to the receiving node
of link l, where nt and nr are the numbers of transmitting
and receiving antenna elements at each node, respectively.
Suppose that Hl is known at the transmitting node of link
l. Although wireless channels in reality are time-varying, we
consider a “constant” channel model in this paper, i.e., Hl’s
coherence time is larger than the transmission period we
consider. This simplification is of much interest for it enables
to find the ergodic capacity for block-wise fading channels
[5]. The received complex base-band signal vector for MIMO
link l with nt transmitting antennas and nr receiving antennas
in a Gaussian channel is given by

rl =
√
ρlHltl + nl, (1)

where rl and tl represent the received and transmitted signal
vectors, nl is the normalized additive white Gaussian noise
(AWGN) vector, ρj captures path-loss effect.

Let matrix Ql represent the covariance matrix of a zero-
mean Gaussian input symbol vector tl at link l, i.e., Ql =
E

{
tl · t†l

}
. The definition of Ql implies that it is Hermitian

and PSD. Physically, Ql represents the power allocation for
different antennas on link l’s transmitting node. In this paper,
we use matrix Q �

[
Q1 Q2 . . . QL

] ∈ Cnt×(nt·L) to
denote the collection of all input covariance matrices in the
network.
We define O (n) and I (n) as the sets of links that are

outgoing from and incoming to node n, respectively. At
the physical layer, since the total transmit power of each
node is subject to a maximum power constraint, we have
that

∑
l∈O(n) Tr{Ql} ≤ P

(n)
max, 1 ≤ n ≤ N , where P (n)

max

represents the maximum transmit power of node n.

B. Link Capacity and Bandwidth Allocation

The capacity of a MIMO link l in a AWGN channel can be
computed as

Φl(Wl,Ql) � Wl log2 det
(
I + ρlHlQlH

†
l

)
, (2)

where Wl represents the communication bandwidth of link
l. It can be readily verified that Φl(Wl,Ql) is a monotone
increasing concave function for Wl > 0 and Ql � 0. It can
be seen that the values of Wl and Ql, i.e., the allocation of
bandwidth and power on link l, directly affect the capacity of
link l. As a result, bandwidth allocation variables Wl together
with power allocation variables Ql play an important role in
our cross-layer optimization problem.
Since the total bandwidth of all outgoing links at a node, say

node n, cannot exceed its assigned bandwidth, denoted by Bn,
we have

∑
l∈O(n)Wl ≤ Bn, 1 ≤ n ≤ N . We denote matrix

W =
[
W1 W2 . . . WL

]T ∈ RL×1 the collection of all
bandwidth variables.

C. Routing

In this paper, the topology of a MIMO-based wireless ad
hoc network is represented by a directed graph, denoted by
G = {N ,L}, where N and L are the set of nodes and
all possible MIMO links, respectively. We assume that G is
always connected. Suppose that the cardinalities of the sets N
and L are |N | = N and |L| = L, respectively. In our model,
a link (the line segment defined by a pair of nodes) exists if
the link is shorter than or equal to the maximum transmission
range RT , i.e., L = {(i, j) : Dij ≤ RT , i, j ∈ N , i 	= j},
where Dij represents the distance between node i and node
j. RT can be determined by a node’s maximum transmission
power.
It is worth pointing out that link does not physically exist

in wireless networks and any node pair may be treated as a
possible link. However, in practice, some nodes are separated
so far away from each other that the channel gain is very
low. In such a case, even if the transmitting node allocates all
its power to this link, the received SNR remains so low that
the link capacity is practically zero (i.e., impossible to decode
due to the received low SNR). As a result, such node pairs
can be safely removed from the set of possible links without
affecting the accuracy of the final optimal solution. This is
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because allocating power to “bad” links leads to virtually no
capacity gain in these links while significantly penalizing the
capacities of other “good” links, which obviously could not
be optimal.
The network topology of G can be represented by a node-

arc incidence matrix (NAIM) [7] A ∈ RN×L, whose entry
anl associating with node n and arc (link) l is defined as

anl =

⎧⎨
⎩

1 if n is the transmitting node of arc l
−1 if n is the receiving node of arc l

0 otherwise.
(3)

We use a multi-commodity flow model for the routing of
data packets across a wireless ad hoc network. That is, in
a wireless ad hoc network, source nodes may send different
data to their intended destination nodes through multi-path
and multi-hop routing. We assume that the flow conservation
law at each node is satisfied, i.e., the network is a flow-
balanced system. Suppose that there is a total of F sessions in
the network. We denote the source and destination nodes of
session f , 1 ≤ f ≤ F as src(f) and dst(f), respectively. For
session f , we denote sf ∈ RN the source-sink vector, whose
entries, other than at the positions of src(f) and dst(f), are
all zeros. In addition, from the flow conservation law, we must
have (sf )src(f) = −(sf )dst(f). Without loss of generality,
we let (sf )src(f) ≥ 0 and simply denote it as a scalar sf .
Therefore, we can further write the source-sink vector of
session f in the form of

sf = sf

[ · · · 1 · · · −1 · · · ]T
, (4)

where the dots represent zeros, and 1 and −1 are in the
positions of src(f) and dst(f), respectively. Note that for the
source-sink vector of session f , 1 does not necessarily appear
before −1 as in (4), which is only for illustrative purpose.
Using the notation “=x,y” to represent the component-wise
equality of a vector except at the x-th and the y-th entries,
we have sf =src(f),dst(f) 0. In addition, denoting matrix
S �

[
s1 s2 . . . sF

] ∈ R
N×F the collection of all

source-sink vectors sf , we have

Sef =src(f),dst(f) 0, 1 ≤ f ≤ F,
〈1,Sef 〉 = 0, 1 ≤ f ≤ F,

(Sef )src(f) = sf , 1 ≤ f ≤ F,
where ef is the f -th unit column vector.
For link l, we let x(f)

l ≥ 0 be the amount of flow of session
f on link l. We define x(f) ∈ RL as the flow vector for session
f . At each node n, components of the flow vector and source-
sink vector for the same session satisfy the following flow
conservation law:∑
l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l = (sf )n, 1 ≤ n ≤ N, 1 ≤ f ≤ F.

With NAIM, the flow conservation law for the entire
network can be written as Ax(f) = sf , 1 ≤ f ≤ F .
Denote matrix X �

[
x(1) x(2) . . . x(F )

] ∈ RL×F the
collection of all flow vectors x(f). Then, the flow conservation
law can be written as

AX = S.

Since the network flow traversing a link cannot exceed the
link’s capacity limit, we have

F∑
f=1

x
(f)
l ≤ Φl(Wl,Ql), 1 ≤ l ≤ L,

Using matrix-vector notation, this can be written compactly
as

〈1,XTel〉 ≤ Φl(Wl,Ql), 1 ≤ l ≤ L.
Note that in a wireless network, link capacity Φl(Wl,Ql) is
not fixed and varies as the power allocation and bandwidth
allocation change.
In summary, the multicommodity network flow model im-

poses the following group of constraints:⎧⎨
⎩

AX = S,
X ≥ 0,
〈1,XT el〉 ≤ Φl(Wl,Ql), ∀l,

where S satisfies Sef =src(f),dst(f) 0, 〈1,Sef 〉 = 0, and
(Sef )src(f) = sf , for f = 1, 2, . . . , F .

D. Problem Formulation

We adopt the proportional fairness utility function, i.e.,
ln(sf ) for session f [8]. The objective is to maximize the
sum of utilities of all sessions. Putting together the physical
layer constraints in Subsection II-A, the link layer constraints
in Subsection II-B, and the network layer constraints in
Subsection II-C, we have the following problem formulation.

CRPBA : Maximize
∑F

f=1 ln(sf )
subject to AX = S

X ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f
〈1,XTel〉 ≤ Φl(Wl,Ql) ∀ l∑

l∈O(n) Tr{Ql} ≤ P (n)
max ∀n∑

l∈O(n)Wl ≤ Bn ∀n
Ql � 0, Wl ≥ 0 ∀ l

Variables : S, X, Q,W

III. PROBLEM DECOMPOSITION

We exploit the following special structure in CRPBA. The
network layer variables and the link layer variables are coupled
through the link capacity constraints 〈1,XTel〉 ≤ Φl(Wl,Ql).
Thus, we can employ Lagrangian dual decomposition to solve
CRPBA efficiently. Generally, given a nonlinear program-
ming problem, several different Lagrangian dual problems
can be constructed depending on which constraints are as-
sociated with Lagrangian dual variables [9]. For CRPBA,
we associate a Lagrangian multiplier ul to link l’s cou-
pling constraint 〈1,XT el〉 ≤ Φl(Wl,Ql). Let vector u �[
u1 u2 . . . uL

]
represent the collection of all dual

variables. Hence, the Lagrangian can be written as

Θ(u) = sup
S,X,Q,W

{L(S,X,Q,W,u)|(S,X,Q,W) ∈ Γ} ,
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where

L(S,X,Q,W,u) =
∑

f

ln (sf ) +
∑

l

ul (Φl(Wl,Ql)

−〈1,XTel〉
)

(5)

and Γ is defined as

Γ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(S,X,Q,W)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AX = S
X ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1, Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f
P

l∈O(n) Tr{Ql} ≤ P
(n)
max ∀n

Ql � 0, Wl ≥ 0 ∀ lP
l∈O(n) Wl ≤ Bn ∀n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

The Lagrangian dual problem of CRPBA can be written as:

DCRPBA : Minimize Θ(u)
subject to u ≥ 0.

It is easy to recognize that, for any given Lagrangian multiplier
u, the Lagrangian can be separated into two terms:

Θ(u) = Θnet(u) + Θlink−phy(u),

where Θnet and Θlink−phy are two subproblems respectively
corresponding to the network layer and the link-physical layer:

Θnet(u) � Maximize
∑

f ln (sf )
−∑

l ul〈1,XTel〉
subject to AX = S

X ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f

Variables : S, X

Θlink−phy(u) � Maximize
∑

l ulΦl(Wl,Ql)
subject to

∑
l∈O(n) Tr{Ql} ≤ P (n)

max ∀n∑
l∈O(n)Wl ≤ Bn ∀n

Ql � 0,Wl ≥ 0 ∀ l
Variables : Q, W

Then, the CRPBA Lagrangian dual problem can be trans-
formed into the following master dual problem:

MDCRPBA : Minimize Θnet(u) + Θlink−phy(u)
subject to u ≥ 0.

Now, the task of solving the decomposed Lagrangian dual
problem boils down to solving the subproblems Θnet(u)
and Θlink−phy(u), and the master problem MDCRPBA. Note
that in the network layer subproblem Θnet(u), the objective
function is concave and all constraints are affine. Therefore,
Θnet(u) can be readily solved by many polynomial-time con-
vex programming methods. However, solving Θlink−phy(u)
is not trivial because the objective function and constraints
involve many complex matrices variables. Even though
Θlink−phy(u) is a convex problem in nature, standard convex
optimization methods without exploiting the special structure
of Θlink−phy(u) are not efficient. In the following section,
we propose a custom-designed method based on gradient
projection to solve Θlink−phy(u).

IV. THE LINK-PHYSICAL LAYER SUBPROBLEM

In this paper, we propose a gradient projection-based
method (GP) to solve the link-physical layer subproblem.
Gradient projection, originally proposed by Rosen [10], is a
classical nonlinear programming method designed for solving
constrained optimization problems. Its formal convergence
proof, however, was not established until very recently in
[9]. The framework of our proposed GP method is shown in
Algorithm 1.

Algorithm 1 Gradient Projection Algorithm
Initialization:
Choose the initial conditions W(0) = [W

(0)
1 ,W

(0)
2 , . . . ,W

(0)
L ]T ,

Q(0) = [Q
(0)
1 ,Q

(0)
2 , . . . ,Q

(0)
L ]T . Let k = 0.

Main Loop:
1. Calculate the gradients G(k)

Wl
= ∇Wl

Θlink−phy(u,W(k),Q(k))

and G
(k)
Ql

= ∇Ql
Θlink−phy(u,W(k),Q(k)), for l = 1, 2, . . . , L.

2. Choose an appropriate step size sk . Let W
(k)′
l = W

(k)
l + skG

(k)
Wl
,

Q
(k)′
l = Q

(k)
l + skG

(k)
Ql
, for l = 1, 2, . . . , L.

3. Let [W̄
(k)
n , Q̄

(k)
n ]T be the projection of [W

(k)′
n ,Q

(k)′
n ]T onto

Ω+(n), where Ω+(n) � {(Wl,Ql) : l ∈ O (n) ,Wl ≥ 0,Ql �
0,

P
l∈O(n) Wl ≤ Bn,

P
l∈O(n) Tr{Ql} ≤ P (n)

max}.
4. Choose an appropriate step size αk . Let W

(k+1)
l = W

(k)
l +

αk(W̄
(k)
l −W (k)

l ), Q(k+1)
l = Q

(k)
l + αk(Q̄

(k)
l −Ql(k)), l =

1, 2, . . . , L.
5. Let k ← k+1. If ‖Q(k)

l −Q
(k−1)
l ‖ < ε and |W (k)

l −W (k−1)
l | < ε,

for l = 1, 2, . . . , L, then stop; else go to Step 1.

Due to the complexity of the objective function, performing
an exact line search is onerous as it calls for excessive
evaluations of the objective function. Therefore, we adopt
the “Armijo rule” inexact line search method [9], which still
enjoys provable convergence.
The basic idea of Armijo rule is that at each step of line

search, we sacrifice accuracy for efficiency as long as we have
sufficient improvement. According to Armijo rule, we choose
sk = 1 and αk = βmk (same as in [11]), where mk is the
first non-negative integer that satisfies

Θlink−phy(Q(k+1))−Θlink−phy(Q(k))

≥ σβmk

L∑
l=1

Tr
[
∇Ql

Θlink−phy(Q(k))†
(
Q̄(k)

l −Q(k)
l

)]
, (6)

where 0 < β < 1 and 0 < σ < 1 are some fixed constants.
In order to make the GP algorithm work, we have to address

two problem specific questions, i.e., during the k-th duration,
how to compute the gradients and how to project Q(k)′

l and

W
(k)′

l onto Ω+(n) � {(Wl,Ql) : l ∈ O (n) ,Wl ≥ 0,Ql �
0,

∑
l∈O(n)Wl ≤ Bn,

∑
l∈O(n) Tr{Ql} ≤ P (n)

max}.

A. Computing the Gradients

For the gradient with respect to Wl, it is not difficult to see
that GWl

� ∇Wl
Θlink−phy = ul log2 det(I + ρlHlQlH

†
l ).

The gradient GQl
� ∇Ql

Θlink−phy(Q) depends on the
partial derivative of Θlink−phy(Q) with respect to Ql. Before
computing the partial derivative of Θlink−phy(Q), we need the
following lemma [12].
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Lemma 1: For matrices B ∈ Cp×m, X ∈ Cm×n, and C ∈
Cn×p, if (BXC) is invertible, then we have ∂ det(BXC)

∂X =
det(BXC)

[
C(BXC)−1B

]T
.

With Lemma 1, we have the following corollary.
Corollary 1: For matrices A ∈ C

p×p, B ∈ C
p×m,

rank(B) = p, X ∈ Cm×n, C ∈ Cn×p, and rank(C) = p,
if (A + BXC) is invertible, then we have ∂

∂X ln det(A +
BXC) =

[
C(A + BXC)−1B

]T
.

Proof: By chain rule, we have

∂

∂X
ln det(BXC) =

∂ ln det(BXC)
∂ det(BXC)

· ∂ det(BXC)
∂X

=
1

det(BXC)
· det(BXC)

[
C(BXC)−1B

]T

=
[
C(BXC)−1B

]T
. (7)

Since rank(B) = p and rank(C) = p, we have that B and C
have right and left inverses, respectively. Let Y be such that
BYC = A+BXC, i.e., Y = X+BRACL, where BR and
CL are the right and left inverses of B and C, respectively.
It then follows that ∂Y/∂X = I. Thus, we have

∂ ln det(A + BXC)
∂X

=
∂ ln det(BYC)

∂Y
· ∂Y
∂X

=

[
C(BYC)−1B

]T · ∂Y
∂X

=
[
C(A + BXC)−1B

]T · ∂Y
∂X

=
[
C(A + BXC)−1B

]T
.

We can now compute the partial derivative of Θlink−phy(Q)
with respect to Ql, which is given by

∂Θlink−phy(Q)
∂Ql

= Wl
∂

∂Ql

[
log2 det

(
I + ρjHjQjH

†
j

)]
.

Assuming that the channel gain matrices H are of full row
rank (if not, we can always delete the linearly dependent rows).
Applying Corollary 1 by letting A = I, B = ρlHl, X = Ql,
and C = H†

l , we have

∂Θlink−phy(Q)
∂Ql

=
Wlulρl

ln 2

[
H†

l

(
I + ρlHlQlH

†
l

)−1

Hl

]T

,

where we have used the fact that Rl does not depend on Ql.
Recall that, for a function f(z), where z = x + jy is

a complex variable, its derivative is defined as ∂f(z)
∂z =

1
2

(
∂f(z)

∂x − j ∂f(z)
∂y

)
, and the gradient is defined as ∇zf(z) =

∂f(z)
∂x + j ∂f(z)

∂y [11], [13]. Hence, we have ∇zf(z) =

2
(

∂f(z)
∂z

)∗
. Therefore,

GQl
=

2Wlulρl

ln 2
H†

l

(
I + ρlHlQlH

†
l

)−1

Hl. (8)

Note that in (8), since
(
I + ρjHlQlH

†
l

)−1

is a Hermitian
matrix, GQl

is also Hermitian.

B. A Polynomial-Time Algorithm for Performing Projection

Since GQl
is Hermitian, it then follows that Q

′
l(k) =

Ql(k) + skGQl
(k) is Hermitian. On the other hand, since

Ω+(n) contains a constraint on power sum for each node n
having |O (n) | outgoing links, we need to project the |O (n) |

W -scalars and |O (n) | Q-covariance matrices onto Ω+(n)
simultaneously.
Toward this end, we construct a block diagonal matrix Dn

as follows:

Dn =
[

Wn 0
0 Qn

]
∈ C

|O(n)|(nt+1)×|O(n)|(nt+1),

where Wn is defined as Wn � Diag{Wl : l ∈ O (n)} ∈
C|O(n)|×|O(n)|, and Qn is defined as Qn � Diag{Ql : l ∈
O (n)} ∈ C|O(n)|nt×|O(n)|nt . We introduce two more matrices
E(n)

1 and E(n)
2 as follows:

E(n)
1 =

[
I|O(n)| 0

0 0

]
∈ C

|O(n)|(nt+1)×|O(n)|(nt+1),

E(n)
2 =

[
0 0
0 I|O(n)|nt

]
∈ C

|O(n)|(nt+1)×|O(n)|(nt+1).

It is easy to recognize that if Dn ∈ Ω+(n), we have
Tr(E(n)

1 Dn) =
∑

l∈O(n)Wl ≤ Bn, Tr(E(n)
2 Dn) =∑

l∈O(n) Tr (Ql) ≤ P (n)
max, and Dn � 0. In this paper, Frobe-

nius norm, which is the counterpart of the Euclidean norm in
the vector space, is used as the matrix distance metric. By the
definition of Frobenius norm, the distance between two ma-
trices A and B is ‖A−B‖F =

(
Tr

[
(A−B)†(A−B)

]) 1
2 .

Thus, given the block diagonal matrix Dn, we wish to find a
matrix D̃n ∈ Ω+(n) such that D̃n minimizes ‖D̃n −Dn‖F ,
i.e.,

Minimize ‖D̃n −Dn‖F
subject to Tr(E(n)

1 D̃n) ≤ Bn

Tr(E(n)
2 D̃n) ≤ P (n)

max

D̃n � 0

(9)

For more convenient algebraic manipulations, we instead
consider the following equivalent optimization problem:

Minimize 1
2

∥∥∥D̃n −Dn

∥∥∥2

F

subject to Tr(E(n)
1 D̃n) ≤ Bn

Tr(E(n)
2 D̃n) ≤ P (n)

max

D̃n � 0.

(10)

Note that the objective function of this minimization problem
is convex in D̃n, the constraint D̃n � 0 represents the convex
cone of positive semidefinite matrices, and the constraints
Tr(E(n)

1 D̃n) ≤ Bn and Tr(E(n)
2 D̃n) ≤ P

(n)
max are linear

constraints. Therefore, this problem is a convex optimization
problem, and we can solve this minimization problem by
solving its Lagrangian dual problem.
Associating Hermitian matrix Π to the constraint D̃n � 0,

ν to the constraint Tr(E(n)
1 D̃n) ≤ Bn, and μ to the constraint

Tr(E(n)
2 D̃n) ≤ P (n)

max, we can write the Lagrangian as

g(Π, ν, μ) = min
D̃n

{
1
2

∥∥∥D̃n −Dn

∥∥∥2

F
− Tr(Π†D̃n)

+ν
(
Tr[E(n)

1 D̃n]−Bn

)
+ μ

(
Tr[E(n)

2 D̃n]− P (n)
max

)}
.(11)

Since g(Π, ν, μ) is a convex quadratic function in D̃n and D̃n

becomes unconstrained after moving the positive semidefinite
constraint to the objective function, we can compute the
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minimizer of (11) by simply setting the derivative of (11) to
zero, i.e.,

(D̃n −Dn)−Π† + νE(n)
1 + μE(n)

2 = 0.

Noting that Π† = Π, we have

D̃n = Dn + Π− νE(n)
1 − μE(n)

2 . (12)

Substituting D̃n into (11), we have

g(Π, ν, μ) =
1
2

∥∥∥Π− νE(n)
1 − μE(n)

2

∥∥∥2

F
− νBn − μP (n)

max

+Tr
[(
νE(n)

1 + μE(n)
2 −Π

)(
Dn + Π− νE(n)

1 − μE(n)
2

)]

= −1
2

∥∥∥Dn − νE(n)
1 − μE(n)

2 + Π
∥∥∥2

F
− νBn − μP (n)

max

+
1
2
‖Dn‖2F .

Therefore, the Lagrangian dual problem can be written as

Maximize − 1
2

∥∥∥Dn − νE(n)
1 − μE(n)

2 + Π
∥∥∥2

F

−νBn − μP (n)
max + 1

2‖Dn‖2F
subject to Π � 0, ν ≥ 0, μ ≥ 0.

(13)

After solving (13) and by saddle-point optimality condition,
we have the optimal solution to the primal problem as:

D̃∗
n = Dn − ν∗E(n)

1 − μ∗E(n)
2 + Π∗, (14)

where ν∗, μ∗ and Π∗ are the optimal solutions to Lagrangian
dual problem in (13).
From matrix theory, we know that the eigenvalues of a

Hermitian matrix A ∈ Cn×n are real. Suppose that we sort
these eigenvalues of A, denoted by λi, i = 1, . . . , p, in non-
increasing order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λn, and perform
eigenvalue decomposition on A yielding A = UADiag{λi :
i = 1, . . . , p}U†

A. In this decomposition, UA is the unitary
matrix formed by the eigenvectors corresponding to the non-
increasing eigenvalues. Then, we have the positive semidefi-
nite and negative semidefinite projections of A as follows:

A+ = UADiag{max{λ1, 0}, . . . ,max{λp, 0}}U†
A, (15)

A− = UADiag{min{λ1, 0}, . . . ,min{λp, 0}}U†
A. (16)

The proof of the results in (15) and (16) is a straightforward
application of Moreau decomposition [14] by noting that
A+ � 0, A−  0, 〈A+,A−〉 = 0, A+ + A− = A, and
the positive semidefinite cone and negative semidefinite cone
are polar cones to each other.
Now we consider the term Dn−νE(n)

1 −μE(n)
2 +Π, which

is the only term involving Π in the dual objective function.
We can rewrite it as Dn − νE(n)

1 − μE(n)
2 − (−Π), where

we note that −Π  0. Finding a negative semidefinite matrix
−Π such that ‖Dn−νE(n)

1 −μE(n)
2 − (−Π)‖F is minimized

is equivalent to finding the projection of Dn−νE(n)
1 −μE(n)

2

onto the negative semidefinite cone. From our previous dis-
cussion, we have

−Π =
(
Dn − νE(n)

1 − μE(n)
2

)
−
. (17)

Substituting (17) back to the Lagrangian dual objective func-
tion, we have

min
Π

∥∥∥Dn − νE(n)
1 − μE(n)

2 + Π
∥∥∥

F

=
(
Dn − νE(n)

1 − μE(n)
2

)
+
.

Thus, the matrix variable Π in the Lagrangian dual problem
can be solved and the Lagrangian dual problem (13) can be
simplified to

Maximize ψ(ν, μ) � − 1
2‖(Dn − νE(n)

1 − μE(n)
2 )+‖2F

−νBn − μP (n)
max + 1

2‖Dn‖2F
subject to ν ≥ 0, μ ≥ 0.

Suppose that after performing eigenvalue decomposition on
Dn, we have Dn = UnΛnU†

n, where Λn is the diagonal
matrix formed by the eigenvalues ofDn,Un is the unitary ma-
trix formed by the corresponding eigenvectors. From the fact
that E(n)

1 = UnE(n)
1 U†

n and E(n)
2 = UnE(n)

2 U†
n, we have

(Dn − νE(n)
1 − μE(n)

2 )+ = Un(Λn − νE(n)
1 − μE(n)

2 )+U†
n.

Since Un is unitary, we have ‖(Dn− νE(n)
1 −μE(n)

2 )+‖2F =
‖(Λn − νE(n)

1 − μE(n)
2 )+‖2F . In particular, we denote the

eigenvalues in Λn corresponding to Wn and Qn by λ
(Wn)
i

and λ(Qn)
j , respectively, and sort the eigenvalues in these two

groups in non-increasing order as follows:

Λn = Diag{λ(Wn)
1 , . . . , λ

(Wn)
|O(n)|, λ

(Qn)
1 , . . . , λ

(Qn)
|O(n)|×nt

},

where λ(Wn)
1 ≥ . . . ≥ λ(Wn)

|O(n)| and λ
(Qn)
1 ≥ . . . ≥ λ(Qn)

|O(n)|×nt
.

It then follows that

‖(Λn − νE(n)
1 − μE(n)

2 )+‖2F

=
|O(n)|∑

i=1

(
max

{
0, λ(Wn)

i − ν
})2

+
|O(n)|nt∑

j=1

(
max

{
0, λ(Qn)

j − μ
})2

. (18)

From (18), we have

ψ(ν, μ) = −1
2

|O(n)|∑
i=1

(
max

{
0, λ(Wn)

i − ν
})2

−νBn − 1
2

|O(n)|nt∑
j=1

(
max

{
0, λ(Qn)

j − μ
})2

−μP (n)
max +

1
2
‖Dn‖2F

= ψ(ν) + ψ(μ) +
1
2
‖Dn‖2F , (19)

where ψ(ν) � − 1
2

∑|O(n)|
i=1 (max{0, λ(Wn)

i − ν})2− νBn and
ψ(μ) � − 1

2

∑|O(n)|nt

j=1 (max{0, λ(Qn)
j − μ})2 − μP (n)

max, i.e.,
we separate ψ(ν, μ) into two parts. It can be readily verified
that ψ(ν, μ) is continuous and piece-wise concave in ν and μ.
Generally, piece-wise concave maximization problems can be
solved by subgradient method. In this problem, it is easy to
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derive the subgradients with respect to ν and μ as follows:

∂ψ

∂ν
=

|O(n)|∑
i=1

max
{
0, λ(Wn)

i − ν
}
−Bn,

∂ψ

∂μ
=

|O(n)|×nt∑
j=1

max
{

0, λ(Qn)
j − μ

}
− P (n)

max.

However, due to the heuristic nature of its step size selection
strategy, subgradient algorithm usually does not perform well.
In fact, since ψ(ν, μ) is piece-wise quadratic and separable,
we can solve ψ(ν, μ) by exploiting this special structure.
For example, we can start searching the optimal value

of ν as follows. We use Î to index the pieces of ψ(ν),
Î = 0, 1, . . . , |O (n) |. Initially we set Î = 0 and in-
crease Î subsequently. Also, we introduce λ(Wn)

0 = ∞ and
λ

(Wn)
|O(n)|+1 = −∞. If Î = 0, we let endpoint objective value

ψÎ

(
λ

(Wn)
0

)
= 0, φ∗ = ψÎ

(
λ

(Wn)
0

)
, and let ν∗ = λ

(Wn)
0 .

If Î > |O (n) |, the search stops. For a particular index Î ,
suppose that ν ∈

[
λ

(Wn)

Î+1
, λ

(Wn)

Î

]
∩ R+, where R+ denotes

the set of non-negative real numbers. Solve ν∗
Î
by setting

∂

∂ν
ψÎ(ν) � ∂

∂ν

⎛
⎝−1

2

Î∑
i=1

(
λ

(Wn)
i − ν

)2

− νBn

⎞
⎠ = 0,

and we have

ν∗
Î

=
∑Î

i=1 λ
(Wn)
i −Bn

Î
. (20)

Now we consider the following two cases:
1) If ν∗

Î
∈ [λ(Wn)

Î+1
, λ

(Wn)

Î
] ∩ R+, then we have already

found the optimal solution for ν because ψ(ν, μ) is
continuous concave quadratic in ν, and the point with
zero-value first derivative, if exists, must be the unique
global maximum solution. Thus, we can let ν∗ = ν∗

Î
and the search is done.

2) If ν∗
Î
/∈ [λ(Wn)

Î+1
, λ

(Wn)

Î
] ∩ R+, we must have that the

local maximum in the interval [λ(Wn)

Î+1
, λ

(Wn)

Î
] ∩ R+ is

achieved at one of the two end points. We note that the
objective value ψÎ

(
λ

(Wn)

Î

)
has been computed in the

previous iteration. This is because from the continuity
of the objective function, we have ψÎ

(
λ

(Wn)

Î

)
=

ψÎ−1

(
λ

(Wn)

Î

)
. Thus, we only need to compute the

objective value ψÎ

(
λ

(Wn)

Î+1

)
of another endpoint. If

ψÎ

(
λ

(Wn)

Î+1

)
< ψÎ

(
λ

(Wn)

Î

)
= φ∗, then we know

ν∗ is the optimal solution; else let ν∗ = λ
(Wn)

Î+1
,

φ∗ = ψÎ

(
λ

(Wn)

Î+1

)
, let Î ← Î + 1 and continue.

Since there are |O (n) |+1 intervals, the search process takes
at most |O (n) | + 1 steps to find the optimal solution ν∗.
Likewise, the search process for μ can be done in a similar
fashion.
After finding ν∗ and μ∗, we have

D̃∗
n =

(
Dn − ν∗E(n)

1 − μ∗E(n)
2

)
+

= Un

(
Λn − ν∗E(n)

1 − μ∗E(n)
2

)
+

U†
n, (21)

That is, the projection D̃n can be computed by adjusting
the eigenvalues of Dn using ν∗ and μ∗ and keeping the
eigenvectors unchanged.
The projection of Dn onto Ω+(n) is summarized in Algo-

rithm 2 and Algorithm 3.

Algorithm 2 Projection onto Ω+(n)
1. Construct a block diagonal matrix Dn. Perform eigenvalue decompos-
ition Dn = UnΛnU†

n; separate the eigenvalues in two groups
corresponding toWn andQn; sort them in non-increasing order within
each group, respectively.

2. For each group of eigenvalues, use Algorithm 3 to find the optimal dual
variables ν∗ and μ∗.

3. Compute D̃n = Un(Λn − ν∗E(n)
1 − μ∗E(n)

2 )+U†
n.

Algorithm 3 Search the Optimal Dual Variable ν∗ and μ∗

Initiation:
Introduce λ0 =∞ and λK = −∞. Let Î = 0. Let endpoint objective
ψ

Î
(λ0) = 0, φ∗ = ψ

Î
(λ0), and μ∗ = λ0.

Main Loop:
1. If Î > K , return μ∗; else let μ∗

Î
= (

PÎ
j=1 λj − P )/Î .

2. If μ∗
Î
∈ [λ

Î+1, λÎ
] ∩ R+, then let μ∗ = μ∗

Î
and return μ∗.

3. Compute ψ
Î
(λ

Î+1). If ψÎ
(λ

Î+1) < φ∗, then return μ∗; else let
μ∗ = λ

Î+1
, φ∗ = ψ

Î
(λ

Î+1
), Î ← Î + 1 and go to Step 1.

V. SOLVING THE LAGRANGIAN DUAL PROBLEM

A. A Cutting-Plane Method Based on Outer-Linearization

We briefly review the basic idea of cutting-plane method
as follows. Let z = Θ(u). The inequality z ≥∑

f ln (sf ) +
∑

l ul

(
Φl(Wl,Ql)− 〈1,XT el〉

)
must hold for

all (S,X,Q,W) ∈ Γ. Thus, the dual problem is equivalent
to

Minimize z
subject to z ≥∑

f ln (sf ) +∑
l ul

(
Φl(Wl,Ql)− 〈1,XTel〉

)
u ≥ 0,

(22)

where (S,X,Q,W) ∈ Γ. However, (22) is a linear program
with infinite constraints not known explicitly. Instead, we can
consider the following approximating problem:

Minimize z

subject to z ≥∑
f ln

(
s
(j)
f

)
+∑

l ul

(
Φl(W

(j)
l ,Q(j)

l )− 〈1,X(j)T el〉
)

u ≥ 0,

(23)

where the points (S(j),X(j),Q(j),W(j)) ∈ Γ, for j =
1, . . . , k − 1. The problem in (23) is a linear program with
a finite number of constraints and can be solved efficiently.
Let (z(k),u(k)) be an optimal solution to the approximating
problem, which we refer to as the master program. If the
solution is feasible to (22), then it is an optimal solution to
the Lagrangian dual problem. To check feasibility, we consider
the following subproblem:

Maximize
∑

f ln (sf )+∑
l u

(k)
l

(
Φl(Wl,Ql)− 〈1,XTel〉

)
subject to (S,X,Q,W) ∈ Γ.

(24)
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Suppose that (S(k),X(k),Q(k),W(k)) is an optimal solution
to the subproblem (24) and Θ∗(u(k)) is the corresponding
optimal objective value. If zk ≥ Θ∗(u(k)), then u(k) is an
optimal solution to the Lagrangian dual problem. Otherwise,
for u = u(k), the inequality constraint in (22) is not satisfied
for (S(k),X(k),Q(k),W(k)). Thus, we can add the constraint

z ≥
∑

f

ln
(
s
(k)
f

)

+
∑

l

ul

(
Φl(W

(k)
l ,Q(k)

l )− 〈1,X(k)T el〉
)

(25)

to (23), and solve the master linear program again. Obviously,
(z(k),u(k)) violates (25) and will be cut off by (25). The
cutting plane algorithm is summarized in Algorithm 4.

Algorithm 4 Cutting Plane Algorithm for Solving DCRPBA

Initialization:
Find a point (S(0),X(0),Q(0),W(0)) ∈ Γ. Let k = 1.

Main Loop:
1. Solve the master program in (23). Let (z(k),u(k)) be an optimal
solution.

2. Solve the subproblem in (24). Let (S(k),X(k),Q(k),W(k)) be an
optimal point, and let Θ∗(u(k)) be the corresponding optimal objec-
tive value.

3. If z(k) ≥ Θ(u(k)), then stop with u(k) as the optimal dual solution.
Otherwise, add the constraint (25) to the master program, replace k

by k + 1, and go to Step 1.

B. Subgradient-Based Mechanism

Since the dual objective function is piece-wise differentiable
[9], subgradient method can be used to solve the master dual
problem. Subgradient algorithm for minimization problems is
a generalization of steepest descent algorithm in which the
negative gradient direction is replaced by a suitable negative
subgradient direction. For Θ(u), starting with an initial u(0)

and after evaluating subproblems Θnet(u) and Θlink−phy(u)
for u(k) in the k-th iteration, we update the dual variables by

u(k+1) =
[
uk − skd(k)

]
+
. (26)

In (26), the operator [·]+ projects a vector onto the nonnegative
orthant, and sk denotes a positive scalar step size. d(k) is a
subgradient of the Lagrangian at point u(k). Although it has
been shown in [9] that the subgradient algorithm converges if
the step size sk satisfies sk → 0 as k → ∞, ∑∞

k=0 sk = ∞,
and

∑∞
k=0 s

2
k < ∞, one has to carefully select the step size

to avoid stalling and accelerate the convergence. It is shown
in [9] that the best choice of the step size sk is

sk =
βk[Θ(u(k))− Θ̂]

‖dk‖ , (27)

where βk > 0 and Θ̂ is an estimate of the optimal value of
Θ. However, this optimal step size selection strategy requires
global information and the estimation of Θ, which is diffi-
cult in implementation. Another possible step size selection
strategy is the divergent harmonic series

β

∞∑
k=1

1
k

=∞. (28)

For the dual master problem, the subgradient for the La-
grangian dual problem is

d
(k)
l = Φl(Q∗(u))− 〈1,X∗(u)T el〉, l = 1, 2, . . . , L. (29)

It is worth pointing out that the dual variables u(k) can
be economically interpreted as “prices” of the links during
the k-th iteration. The subgradients d(k) indicates the excess
capacities of the links during the k-th iteration. The dual
updating scheme of the subgradient algorithm can be viewed
as a pricing scheme. When a link, say link k, is under-utilized,
then d(k)

l > 0. From (26), we can see that the price of link
k will be reduced. On the other hand, when link k is over-
utilized, then d(k)

l < 0. Again, from (26), it can be seen that
the price of that link k will be increased. The subgradient
algorithm is summarized in Algorithm 5.

Algorithm 5 A Subgradient Algorithm for Solving MWSR
Initialization:
Choose the initial starting points u(0) . Let k = 0.

Main Loop:
1. Compute (S(k),X(k),Q(k),W(k)) by solving the network layer
and link layer subproblems.

2. Choose an appropriate step size sk. Compute the subgradient d(k)

using (29) with (S(k),X(k),Q(k),W(k)).
3. Update dual variables u(k) using (26) with d(k).
4. If ‖u(k+1) − u(k)‖ < ε, then return (S(k),X(k),Q(k),W(k)) as
the final optimal solution and stop. Otherwise, let k ← k + 1 and

go to Step 1.

C. Recovering Primal Optimal Solution

Thus far, we have investigated the procedures for solving
the Lagrangian dual problem. During the course of solving
the dual problem, the following problem, which is used to
evaluate Θ(u) at u, needs to be solved:

Maximize
∑

f ln (sf) +∑
l ul

(
Φl(Wl,Ql)− 〈1,XTel〉

)
subject to (S,X,Q,W) ∈ Γ.

(30)

Suppose that (S∗,X∗,Q∗,W∗) is an optimal solution to (30).
If (S∗,X∗,Q∗,W∗) is also feasible to the primal problem
and (u∗)T

(
Φl(Wl,Ql)− 〈1,XTel〉

)
= 0, then it is clear that

(S∗,X∗,Q∗,W∗,u∗) is a saddle point and (S∗,X∗,Q∗,W∗)
solves the primal problem. However, (S∗,X∗,Q∗,W∗) may
not be feasible to the primal problem in general since it only
solves (30), a problem related but different to the primal
problem. Therefore, extra effort has to be taken to recover
a primal optimal solution when the saddle point conditions do
not hold.
Toward this end, suppose that (S(j),X(j),Q(j),W(j)), for

j = 1, 2, . . . , k are the optimal solution of (30) for u = u(j).
Now, let us consider the following linear programming prob-
lem:

Maximize
∑k

j=0 τj
∑F

f=1 log(s(j)f )

subject to
∑k

j=0 τj

(
〈1,X(j)T el〉 − Φl(W

(j)
l ,Q(j)

l )
)
≤ 0, ∀l∑k

j=0 τj(S
(j),X(j),Q(j),W(j)) ∈ Γ∑k

j=0 τj = 1
τj ≥ 0, ∀j.

(31)
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We have the following theorem for recovering a primal feasi-
ble near-optimal solution.
Theorem 1: Let τ∗j , for j = 1, . . . , k be an

optimal solution to (31). Then (S̄, X̄, Q̄,W̄) =∑k
j=1 τj(S

(j),X(j),Q(j),W(j)) is a feasible solution
to the primal problem. Furthermore, let V̄ be the
objective value corresponding to (S̄, X̄, Q̄,W̄),
Vk =

∑k
j=0 τ

∗
j

∑F
f=1 log(s(j)f ), and V ∗ be the true

primal optimal objective value. If Θ(u) − V̄ ≤ ε for some
u ≥ 0, then V̄ ≥ V ∗ − ε.

Proof: Since the function 〈1,XTel〉 − Φl(Wl,Ql)
is convex, we have that 〈1, X̄Tel〉 − Φl(W̄l, Q̄l) ≤∑k

j=0 τ
∗
j (〈1,X(j)T el〉 − Φl(W

(j)
l ,Q(j)

l )) ≤ 0. Thus,
(S̄, X̄, Q̄,W̄) is feasible to the primal problem. Noting the
concavity of

∑
log(·), we have

V̄ ≥
k∑

j=0

τ∗j
F∑

f=1

log(sf,j) = Vk ≥ Θ(u)− ε ≥ V ∗ − ε.

This completes the proof.
It is worth pointing out that there is no need to solve (31)

separately when we use the cutting-plane method to solve the
Lagrangian dual problem. This is because (31) is precisely the
linear programming dual of (23). As a result, the values of τj
are immediately available after we solve (23).

VI. DISTRIBUTED IMPLEMENTATION

As mentioned earlier, the Lagrangian dual problem is
solvable by subgradient algorithm. Although the original
motivation in applying subgradient algorithm is the non-
differentiability of Lagrangian dual objective function (piece-
wise concave/convex function in general), we find that the
subgradient method has the additional advantage of being
amenable to distributed implementation. Specifically, the sub-
gradient method has the following properties.

• Subgradient computation only requires local traffic infor-
mation 〈1,XT el〉 and the available link capacity infor-
mation Φl(Wl,Ql) at each link l. The subgradient can be
computed as ∂Θ(u)/∂ul = Φl(Wl,Ql) − 〈1,XTel〉. In
this case, subgradient only involves local variables Wl,
Ql, and XT el at each link and thus can be computed
locally.

• The choice of step sizes can be chosen as λk = β/k,
k = 1, 2, . . ., where 0 < β ≤ 1 is a predefined
constant. This step size choice obviously satisfies the
convergence conditions. This choice of step size depends
only on the iteration index k (can be defined as some
function of elapsed time), and does not require any other
global knowledge. In conjunction with the first property,
the dual variable, in the iterative form of u(k+1)

l =
u

(k)
l + λk(∂Θl(u)/∂ul), can also be computed locally.

• The objective functions Θlink−phy and Θnet can
be decomposed such that each node in the net-
work can perform the computation locally. Recall
that the link layer subproblem is: Max Θlink−phy �∑L

l=1 ulCl(Ql) s.t.
∑

l∈O(n) Tr{Ql} ≤ Pmax,Ql �
0, ∀l, where O (n) denotes the set of outgoing links from
node n. For this subproblem, it is not hard to see that it

Algorithm 6 Distributed Implementation
Initialization:
Initialize the iteration index k = 0, and choose initial values for u(0)

l ,
for all l.

Main Loop:
1. Each node independently solves the decomposed link layer subprob-
lem in (32). After that, each node independently updates dual variables
ul for all its outgoing links using (26) (where the step size and
subgradient computation follow (28) and (29)) and broadcast them to
its next hop neighbor.

2. Upon receiving some dual information from other neighbors, each
node relays it to its next hop neighbor excluding the node where this
information comes from.

3. Upon receiving all links’ dual information u, each source node solves
the decomposed network layer subproblem in (33). After that, each
source node f performs source routing and store these routing
information x(f)

l , ∀l in the header.
4. Upon receiving the source routing information, each intermediate
node routes the packets according to the routing information x(f)

l in
the header.

5. Based on current values of dual variables u(k)
l and the iteration

number k, compute u(k+1)
l . If u(k+1)

l −u(k)
l < ε, or k has reached

a predefined number of iterations, the algorithm stops. Otherwise, let

k ← k + 1 and go to Step 1.

can be decomposed into a set of new subproblems at each
node n of the following form:

Maximize Θ(n)
link−phy � ulCl(Ql)

subject to
∑

l∈O(n) Tr{Ql} ≤ Pmax

Ql � 0, l ∈ O (n) .
(32)

The original dual link layer subproblem can then be trans-
formed to Θlink−phy =

∑N
n=1 Θ(n)

link−phy. This suggests

that the optimization of each problem Θ(n)
link−phy in (32)

only requires local information of channel gains (all out-
going links from node n) and the locally-computed dual
variable ul. Thus, the link layer subproblem can be solved
distributively. Likewise, for the network layer subproblem
(i.e., Max Θnet �

∑F
f=1 ln(sf ) −∑

l ul〈1,XTel〉, s.t.
flow balance constraints for all flows), we may decom-
pose it into a set of subproblems based on the source
node of each session f :

Maximize Θ(f)
net � ln(sf )−∑

l ul〈1,XTel〉
subject to flow balance constraints for flow f.

(33)

The original network layer subproblem can then be
simply transformed to Θnet =

∑F
f=1 Θ(f)

net. Again, this

suggests that the optimization of each problem Θ(f)
net in

(33) only requires the locally-computed dual variable ul

for the links. In each iteration, all links can send the
locally-computed dual information back to the source
node of each session. As a result, the network layer
subproblem can be solved in a distributed fashion.

The key steps in this distributed algorithm include:

1) Initialize the iteration index k = 0, and choose initial
values for u(0)

l , for all l.
2) At node n, based on the current dual information ul,
where l ∈ O(n), node n can solve the decomposed link
layer subproblem in (32). After that, node n updates
dual variables ul for all its outgoing links using (26)
(where the step size and subgradient computation follow
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Fig. 1. Network topology of a 15-node ad hoc network.

(28) and (29)) and broadcast them to its next hop
neighbor. In the meantime, upon receiving some dual
information from other neighbors, node n relays it to
its next hop neighbor excluding the node where this
information comes from. Since the network is assumed
to be connected, these dual information will eventually
reach each source node.

3) At source node f , upon receiving all links’ dual infor-
mation u, node s solves the decomposed network layer
subproblem in (33). After that, source node f has an
updated flow rate sf and updated routing information
x

(f)
l , ∀l. Then, source n shall be able to do source
routing and store these routing information x(f)

l , ∀l in
the packet headers.

4) Upon receiving the source routing information, each
intermediate node n will route the packets according
to the routing information x(f)

l in the packet header.
5) Based on current values of dual variables u(k)

l and the
iteration number k, compute u(k+1)

l . If u(k+1)
l − u(k)

l <
ε, or k has reached a predefined number of iterations, the
algorithm stops. Otherwise, let k = k+ 1 and continue.

The distributed implementation of subgradient algorithm is
summarized in Algorithm 6.

VII. NUMERICAL RESULTS

In this section, we present some pertinent numerical results
for our solution procedure. We first describe our simulation
settings. As shown in Fig. 1, we have 15 nodes uniformly
distributed in a square region of 1200m × 1200m. Each node
in the network is equipped with two antennas. The maximum
transmit power for each node is set to Pmax = 20 dBm (100
mW). The path loss index is 3. The total bandwidth at each
node is 20MHz. There are three sessions in the network: node
14 to node 1, node 6 to node 10, and node 5 to node 4.
After executing our solution procedure, we find that the

optimal rates for these three sessions are s1 = 125 Mb/s,

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

N1

N2N3

N4

N5

N6
N7

N8

N9
N10

N11

N12

N13

N14

N15

Session 1: N14 → N1

(m)

(m
)

18.4
62.8

24.6
18.4

12.830.2

19.2
15.2

47.6

38.6

43.4
1.4

11.4
113.6

9

125

125

Fig. 2. Routing and flow rates of session 1 (in Mb/s).
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s2 = 190.6 Mb/s, and s3 = 258 Mb/s. The routings and flow
rates of sessions 1, 2, and 3 are shown in Fig. 2, Fig. 3, and
Fig. 4, respectively. These figures show that flow routings for
sessions 1, 2, and 3 are all multi-path and multi-hop. It can
easily be verified that the flow rates in Figures 2, 3, and 4
satisfy flow conservation.
Denote W(i,j) and Q(i,j) the bandwidth allocation and

power allocation for the transmission from node i to node
j. Table I shows the optimal bandwidth allocation of the
network. Table II shows the optimal power allocation of the
network. In Table I, the value in each cell represents the
fraction of total bandwidth of the link’s transmitting node.
For example, W(11,7) = 0.23 means that 0.23 of N11’s total
bandwidth is allocated to the transmission from N11 to N7.
In Table II, each cell with four entries corresponds to a
2×2 Q matrix, which represents a power allocation. Take the
transmission from N11 to N7 for example, Q(11,7) in Table II
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Fig. 4. Routing and flow rates of session 3 (in Mb/s).

says that the power allocations to the two antennas at N11
are 11.83 mW and 12.10 mW. Also, the signals sent through
these two antennas, denoted by x1 and x2, should also be
correlated with power E[x1x

†
2] = (−0.25 + 0.01i) mW and

E[x2x
†
1] = (−0.25− 0.01i) mW.

It can be observed from Table I and Table II that not
every node allocates its full power and total bandwidth for its
outgoing links. For example, N14 has only one outgoing link
(14, 7). We can see that W(14,7) = 0.71 and Tr(Q(14,7)) =
79.47 mW, which shows N14 does not transmit at full power
and utilize all of its assigned bandwidth. This is due to the
existence of bottleneck nodes in the network. Even if the
non-bottleneck nodes increase the total transmit power and
bandwidth, it will not help increase its session rate because the
end-to-end session rate is bounded by the minimum bottleneck
link along the path. In this network, it can be verified that
N3, N7, N11, and N12 are bottleneck nodes. For example,
at N11, W(11,3) + W(11,5) + W(11,7) + W(11,12) = 1 and
Tr(Q(11,3))+Tr(Q(11,5))+Tr(Q(11,7))+Tr(Q(11,12)) = 100
mW. This means that the power and bandwidth at N11 has
been fully utilized and cannot be further increased.
We plot the convergence behavior of gradient projection

algorithm for the link-physical layer subproblem (with dual
variable u = 1) in Fig. 5. It can be seen that GP takes
28 iterations to converge to the maximum objective value of
Θlink−phy(u) with u = 1.
The convergence process of the Lagrangian dual problem

is illustrated in Fig. 6. The step size selection strategy for the
distributed subgradient is λk = 0.1

k . In this figure, “Dual UB”
denotes the current objective value of the Lagrangian dual
function, which can be thought of as an upper bound of the
primal objective value. “Primal Feasible Solution” denotes the
current primal feasible solution recovered from the Lagrangian
dual, which can be thought of as a lower bound of the optimal
primal objective value. During each iteration, the cutting-
plane and subgradient methods each solve the Lagrangian dual
problem. The upper bounds of the optimal objective value are

non-increasing with iterations. Meanwhile, the primal feasible
objective values keep increasing with iterations. As expected,
the upper bounds and the lower bound converge and give
the optimal solution, as shown in this figure. We find that
for this 15-node ad hoc network, centralized cutting-plane
algorithm and distributed subgradient algorithm converge in
approximately 115 iterations and 160 iterations, respectively.
The optimal value of the network utility function is 6.64 (in
log(b/s/Hz)).
For performance gain comparison, we compare the heuristic

strategy discussed in [6], which uses equal power allocation
and equal bandwidth allocation to all the outgoing links at each
node, which yields an objective value of 3.01. In comparison,
the performance gap to our optimal value (6.64) is significant.

VIII. RELATED WORK

In this section, we give a synopsis of related work on MIMO
for single and multi-hop wireless networks. For single-hop,
there is much research on MIMO-based systems for cellular
networks [15]–[20]. In this setting, there are two types of
channels: the MIMO multiple access channel (MIMO-MAC),
which is associated with “uplinks,” and the MIMO broadcast
channel (MIMO-BC), which is associated with “downlinks.”
In [20], Yu et al. showed that the maximum sum rate of
MIMO-MAC can be solved via the so-called “Iterative Water-
Filling” method by exploiting the nice convexity structure of
the problem. Very recently, Weingarten et al. [21] showed that
the capacity region for MIMO-BC coincides with “dirty-paper
coding” (DPC) rate region [22]. In particular, it was shown
that there is a nice duality between MIMO-BC and MIMO-
MAC [23]–[25]. By exploiting this duality, the non-convex
capacity region problem of MIMO-BC can be computed by
solving an equivalent MIMO-MAC problem under a power
sum constraint [16]–[18], [26], [27].
For multiuser MIMO-based single-hop ad hoc networks

(i.e., without any infrastructure), the maximum sum rate prob-
lem becomes much more challenging due to its non-convex
nature. In [28], Jorswieck and Boche analyzed the worst-case
performance of a multiuser MIMO system with interference.
In [29], [30], Demirkol and Ingram introduced an iterative
(trial-and-error) method based on stream control for some
simple network topologies. In [31], Sundaresan et al. proposed
a MAC control scheme along ideas similar to those in [29],
[30]. In [32], Chen and Gans analyzed the asymptotic behavior
of network spectral efficiency with L simultaneous co-channel
transmission pairs. They showed that, in the absence of
channel state information (CSI) at the transmitters, the network
asymptotic spectral efficiency is limited by nr nats/s/Hz as
L → ∞, and at least nt + nr + 2

√
nt · nr nats/s/Hz when

CSI is available at the transmitters. In contrast to asymptotic
analysis, in [11], Ye and Blum studied a finite-sized network
and designed algorithms to find local optimal solutions.
For MIMO-based multi-hop ad hoc networks, research

results remain limited. In [33], Hu and Zhang studied the
joint problem of MAC and routing, with a consideration
of optimal hop distance to minimize end-to-end delay. In
[34], Sundaresan and Sivakumar used simulations to study
various characteristics and tradeoffs (multiplexing gain vs.
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TABLE I
BANDWIDTH ALLOCATION OF THE 15-NODE NETWORK (×20 MHZ).

W(1,4) 0.71 W(4,1) 0.44 W(2,9) 0.24 W(9,2) 0.35 W(2,12) 0.41 W(12,2) 0.18 W(2,15) 0.24
W(15,2) 0.40 W(3,4) 0.17 W(4,3) 0.24 W(3,8) 0.14 W(8,3) 0.24 W(3,11) 0.23 W(11,3) 0.22
W(3,12) 0.20 W(12,3) 0.24 W(3,13) 0.25 W(13,3) 0.21 W(4,12) 0.24 W(12,4) 0.18 W(5,7) 0.38
W(7,5) 0.20 W(5,11) 0.53 W(11,5) 0.21 W(6,9) 0.37 W(9,6) 0.29 W(6,15) 0.45 W(15,6) 0.24
W(7,10) 0.30 W(10,7) 0.24 W(7,11) 0.22 W(11,7) 0.23 W(7,13) 0.15 W(13,7) 0.18 W(7,14) 0.14
W(14,7) 0.71 W(8,10) 0.27 W(10,8) 0.24 W(8,13) 0.26 W(13,8) 0.18 W(9,15) 0.34 W(15,9) 0.26
W(10,13) 0.24 W(13,10) 0.33 W(11,12) 0.34 W(12,11) 0.39

TABLE II
POWER ALLOCATION IN THE 15-NODE AD HOC NETWORK (MW).

Q(1,4)
35.46 0.00 − 0.00i

0.00 + 0.00i 35.46
Q(4,1)

21.84 −0.09 + 0.02i
−0.09 − 0.02i 21.87

Q(2,9)
11.82 0.00 − 0.00i

0.00 + 0.00i 11.82

Q(9,2)
17.23 −0.09 + 0.10i

−0.09 − 0.10i 17.47
Q(2,12)

24.51 −0.08 − 0.08i
−0.08 + 0.08i 23.98

Q(12,2)
8.87 0.00 − 0.00i

0.00 + 0.00i 8.87

Q(2,15)
11.82 0.00 − 0.00i

0.00 + 0.00i 11.82
Q(15,2)

20.58 −0.01 + 0.16i
−0.01 − 0.16i 20.50

Q(3,4)
8.90 0.01 + 0.00i

0.01 − 0.00i 8.91

Q(4,3)
11.82 0.000 − 0.000i

0.00 + 0.00i 11.82
Q(3,8)

7.36 0.10 + 0.01i
0.10 − 0.01i 7.23

Q(8,3)
12.18 0.00 − 0.00i

0.00 + 0.00i 12.15

Q(3,11)
11.37 0.00 + 0.33i

0.00 − 0.33i 12.04
Q(11,3)

10.76 0.00 + 0.00i
0.00 − 0.00i 10.70

Q(3,12)
9.60 0.13 − 0.18i

0.13 + 0.18i 10.27

Q(12,3)
11.75 0.00 − 0.00i

0.00 + 0.00i 11.73
Q(3,13)

12.22 0.35 + 0.69i
0.35 − 0.69i 12.09

Q(13,3)
11.09 −0.03 − 0.05i

−0.03 + 0.05i 11.08

Q(4,12)
11.82 0.00 − 0.00i

0.00 + 0.00i 11.82
Q(12,4)

9.22 0.04 − 0.09i
0.04 + 0.09i 9.25

Q(5,7)
19.62 −0.01 − 0.08i

−0.01 + 0.08i 19.68

Q(7,5)
9.54 0.00 − 0.04i

0.00 + 0.04i 9.51
Q(5,11)

26.56 −0.10 − 0.14i
−0.10 + 0.14i 26.90

Q(11,5)
10.42 0.01 − 0.12i

0.01 + 0.12i 10.39

Q(6,9)
21.22 0.00 − 0.00i

0.00 + 0.00i 21.22
Q(9,6)

14.78 −0.10 − 0.08i
−0.10 + 0.08i 14.55

Q(6,15)
22.84 0.21 + 0.14i

0.21 − 0.14i 23.24

Q(15,6)
11.82 0.00 − 0.00i

0.00 + 0.00i 11.82
Q(7,10)

14.19 −0.05 − 0.09i
−0.05 + 0.09i 13.82

Q(10,7)
11.82 0.00 − 0.00i

0.00 + 0.00i 11.82

Q(7,11)
12.48 1.15 − 0.43i

1.15 + 0.43i 11.21
Q(11,7)

11.83 −0.25 − 0.01i
−0.25 + 0.01i 12.10

Q(7,13)
7.54 0.12 − 0.02i

0.12 + 0.02i 7.51

Q(13,7)
8.87 0.00 − 0.00i

0.00 + 0.00i 8.87
Q(7,14)

7.10 0.00 − 0.00i
0.00 + 0.00i 7.10

Q(14,7)
39.76 0.19 + 0.04i

0.19 − 0.04i 39.71

Q(8,10)
15.00 0.05 − 0.05i

0.05 + 0.05i 14.95
Q(10,8)

11.82 0.0 − 0.00i
0.016 + 0.00i 11.82

Q(8,13)
12.80 0.03 − 0.04i

0.03 + 0.04i 12.82

Q(13,8)
10.00 0.54 − 0.59i

0.54 + 0.59i 9.69
Q(9,15)

17.21 0.32 + 0.28i
0.32 − 0.28i 16.77

Q(15,9)
13.09 0.10 − 0.08i

0.10 + 0.08i 12.95

Q(10,13)
11.82 0.00 − 0.00i

0.00 + 0.00i 11.82
Q(13,10)

15.70 0.15 + 0.01i
0.15 − 0.01i 15.71

Q(11,12)
16.76 −0.04 + 0.02i

−0.04 − 0.02i 17.04

Q(12,11)
20.85 0.20 + 0.11i

0.20 − 0.11i 19.47
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Fig. 5. Convergence behavior of gradient projection algorithms
for link-physical layer subproblem (for u = 1).
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diversity gain) of MIMO links that can be leveraged by
routing layer protocols in rich multi-path environments to
improve performance. In [35], Lee et al. proposed a distributed
algorithm for MIMO-based multi-hop ad hoc networks, where

diversity and multiplexing gains of each link are controlled to
achieve the optimal rate-reliability trade-off. They assumed
fixed SINRs and fixed routes between source and destination
nodes. In these efforts, node power control, per-antenna power
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allocation and their impact on upper layers are not considered.
It is also worth pointing out that the Lagrangian decompo-

sition framework has also been employed in other networking
problems in the literature. For example, in [36], Xiao et al.
used a similar decomposition technique to solve simultaneous
routing and resource allocation problems. However, their rout-
ing setting is very different from ours and their link layer is
not MIMO-based. Due to the spatial dimension resulted from
MIMO, the link layer subproblem in this paper is different
and much more challenging.

IX. CONCLUSION

In this paper, we investigated the problem of cross-layer
optimization of routing, power allocation, and bandwidth
allocation for MIMO-based ad hoc networks. We developed a
mathematical solution procedure, which combines Lagrangian
decomposition, gradient projection, cutting-plane, and sub-
gradient methods. We showed the decomposable structure of
the Lagrangian dual problem and the details of our proposed
algorithms. We also presented a distributed implementation.
Our numerical results showed that the performance gain by
the optimal cross-layer design is significant.
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ysis. Berlin: Springer-Verlag, 2001.

[15] S. Cartreux, L. J. Greenstein, and P. F. Dressen, “Simulation results for
an interference-limited multiple-input multiple-output cellular system,”
IEEE Commun. Lett., vol. 4, no. 11, pp. 334–336, Nov. 2000.

[16] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith,
“Sum power iterative water-filling for multi-antenna Gaussian broadcast
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1570–1580, Apr.
2005.

[17] T. Lan and W. Yu, “Input optimization for multi-antenna broadcast chan-
nels and per-antenna power constraints,” in Proc. IEEE GLOBECOM,
vol. 1, Dallas, TX, U.S.A., Nov. 2004, pp. 420–424.

[18] H. Viswanathan, S. Venkatesan, and H. Huang, “Downlink capacity
evaluation of cellular networks with known-interference cancellation,”
IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 802–811, Jun. 2003.

[19] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing
methods for downlink spatial multiplexing in multiuser mimo channels,”
IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.

[20] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for
Gaussian vector multiple-access channels,” IEEE Trans. Inf. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[21] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.

[22] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29,
no. 3, pp. 439–441, May 1983.

[23] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of MIMO broadcast channels,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[24] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaus-
sian broadcast channel and uplink-downlink duality,” IEEE Trans. Inf.
Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.

[25] W. Yu, “Uplink-downlink duality via minimax duality,” IEEE Trans. Inf.
Theory, vol. 52, no. 2, pp. 361–374, Feb. 2006.

[26] W. Yu, “A dual decomposition approach to the sum power Gaussian
vector multiple-access channel sum capacity problem,” in Proc. Conf.
Information Sciences and Systems (CISS), Baltimore, MD, U.S.A., Mar.
2003.

[27] J. Liu, Y. T. Hou, and H. D. Sherali, “Conjugate gradient projection
approach for MIMO Gaussian broadcast channels,” in Proc. IEEE
International Symposium on Information Theory (ISIT), Nice, France,
Jun.24-29, 2007, pp. 781–785.

[28] E. A. Jorswieck and H. Boche, “Performance analysis of capacity
of MIMO systems under multiuser interference based on worst-case
noise behavior,” EURASIP Journal on Wireless Communications and
Networking, vol. 2004, no. 2, pp. 273–285, Feb. 2004.

[29] M. F. Demirkol and M. A. Ingram, “Power-controlled capacity for
interfering MIMO links,” in Proc. IEEE Veh. Technol. Conf., Atlantic
City, NJ, U.S.A., Oct. 2001, pp. 187–191.

[30] M. F. Demirkol and M. A. Ingram, “Stream control in network with
interfereing MIMO links,” in Proc. IEEE Wireless Commun. and Net-
working Conf., New Orleans, LA, U.S.A., Mar. 2003, pp. 343–348.

[31] K. Sundaresan, R. Sivakumar, M. A. Ingram, and T.-Y. Chang, “Medium
access control in ad hoc networks with MIMO links: Optimization
considerations and algorithms,” IEEE Trans. Mobile Comput., vol. 3,
no. 4, pp. 350–365, Oct. 2004.

[32] B. Chen and M. J. Gans, “MIMO communications in ad hoc networks,”
IEEE Trans. Signal Process., vol. 54, no. 7, pp. 2773–2783, Jul. 2006.

[33] M. Hu and J. Zhang, “MIMO ad hoc networks: Medium access control,
saturation throughput, and optimal hop distance,” Special Issue on
Mobile Ad Hoc Networks, Journal of Communications and Networks,
pp. 317–330, Dec. 2004.

[34] K. Sundaresan and R. Sivakumar, “Routing in ad hoc networks with
MIMO links,” in Proc. IEEE International Conf. on Network Protocols,
Boston, MA, U.S.A., Nov. 2005, pp. 85–98.

[35] J.-W. Lee, M. Chiang, and A. R. Calderbank, “Price-based distributed
algorithms for rate-reliability tradeoff in network utility maximization,”
IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 962–976, May 2006.

[36] L. Xiao, M. Johansson, and S. P. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,” IEEE Trans. Commun.,
vol. 52, no. 7, pp. 1136–1144, Jul. 2004.



926 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 6, AUGUST 2008

Jia Liu (S’03) received his B.S. degrees from South
China University of Technology in 1996, in Electri-
cal Engineering and Computer Science, respectively.
He received his M.S. degree in Electrical Engineer-
ing from South China University of Technology in
1999. He is currently working toward his Ph.D.
degree in the Bradley Department of Electrical and
Computer Engineering at Virginia Tech, Blacksburg,
VA. His research focuses on MIMO technologies,
multicarrier communications systems, cognitive ra-
dio, information theory, and mathematical optimiza-

tion theory for communications networks.
Prior to joining Virginia Tech, Liu was with Bell Labs, Lucent Technologies

in Beijing China for four years. His main responsibilities include participating
in 3GPP2 and making contributions to various standards of cdma2000-
1x/1xEV-DO/1xEV-DV. He is a co-recipient of Bell Labs President Gold
Award in 2001. During summer 2005, he worked as a software engineer
intern in Mercury Computer Systems Inc.
Liu is a student member of IEEE. He is a regular reviewer for major

IEEE conferences and journals. He is a member of Tau Beta Pi, the national
engineering honor society. He is a recipient of IEEE ICC 2008 Best Paper
Award

Y. Thomas Hou (S’91–M’98–SM’04) received the
B.E. degree from the City College of New York in
1991, the M.S. degree from Columbia University
in 1993, and the Ph.D. degree from Polytechnic
University, Brooklyn, New York, in 1998, all in
Electrical Engineering.
Since August 2002, he has been with Virginia

Tech, the Bradley Department of Electrical and
Computer Engineering, Blacksburg, VA, where he
is now an Associate Professor. His current research
interests are radio resource (spectrum) management

and networking for cognitive radio wireless networks, optimization and
algorithm design for wireless ad hoc and sensor networks, and video
communications over dynamic ad hoc networks. From 1997 to 2002, Dr.
Hou was a Researcher at Fujitsu Laboratories of America, Sunnyvale, CA,
where he worked on scalable architectures, protocols, and implementations for
differentiated services Internet; service overlay networking; video streaming;
network bandwidth allocation policies and distributed flow control algorithms.
Prof. Hou is a recipient of an Office of Naval Research (ONR) Young In-

vestigator Award (2003) and a National Science Foundation (NSF) CAREER
Award (2004) for his research on algorithm design and optimizations for
wireless ad hoc and sensor networks. He has published extensively in leading
journals and top tier conferences and received several best paper awards from
IEEE (including IEEE INFOCOM 2008 Best Paper Award).
Prof. Hou is active in professional services and is currently serving as

an Editor of IEEE Transactions on Wireless Communications, ACM/Springer
Wireless Networks (WINET), and Elsevier Ad Hoc Networks Journal. He was
Co-Chair of Technical Program Committee (TPC) of the Second International
Conference on Cognitive Radio Oriented Wireless Networks and Communi-
cations (CROWNCOM 2007), Orlando, FL, August 1-3, 2007. He was the
Founding Chair of the First IEEE Workshop on Networking Technologies for
Software Defined Radio Networks, September 25, 2006, Reston, VA.
Prof. Hou was Co-Chair (with Tony Ephremides) of NSF Workshop on

Bridging the Gap between Wireless Networking Technologies and Advances
at the Physical Layer, August 27-28, 2007, Reston, VA. He is a TPC Co-Chair
of IEEE INFOCOM 2009, to be held in Rio de Janeiro, Brazil.

Yi Shi (S’02–M’08) received his B.S. degree from
University of Science and Technology of China,
Hefei, China, in 1998, a M.S. degree from Institute
of Software, Chinese Academy of Science, Beijing,
China, in 2001, a second M.S. degree from Virginia
Polytechnic Institute and State University (Virginia
Tech), Blacksburg, VA, in 2003, all in computer
science, and a Ph.D. degree in computer engineering
from Virginia Tech, in 2007. He is currently a Senior
Research Associate in the Department of Electrical
and Computer Engineering at Virginia Tech.

His current research focuses on algorithms and optimization for cognitive
radio wireless networks, MIMO and cooperative communication networks,
sensor networks, and ad hoc networks. His work has appeared in some highly
selective international conferences (ACM MobiCom, ACM MobiHoc, and
IEEE INFOCOM) and IEEE journals.
While an undergraduate, he was a recipient of Meritorious Award in Inter-

national Mathematical Contest in Modeling in 1997 and 1998, respectively.
He was a recipient of Chinese Government Award for Outstanding Ph.D.
Students Abroad in 2006. He is a recipient of IEEE INFOCOM 2008 Best
Paper Award.
Dr. Shi is active in professional services. He was a TPC member of

IEEE Workshop on Networking Technologies for Software Defined Radio
(SDR) Networks (held in conjunction with IEEE SECON 2006), Reston,
VA, Sept. 25, 2006, and ChinaCom, Hangzhou, China, April 25–27, 2008.
He is a TPC member of ACM International Workshop on Foundations of
Wireless Ad Hoc and Sensor Networking and Computing (co-located with
ACM MobiHoc 2008), Hong Kong, China, May 26–30, 2008; IEEE ICCCN,
St. Thomas, U.S. Virgin Islands, August 4–7, 2008; IEEE PIMRC, Cannes,
France, September 15–18, 2008; IEEE MASS, Atlanta, GA, Oct. 6–9, 2008;
and IEEE ICC, Dresden, Germany, June 14–18, 2009.

Hanif D. Sherali is a University Distinguished Pro-
fessor and the W. Thomas Rice Chaired Professor
of Engineering in the Industrial and Systems Engi-
neering Department at Virginia Polytechnic Institute
and State University.
His areas of research interest are in analyzing

problems and designing algorithms for specially
structured linear, nonlinear, and integer programs
arising in various applications, global optimization
methods for non-convex programming problems,
location and transportation theory and applications,

economic and energy mathematical modeling and analysis. He has published
over 238 refereed articles in various Operations Research journals, has (co-)
authored six books in this area, and serves on the editorial board of eight
journals.
He is an elected member of the National Academy of Engineering.


