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Abstract— Real-time multimedia communication is an impor-
tant service that should be supported in wireless ad hoc networks.
In this paper, we consider the problem of how to optimally
support multiple concurrent video communication sessions in an
ad hoc network. Our problem formulation follows an application-
centric cross-layer approach with the objective of minimizing the
average distortion for all video sessions via finding optimal paths
for each session. Since this network-wide optimization problem
is shown to be NP-complete, we pursue to develop competitive
heuristic algorithms to address this problem. We find that Genetic
Algorithms (GA) are eminently efficient in solving such cross-
layer problems with complex objective functions and constraints.
We describe a detailed solution procedure based on the GA
approach and use numerical results to demonstrate its superior
performance over other conventional approaches. Our efforts
in this work provide an important methodology for addressing
cross-layer network-wide optimal routing problems for video
applications.

I. INTRODUCTION

With the recent advances in digital video technology and
wireless ad hoc networking, there is a compelling need to sup-
port real-time multimedia communications in ad hoc networks,
in addition to simple data communications. Unlike wired
networks (e.g., the Internet) or infrastructure-based wireless
networks, ad hoc networks typically are deployed under harsh
or denied areas and exhibit frequent node or link failures in
addition to network congestion. As a result, such a network
environment poses a much more difficult problem for real-time
multimedia communications (e.g., video).

In this paper, we consider the important problem of sup-
porting multiple concurrent video sessions in wireless ad hoc
networks. This problem is of importance since it captures
the scenario that there are typically more than one real-
time multimedia communication sessions sustained by an ad
hoc network and these sessions may share the same network
resources (link bandwidth, buffer) and might interact with each
other. The first contribution of this paper is that we formulate
an optimization problem from a cross-layer perspective by
considering the application layer performance metric (i.e., av-
erage video distortion) as a function of network layer behavior
(routing of each session). In particular, our constraints at the
network layer address not only packet losses due to frequent
node/link failures, which are unique to ad hoc networks,
but also traditional network problems such as delays due to
congestion. In other words, our application-centric problem
formulation seamlessly unifies video distortion with packet

loss (due to node/link failures) and delay via routing for each
session.

The formulated model for this problem exhibits a highly
complex objective function and constraints, which renders this
problem substantially more difficult than traditional network-
centric (single network layer) QoS routing problems. We
find that the problem is NP-complete. Accordingly, the sec-
ond contribution of this paper is that we develop a highly
competitive solution method based on Genetic Algorithms
(GAs) [1]. GA-based algorithms have an intrinsic capability
to handle a population of solutions, which perfectly suits
the nature of our cross-layer concurrent routing problem.
Furthermore, GA-based approaches have the unique strength
of identifying promising search regions and have less of a
tendency to be trapped at a local optimum, as compared with
other single-solution based trajectory methods [1]. We find that
the complex network-wide optimization problem provides the
perfect setting for a GA-based method. The complexity in the
objective function does not create much difficulty for this type
of a procedure other than some algebraic calculations. The
complexity due to the interaction among concurrent sessions
can also be handled rather naturally by GAs since they are
intrinsically parallel, and concurrent multi-session routing and
interactions increase computational effort only linearly as
compared with the single session routing [2]. We demonstrate
the superior performance of the GA-based approach over
traditional approaches using extensive numerical results.

The remainder of this paper is organized as follows. In
Section II, we formulate the optimal routing problem for
multiple concurrent video sessions via a cross-layer approach.
In Section III, we propose a solution procedure based on GAs.
In Section IV, we use extensive numerical results to demon-
strate the efficacy of the GA-based approach and its superior
performance over other approaches. We discuss related work
in Section V, and Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we formulate the application-centric routing
problem for multiple concurrent video sessions in a wireless
ad hoc network. To model a wireless ad hoc network as
an associated graph, we assume that a wireless link exists
between nodes i and j if nodes i and j can communicate
with each other. For example, a link may exist if nodes i
and j are within reachable distance of their radio transmitter.
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Consequently, the wireless ad hoc network can be modeled
as a time-varying directed graph G(N ,L), where N is the
set of vertices, representing mobile nodes, and L is the set of
wireless links in the network. In the graph, we characterize
each wireless (directed) link {i, j} ∈ L by the following two
parameters:

• cij : The capacity, or bandwidth of link {i, j};
• pij : The mean packet loss probability of link {i, j}, due

to transmission errors or link failures.
Other characterizations of a wireless link in ad hoc networks
can be incorporated into our model as well.

In this network, we assume there exists a set of concurrent
video sessions, denoted as E . Each session σ ∈ E has a source
node sσ and a destination node dσ . The rate of a video stream,
Rσ , is bounded as Rσ ≤ Rσ ≤ Rσ,∀σ ∈ E . The lower
and upper bounds of Rσ are determined by the specific video
encoder and video sequence used at the source node sσ. The
decoding deadline for session σ packets is ∆σ . The objective
is to find optimal paths for the video sessions such that the
overall video distortion of all the sessions is minimized.

A. End-to-End Delay and Loss Rate

For delineating an end-to-end path Pσ from sσ to dσ , σ ∈ E ,
we define the following index variables:

xσ
ij =

{
1, if {i, j} ∈ Pσ, ∀ {i, j} ∈ L
0, otherwise, ∀ {i, j} ∈ L.

(1)

Using such index variables, the choice of path Pσ can be
represented by a routing vector Xσ = {xσ

ij }{i,j}∈L having
|L| elements, each of which corresponds to a link and has a
binary value.

1) Load on a Link: Let P̄ij
σ denote the upstream partial

path of Pσ from the source node sσ to the link {i, j}, for
each {i, j} ∈ Pσ. Then, the average aggregate traffic load on
any link {i, j} ∈ L is:

λij =
∑
σ∈E

xσ
ij

∏
{m,n}∈P̄ij

σ

(1 − pmn)Rσ . (2)

In other words, the average traffic load of link {i, j} is the sum
of the average rates of the video sessions that pass through this
link, decreased by the losses incurred in their upstream links
before reaching link {i, j}. The average capacity utilization of
link {i, j} is ρij = λij/cij , ∀{i, j} ∈ L. For stability, a feasi-
ble set of routes {Pσ}σ∈E should satisfy ρij < 1,∀{i, j} ∈ L.

2) Delay on a Link : Since real-time video traffic typically
has stringent delay requirements, it is necessary to consider
link delays due to congestion. We model each link {i, j} as
a general queuing system [3] with an average input rate λij

(defined in (2)) and a service capacity cij . Let the probability
density function of queueing delay tij on link {i, j} be fij(y).
We assume that all of the moments of tij are finite, which is
true for most queueing systems. For example, when the video
traffic is a constant bit rate (CBR) that exhibits short-range
dependent (SRD) characteristics, we can model the queueing
delay via an exponential distribution [3], i.e.,

fij(y) = αije
−αijy, for y ≥ 0, (3)

where αij
def
= (cij − λij). On the other hand, for a variable

bit rate (VBR) video that exhibits long-range dependent (LRD)
characteristics, we can model the link as a fractional Brownian
motion (fBm) queueing system, where tij has a heavy-tailed
Weibull distribution [4]. It is important to point out that the
problem formulation and, more importantly, the proposed GA-
based solution approach do not depend on a specific traffic
behavior, queueing model, and video distortion model.

3) End-to-End Delay : Assuming that the delays on the
links are independent, the end-to-end delay of session σ,
denoted by Tσ , ∀σ ∈ E , is the sum of the queueing delay
on each link along path Pσ , i.e.,

Tσ =
∑

{i,j}∈L
xσ

ijtij . (4)

We can then apply the large deviation approximation to
obtain an accurate estimate of the overdue probabilities. In
the following, we illustrate such an approximation when link
delays are exponentially distributed, using the Chernoff Bound
[5]. First, the moment generating function of tij can be derived
as: Mij(s) = E[estij ] = αij

αij−s , for s < αij . Assuming that the
link delays are independent, the moment generating function
of Tσ is:

Mσ(s) =
∏

{i,j}∈L
Mij(xσ

ijs), for s < min
{i,j}∈Pσ

{αij}. (5)

Define Fσ(s) as:

Fσ(s) = s∆σ −
∑

{i,j}∈L
log Mij(xσ

ijs). (6)

Since Fσ
′′(s) < 0, ∀s < min{i,j}∈Pσ

{αij}, Fσ(s) is a
strictly concave function with a unique maximum at s∗. If
∆σ > E(Tσ) (i.e., the decoding deadline is larger than the
average end-to-end delay on the path1), we can determine s∗

by solving:

F ′
σ(s) = ∆σ −

∑
{i,j}∈L

xσ
ij

αij − xσ
ijs

= 0. (7)

Since F ′
σ(min{i,j}∈Pσ

{αij}) = −∞ < 0 and F ′
σ(0) =

∆σ − E(Tσ) > 0, we have that 0 < s∗ < min{i,j}∈Pσ
{αij}.

From the Chernoff Bound, the distribution of Tσ can be
approximated as [5]:

Pr{Tσ ≥ ∆σ} ≈ exp{−Fσ(s∗)}
s∗δ(s∗)

√
2π

, (8)

where δ(s) =
√

∂2 log Mσ

∂s2 .
Note that the moment generating function of a heavy-tailed

Weibull random variable does not exist (although all of its
moments are well-defined). Therefore, the above Chernoff
Bound approach cannot be applied to delays having such
distributions. However, the overdue probability can be com-
puted by taking advantage of the sub-exponential property. For

1This assumption is reasonable for practical applications. Otherwise, a large
amount of video packets will be overdue, yielding an intolerable received
video quality.
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example, for an i.i.d. sequence of heavy-tailed Weibull random
variables {X1, · · · ,Xn}, we have that Pr [

∑n
k=1 Xk > x] ≈

Pr
[
max{1≤k≤n}{Xk} > x

] ≈ nPr [X1 > x] [6].

4) End-to-End Loss Rate: Assuming that the packet loss
processes on the links are independent, the end-to-end loss
probability of session σ can be easily computed as:

pσ = 1 −
∏

{i,j}∈L
(1 − xσ

ijpij),∀σ ∈ E . (9)

B. Video Rate-Distortion Modeling

For video coding and communications, a rate distortion
model describes the relationship between the bit rate and the
achieved video distortion. In the following, we introduce an
empirical rate-distortion model that links the overdue and loss
probabilities derived in the last subsection to video distortion,
which is an important application layer video quality measure.

In [7], Stuhlmuller et al. developed an empirical rate-
distortion model for a hybrid motion compensated video
encoder. For a video sequence encoded at a target coding
rate Rσ , the average end-to-end distortion De

σ consists of the
encoding distortion caused by the lossy video coder, Denc

σ ,
and the distortion due to transmission errors, including the
distortion caused by overdue packets (i.e., congestion), Dcg

σ ,
and the distortion caused by lost packets (i.e., link failure),
Dloss

σ . That is,

De
σ = Denc

σ + Dcg
σ + Dloss

σ . (10)

From [7] and subsection II-A, we have

De
σ = D0 +

ω

Rσ − R0
+κ(1−pσ)Pr(Tσ > ∆σ)+κpσ, (11)

where D0, ω, R0, and κ are constants for a specific video
codec (with fixed encoding parameters) and video sequence,
which can be determined by training and curve matching.
Since the model in (10) takes into account the effects of
INTRA coding and spatial loop filtering, it matches simulation
results closely [7].

C. The Global Optimal Routing Problem

We can now mathematically formulate the problem of opti-
mal cross-layer routing for multiple concurrent video sessions:

OPT-CLR

Minimize: D =
∑
σ∈E

De
σ (12)

subject to:

Rσ ≤ Rσ ≤ Rσ, for σ ∈ E (13)

ρij ≤ 1 − ε, ∀{i, j} ∈ L, for some ε > 0 (14)∑
j:{i,j}∈L

xσ
ij −

∑
k:{k,i}∈L

xσ
ki

=




1, if i = sσ

−1, if i = dσ

0, otherwise
, ∀i ∈ N , σ ∈ E (15)

xσ
ij ∈ {0, 1}, ∀{i, j} ∈ L, σ ∈ E . (16)

We now provide an interpretation for the above problem
formulation OPT-CLR. The objective function (12) is the
sum of the average distortion of all of the concurrent video
sessions. Minimizing (12) achieves a better utilization of
network resources, as well as the best overall quality for the
video sessions. The set of inequalities in (13) gives the range
of feasible rates for each video stream, which is determined
by the video sequence and encoder parameters. The inequality
in (14) is the stability condition, which ensures that the link
utilization (i.e., the ratio of the average aggregate traffic load
on the link, and the link capacity) is less than 1. The remaining
constraints (i.e., (15) and (16)) guarantee that each path Pσ

from sσ to dσ is a valid path and is loop-free.2

In Problem OPT-CLR, there are two sets of tunable variables
that form the search (optimization) space of feasible solutions.
They are (i) the set of routing vectors: {Xσ}σ∈E ; and (ii) the
set of rates of video sessions: {Rσ}σ∈E . The objective function
(12) is a highly complex ratio of high-order polynomials of the
x-variables. The objective evaluation of a set of feasible paths
involves identifying the joint and disjoint links of the paths
(in order to compute the traffic load on each link), which is
only possible when all the paths are completely determined.
Wang and Crowcroft [8] proved that QoS routing problems
having multiple additive and/or multiplicative metrics are NP-
complete. Our problem has an additive delay metric and a
multiplicative loss metric. In addition, our problem has much
more complex relationships pertaining to the contribution of
any link to the objective function, as well as time-varying
and coupled session delays (rather than constant link delays
as in [8]). As a result, we conjecture that problem OPT-
CLR is NP-complete and it is futile to pursue exact solutions.
Although exact solutions are not obtainable, we find that a GA-
based approach is highly suitable to address such a complex
optimization problem. We describe this approach in the next
section.

III. GENETIC ALGORITHM-BASED ROUTING FOR

MULTIPLE CONCURRENT VIDEO SESSIONS

In this section, we present a detailed GA-based routing ap-
proach for multiple concurrent video sessions, which appears
to produce near-optimal solutions to Problem OPT-CLR (based
on our experimental results presented in Section IV).

A. Genetic Algorithms

We suggest that the best strategy to address Problem OPT-
CLR is to view the problem as a “black-box” optimization
problem and explore an effective metaheuristic approach. In
particular, we find that GAs [1] are eminently well-suited for
addressing this type of complex problems. GA is a population-
based metaheuristic that is inspired by the survival-of-the-
fittest principle, as derived from its natural evolution context.
It has the intrinsic strength of dealing with a set of solu-
tions (i.e., a population) at each step, rather than working

2Note that a feasible solution to these constraints could admit circuits
whose edges are disconnected from the produced loop-free paths. However,
the objective function would automatically prohibit this occurrence.
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with a single, current solution. In each iteration, a number
of genetic operators are applied to the individuals of the
current population in order to generate individuals for the next
generation. In particular, GA uses genetic operators known as
crossover to recombine two or more individuals to produce
new individuals, and mutation to achieve a randomized self-
adaptation of individuals. The driving force in GA is the
selection of individuals based on their fitness (in the form of an
objective function). Individuals with a higher degree of fitness
will be more likely to be chosen as members of the population
for the next generation. The basic assumption within this
paradigm is that good solutions often share parts with optimal
solutions. The survival-of-the-fittest principle ensures that the
overall quality of the population increases as the algorithm
progresses from one generation to the next.

B. GA-Based Multiple-Session Routing

Figure 1 depicts the flow-chart

Initialization

Evaluation

terminating
condition

Meet

Selection

Crossover

Mutation

Stop

Yes

No

Data structure

θ (1−θ)

µ (1−µ)

Fig. 1. Flow-chart for
GA-based routing.

for our GA-based approach to
Problem OPT-CLR, which in-
cludes the following components:
data structure, initialization, eval-
uation, selection, crossover, and
mutation. Note that both crossover
and mutation are performed with
certain probabilities (θ and µ, re-
spectively) on the individuals. The
termination condition in Fig. 1
could be based on the total num-
ber of iterations (generations), the
maximum computing time, or a
threshold of desired video dis-
tortion. Note that similar coding,
crossover, and mutation operations
have been used in, e.g., [9], [10]
for shortest path routing. In the
present paper, we extend these
schemes to handle multiple con-
current sessions and for the more
complex cross-layer problem. In
what follows, we use the example wireless ad hoc network
(with three video sessions) in Fig. 2(a) to illustrate the afore-
mentioned steps in the GA approach.

1) Data Structure : In order to encode a feasible solution
in the genetic format, we need to define a gene first and then
map a solution to a sequence of genes (chromosome). Such
encoding should be suitable for fitness computation (which is
determined by the objective function) and genetic operations.
We define a node as a gene. Naturally, an end-to-end path can
be represented as a sequence of nodes, i.e., genes. Then, for the
routing problem of multiple concurrent video sessions, each
feasible solution (individual) consists of a number of paths
and, thus, a set of chromosomes, denoted as, e.g., [P1,P2,P3]
(see, e.g., Fig. 2(b)).

2) Initialization: A simple approach to generate the initial
population would be to randomly append feasible elements
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Fig. 2. (a) An example wireless ad hoc network; the dashed lines indicating
wireless links. (b) An individual.

(i.e., nodes with connectivity) to a partial solution. Under this
approach, a construction process would start with the source
node sσ . It would then randomly choose a link incident to the
current end-node of the partial path and append this link with
its corresponding head-node to augment the path, until the
destination node dσ is reached. It is important to ensure that
the intermediate partial path is loop-free during the process.
After generating a certain set of paths for each {sσ, dσ} pair
independently, a population of individuals for our problem can
be constructed by randomly selecting paths from the sets and
verifying for stability conditions. Our numerical results show
that a properly-designed GA has a good exploratory power,
and is not very sensitive to the quality of the individuals in
the initial population.

3) Evaluation: The fitness function h(x̄) of an individual,
x̄ = [P1,P2,P3], is closely related to the value of the
objective function (i.e., the total distortion D) produced by
this individual. Since the objective is to minimize the total
distortion (see (12)), we have adopted a fitness function that
is defined as the inverse of the distortion value, i.e., h(x̄) =
1/D(x̄). This simple definition appears to work very well,
although we intend to explore other fitness definitions in our
future effort.

4) Selection: During this operation, we select individuals
for crossover that have a better chance or potential to produce
“good” offsprings in terms of their fitness values. We used
the popular Tournament selection scheme [1], which randomly
chooses m individuals from the population each time, and
then selects the best of these m individuals in terms of their
fitness values. By repeating this procedure multiple times, a
new population can be selected.

5) Crossover: Crossover mimics the genetic mechanism of
reproduction in the natural world, in which genes from parents
are recombined and passed to offsprings. The crossover opera-
tion may create new individuals, and expose the search process
to a new area of the fitness landscape. Figure 3 illustrates one
possible crossover implementation. For two parent individuals
x1 = [P1,P2,P3] and x2 = [P4,P5,P6], we could randomly
pick a session, say Session 2 (P2 and P5). If one or more
common nodes exist in these two chosen paths, we could
select the first such common node that exists in P2, say gr,
gr /∈ {s2, d2} (node 5 in Fig. 3). We can then concatenate the
nodes {s2, · · · , gr} from P2 with the nodes {gr+1, · · · , d2}
in P5 (where gr+1 denotes the next downstream node of gr in
P5) to produce a new path P25. Likewise, using the first such
node gr′ in P5 that repeats in P2 (which may be different from
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gr), we can concatenate the nodes {s2, · · · , gr′} from P5 with
the nodes {gr′+1, · · · , d2} in P2 to produce a new path P52.
The two offsprings generated in this manner are [P1,P25,P3]
and [P4,P52,P6], as illustrated in Fig. 3. If P2 and P5 are
disjoint, we could swap the entire path P2 with P5 instead.

6) Mutation: The objective of the mutation operation is to
diversify the genes of the current population, which helps pre-
vent the solution from being trapped at a local optimum. Fig-
ure 4 illustrates the mutation of an individual x̄ = [P1,P2,P3].
First, we choose a path Pσ , σ ∈ {1, 2, 3}, from x̄ using equal
probabilities of selection. Then, we randomly select an integer
value r in the interval [2, |Pσ| − 1], where |Pσ| denotes the
cardinality of Pσ , and let the partial path {sσ, · · · , gr} be Pu

σ ,
where gr is the r-th node along Pσ . Finally, we can use any
constructive approach to build a partial path from gr to dσ ,
denoted as Pd

σ , which does not repeat any node in Pu
σ (other

than gr). If no such alternative segment exists between gr and
the destination node dσ , we keep the path intact. Otherwise, a
new path can now be created by concatenating the two partial
paths as Pu

σ ∪ Pd
σ . For the example in Fig. 4, P1 is chosen

for mutation and node 6 is chosen to be the mutation point,
yielding the revised path P̂1 to replace P1. The new individual
thus created is x̂ = [P̂1,P2,P3].

7) Tuning the Encoding Rates : As discussed in Section II,
the search space of Problem OPT-CLR is the Cartesian product
of the set of feasible paths and the set of feasible video
rates. An optimal solution should yield a combination of a
set of the best paths and the set of the optimal video rates,
which jointly produce the lowest total distortion. In the GA-
based approach, we first use the procedure described in Fig. 1
to evolve a population, assuming that each session uses its
minimum rate Rσ , σ ∈ E . Then, during each iteration, we
determine the corresponding optimal rates for each individual.
That is, for a given set of feasible paths {Pσ}σ∈E (i.e.,
an individual), Problem OPT-CLR reduces to the following
embedded nonlinear optimization problem:

OPT-Rate

Minimize: D(xk) =
∑
σ∈E

De
σ (17)

subject to:

Rσ ≤ Rσ ≤ Rσ, ∀σ ∈ E (18)

ρij ≤ 1 − ε, ∀{i, j} ∈ L, for some ε. (19)

OPT-Rate is a nonlinear optimization problem with nonlin-
ear constraints. It can be efficiently solved using an iterative
procedure based on the Sequential Quadratic Programming
(SQP) method [11].

IV. NUMERICAL RESULTS

In this section, we present the simulation results obtained by
using the GA-based approach for the concurrent video routing
problem. In each experiment, a wireless ad hoc network was
generated by placing a number of nodes at random locations in
a rectangular region. Each video session had a rate bounded by
100Kbps and 400Kbps. We used an H.263+ codec and the 400-
frame “Foreman” trace in the quarter common intermediate
format (QCIF). The video was encoded with an Intra Rate of
1/15 and a frame rate of 30 fps. Each group of blocks (GOB)
was transmitted in a packet to make them independently
decodable. The rate-distortion parameters were found to be
D0 = 0.38, R0 = 18.3, ω = 2537, and κ = 750 [7]. Failure
probabilities of the wireless links were randomly chosen from
[1%, 10%]; the bandwidth of a link was randomly chosen
between [100Kbps, 400Kbps].

A. Optimality of GA Results

One interesting question regarding the GA-based routing
is how close its solutions are to the optimal solution. For
small networks, it is possible to find an optimal solution in
a reasonable amount of time by using an exhaustive search
(which, however, is infeasible for even moderate-sized net-
works). Table I compares the performance of the GA-based
approach to the optimal results provided by exhaustive search,
for small networks with three concurrent video sessions and
∆ = 0.1 s. GA runs for 50 iterations in each experiment, and
each GA distortion value is obtained by averaging over 10
runs. We find that GA performs consistently well with respect
to the optimal solution. Moreover, the computation time (a
few hundred milliseconds, using a Pentium4 2.4GHz computer
with 512 MB memory) is only a tiny fraction of the time
required to perform the exhaustive search (about 2.5 to 9.1
hours). This gives a good idea of the time efficiency of the
GA-based approach.

TABLE I

OPTIMALITY OF SOLUTIONS FOUND BY GA-BASED ROUTING

Topo. 1 Topo. 2 Topo. 3 Topo. 4
Network 9 Nodes 9 Nodes 11 Nodes 11 Nodes
BF (dB) 24.83 26.58 26.65 27.86
GA(mean) (dB) 24.82 26.46 26.56 27.83
GA(std. dev.) 0.007 0.09 0.097 0.08
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B. GA versus Network-centric Routing

In this subsection, we compare GA-based routing with tradi-
tional network-centric routing, in order to further demonstrate
the advantages of the GA-based approach. More specifically,
we implement a Dijkstra’s Algorithm-based shortest path
routing algorithm (SP) using hop-count as the routing metric,
and a disjoint shortest path routing algorithm (DSP) using
loss rate as the routing metric [12]. In order to guarantee the
stability condition in SP, each time when a path is found, we
subtract the minimum rate of the corresponding video session
from the capacity of each link along this path, while the next
path is found in this “reduced” graph.3

Figure 5 plots the average distortions found by the three
algorithms (i.e., GA, SP, and DSP) for various decoding dead-
lines. The network consists of 50 nodes with 10 video sessions.
We find that for very small decoding deadlines, the delay
requirement is so stringent that all the three schemes yield
high distortion. On the other hand, for very large decoding
deadlines, the delay requirement is so loose that all the three
schemes can achieve a low total distortion, as long as the
stability condition is satisfied. The most interesting region,
however, lies in between these two extremes, where a well-
designed routing scheme can achieve a better performance
by finding optimal routes for the video sessions. Within this
region, GA outperforms SP and DSP by a significant margin.
In Fig. 5, the GA average distortion quickly decreases as de-
coding deadline increases, while the SP and DSP average dis-
tortions are persistently high for small and medium decoding
deadlines (implying that most of the video packets are overdue
in these cases). When ∆ = 0.2 s, the difference between the
average distortions achieved by GA and DSP is 683.8, which
translates to a significant 9.03 dB reduction in peak signal to
noise ratio (PSNR) (computed as 10 · log (255 × 255/De

σ)).
In Fig. 6, we compare the total distortions found by GA,

DSP, and SP while increasing the number of sessions in the
50-node network, in order to examine the impact of video

3Since the resulting routes by DSP and SP depend on the order of the
sessions in routing, we evaluate all possible orders and use the best results
for comparison with GA. When the set of shortest paths is found, we also
solve OPT-Rate to find the optimal rates for the sessions.
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Fig. 6. Total distortion versus number of video sessions.
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Fig. 7. PSNRs of decoded video frames.

traffic load on the routing performance. The decoding deadline
is 0.5 s for all of the video sessions. It can be seen that
both SP and DSP produce much higher total distortions than
GA, due to the fact that they only use the network layer
metric in routing. More specifically, SP does not consider
the interaction of the video sessions. Although it computes
the shortest path for each session, such shortest paths may
share bottleneck links, resulting in congestion and high packet
overdue rates. On the other hand, DSP goes to another extreme
by not allowing the sharing of any links, even when a link
has abundant bandwidth and a low loss rate. As a result, some
“bad” links (i.e., low capacity or high failure probability links)
or paths having a large number of hops will be used in order to
satisfy the disjointedness requirement, resulting in an increased
total distortion. Another interesting observation from Fig. 6
is that the total distortion obtained by GA increases linearly
with the number of sessions, which implies that the average
distortion for each session is relatively constant, although the
video traffic load increases nearly ten times.

So far we have investigated the impact of optimal routing
in average video distortion. In order to illustrate its effect on
individual video frames, we transmit encoded video on the
computed paths found by GA, SP, and DSP, respectively, and
plot the PSNRs of decoded frames of Session 5 in Fig. 7. It
can be observed that most of the frames sent on the GA paths
have much higher PSNR values than those sent on the SP or
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(a) GA. (b) SP. (c) DSP.

Fig. 8. Frame 148 of the reconstructed video.

DSP paths. The average Session 5 PSNR (over all of the 400
frames) achieved by the GA-based routing is 31.16 dB, while
the average PSNRs obtained by SP and DSP are 25.93 dB
and 26.06 dB, respectively. Such significant gains (over 5 dB
in both cases) are due to the fact that the application layer
video quality is directly optimized in the GA-based routing,
rather than network layer metrics. We also present decoded
Frame 148 in Fig. 8, obtained by the GA-based routing, SP
and DSP. Clearly, the decoded frame in Fig. 8(a) has a much
better visual quality than the two frames in Figs. 8(b) and 8(c).

V. RELATED WORK

It should be clear that the problem addressed in this paper
differs from the network-layer QoS-routing problems for ad
hoc networks [13]–[17]. In these efforts, the focus has been
on addressing network-layer routing problems from various
perspectives (e.g., associativity [13] of wireless links, differ-
entiated link state updates [14], end-to-end resource guarantees
[15], [16], and selecting node or edge disjoint paths [17]). In
contrast to the present paper, most of these prior efforts do
not explicitly formulate the objective function with an appli-
cation layer metric via a cross-layer approach. Consequently,
although these approaches could obtain optimal network layer
performance, they may not yield optimal performance at the
application layer. In Section IV, we illustrate this point with
numerical examples.

There exist some prior efforts on applying GA to address
network layer problems. For example, GA has been explored
in network-centric routing in [9], [10], [18]. These efforts have
taken the important step in exploring the potential of GA for
optimized QoS routing. The research problem addressed in
this paper builds upon these earlier efforts and aims to make a
major leap forward by exploring GA’s potential to address the
more complex cross-layer optimization problem. This problem
is more relevant to multimedia communications and more
difficult than the network-centric GA problems addressed in
prior works, since an enlarged design and optimization space
across the layers is exploited.

VI. CONCLUSIONS

In this paper, we have studied the important problem of how
to optimally support multiple concurrent video communication
sessions in an ad hoc network. We made two main contribu-
tions in this work. First, we have formulated an application-
centric network-wide optimal routing problem with an ob-
jective function that minimizes the average distortion for all

video sessions. Our problem formulation seamlessly integrates
the impact of packet losses due to frequent node/link fail-
ures and congestion. Second, we have developed a highly
competitive solution procedure based on the GA framework
for this cross-layer optimization problem. Through extensive
numerical results, we show that the GA-based approach is
eminently suitable to address such complex cross-layer routing
problems for concurrent multiple video sessions. Our efforts
in this work provide an important methodology for addressing
the problem of network-wide optimal routing for multiple
concurrent video sessions.
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