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Abstract— Real-time multimedia communication is an important ser-
vice that should be supported in wireless ad hoc networks. In this paper,
we consider the problem of how to optimally support multiple concurrent
video communication sessions in a wireless ad hoc network. Our problem
formulation follows an application-centric cross-layer approach with the
objective of minimizing the average distortion of all video sessions
via finding optimal paths for each session. Since this network-wide
optimization problem is shown to be NP-complete, we pursue to develop
competitive heuristic algorithms to address this problem. Specifically, we
describe a greedy algorithm based on the key characteristics of the end-
to-end video distortion model, and use numerical results to demonstrate
its performance as compared to the global optima. This greedy heuristic
algorithm can be used to quickly compute a set of good paths for the video
sessions. It can also be used to speed up the Genetic Algorithm-based
algorithm proposed in our previous work.

I. INTRODUCTION

With the recent advances in digital video technology and wireless
ad hoc networking, there is a compelling need to support real-time
multimedia communications in ad hoc networks, in addition to simple
data communications. However, at present, there remain significant
problems across different layers that need to be addressed in order to
successfully deploy such services in ad hoc networks. In particular,
issues such as interference, mobility, frequent link failures, and
topology changes have all made this research much more challenging.
As a result, wireless links in ad hoc networks are much more diverse
in terms of quality (e.g., available bandwidth, loss, and delay) than
links in wireline networks: any link in an ad hoc network could be
highly fragile with dynamic state conditions. Consequently, optimized
routing is an important mechanism for enabling multimedia services
in wireless ad hoc networks, and it is important to investigate new
methodologies for routing multimedia sessions in such networks.

In this paper, we consider the problem of supporting multiple
concurrent video sessions in wireless ad hoc networks. This problem
is important since it captures the scenario that there are typically more
than one real-time multimedia communication sessions sustained by
an ad hoc network. These sessions may share the same network
resources (e.g., link bandwidth, buffer) and might interact with each
other (i.e., MAC layer contentions or Physical layer interference). In
our previous work [1], we formulated a combinatorial optimization
problem from a cross-layer perspective by considering the application
layer performance metric (i.e., average video distortion) as a function
of network layer behavior (routing of each session). In particular, our
constraints at the network layer address not only packet losses due to
frequent node/link failures, which are unique to ad hoc networks, but
also traditional network problems such as delays due to congestion. In
other words, our application-centric problem formulation seamlessly
unifies video distortion with packet loss (due to node/link failures)
and delay via routing for each session.

It should be clear that the problem addressed in this paper differs
from the network-layer QoS-routing problems for ad hoc networks
[2]–[6]. In these efforts, the focus has been on addressing network-
layer routing problems from various perspectives (e.g., associativity
[2] of wireless links, differentiated link state updates [3], selecting
node or edge disjoint paths [6], and end-to-end resource guarantees
[4], [5]). In contrast to the present paper, most of these prior efforts

do not explicitly formulate the objective function with an application
layer metric via a cross-layer approach. Consequently, although these
approaches could obtain optimal network layer performance, they
may not yield optimal performance at the application layer.

The formulated problem exhibits a highly complex objective func-
tion and constraints, which renders this problem substantially more
difficult than traditional network-centric (single network layer) QoS
routing problems. In [1], we presented a Genetic Algorithm (GA)-
based algorithm [7] for solving this cross-layer multimedia-centric
routing problem. The GA-based algorithm produces near-optimal
solutions, but with a relatively high computational complexity. In
this paper, we describe an efficient greedy heuristic algorithm for the
cross-layer routing problem. The proposed algorithm is based on the
observation of the key characteristics of the video distortion model.
It computes low loss and low congestion paths for the video sessions
using an empirical compound routing metric. The computational
complexity of the greedy algorithm is extremely low. We also show
that the greedy algorithm gives very good solutions for practical range
of network conditions through extensive simulation studies.

The remainder of this paper is organized as follows. In Section II,
we present the network-wide optimal routing problem formulation
for completeness. In Section III, we propose a fast greedy heuristic
algorithm for the concurrent routing problem. We use extensive
numerical results to demonstrate the efficacy of the greedy heuristic
algorithm in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

In order to model a wireless ad hoc network as an associated
graph, we assume that a wireless link exists between nodes i and
j if nodes i and j can communicate with each other. For example,
a link may exist if nodes i and j are within reachable distance of
their radio transmitter. Consequently, the wireless ad hoc network
can be modeled as a time-varying directed graph G(N ,L), where
N is the set of vertices, representing mobile nodes, and L is the set
of wireless links in the network. In the graph, we characterize each
wireless (directed) link {i, j} ∈ L by the following two parameters:

• cij : The capacity, or available bandwidth of link {i, j};
• pij : The mean packet loss probability of link {i, j}, due to

transmission errors or link failures.

Other characterizations of a wireless link in ad hoc networks can be
incorporated into our model as well, although we intend to explore
these in our future effort.

In this network, we assume that there exists a set of concurrent
video sessions, denoted by S. Each session σ ∈ S has a source
node sσ and a destination node dσ . The rate of a video stream,
Rσ , is bounded as Rσ ≤ Rσ ≤ Rσ, ∀σ ∈ S. The lower and upper
bounds of Rσ are determined by the specific video encoder and video
sequence used at the source node sσ , ∀σ ∈ S. Our objective is to
find optimal paths for the concurrent sessions such that the overall
video distortion is minimized.
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B. Video Rate-Distortion Modeling

For video coding and communications, a rate distortion model
describes the relationship between the bit rate and the corresponding
video distortion achieved. In the following, we introduce an empirical
rate-distortion model that links the packet overdue and loss proba-
bilities to video distortion, which is an important application layer
video quality measure.

In [8], Stuhlmuller et al. developed an empirical rate-distortion
model for a hybrid motion compensated video encoder. For a video
sequence encoded at a target coding rate Rσ , the average end-to-
end distortion De

σ consists of the encoding distortion caused by
the lossy video coder, Denc

σ , and the distortion due to transmission
errors, which is the sum of the distortion caused by overdue video
packets (i.e., packets experiencing large delay due to congestion in
the network), Dcg

σ , and the distortion caused by lost video packets
(i.e., due to link failure or other transmission errors), Dls

σ . That is,

De
σ = Denc

σ + Dcg
σ + Dls

σ . (1)

From [8] and [1], we have

De
σ = D0 +

ω

Rσ − R0
+ κ(1 − pσ)Pr(Tσ > ∆σ) + κpσ, (2)

where D0, ω, R0, and κ are constants for a specific video codec
(with fixed encoding parameters) and video sequence, which can be
determined by training and curve matching. Since the model in (1)
takes into account the effects of INTRA coding and spatial loop
filtering, it matches simulation results closely [8].

For a given set of paths x̄, the end-to-end packet loss probability
pσ and the end-to-end packet overdue probability Pr(Tσ > ∆) for
a session σ ∈ S is determined by the corresponding link parameters
pij and cij , {i, j} ∈ x̄, as well as the correlation of the paths (i.e.,
jointness or disjointedness). We showed that these two parameters
can be computed based on the Chernoff bound. Interested readers
can refer to our previous work [1] for details.

C. The Optimal Routing Problem

For delineating an end-to-end path Pσ from sσ to dσ , σ ∈ S, we
define the following index variables:

xσ
ij =

1, if {i, j} ∈ Pσ, ∀ {i, j} ∈ L
0, otherwise, ∀ {i, j} ∈ L.

(3)

Using such index variables, the choice of path Pσ can be represented
by a routing vector Xσ = {xσ

ij }{i,j}∈L having |L| elements, each
of which corresponds to a link and has a binary value.

We are now ready to mathematically formulate the problem of
application-centric optimal routing for multiple concurrent video
sessions:

OPT-CLR

Minimize: D =
σ∈S

De
σ (4)

subject to:

Rσ ≤ Rσ ≤ Rσ, for σ ∈ S (5)

ρij ≤ 1 − ε, ∀{i, j} ∈ L, for some stability tolerance ε (6)

j:{i,j}∈L
xσ

ij −
k:{k,i}∈L

xσ
ki

=
1, if i = sσ

−1, if i = dσ

0, otherwise
, ∀i ∈ N , σ ∈ S (7)

xσ
ij ∈ {0, 1}, ∀{i, j} ∈ L, σ ∈ S. (8)

We now provide an interpretation for the above problem formula-
tion. The objective function (4) is the sum of the average distortion
of all the concurrent video sessions. Minimizing (4) achieves the best
overall quality for the video sessions, as well as the best utilization
of network resources. The set of inequalities in (5) gives the range
of feasible rates for each video stream, which is determined by the
video sequence and encoder parameters. The inequality in (6) is the
stability condition, which ensures that the link utilization (i.e., the
ratio of the average aggregate traffic load on the link, and the link
capacity) is less than 1. The remaining constraint (7) guarantees that
each path Pσ from sσ to dσ is a valid path and is loop-free.1

In Problem OPT-CLR, there are two sets of tunable variables that
form the search (optimization) space of feasible solutions. They are
(i) the set of routing vectors: {Xσ}σ∈S ; and (ii) the set of rates
of video sessions: {Rσ}σ∈S . The objective function (4) is a highly
complex ratio of high-order polynomials of the x-variables. The
objective evaluation of a set of feasible paths involves identifying
the joint and disjoint links of the paths (in order to compute the
traffic load on each link), which is only possible when all the paths
are completely determined. Wang and Crowcroft [9] proved that
QoS routing problems having multiple additive and/or multiplicative
metrics are NP-complete. Our problem has an additive delay metric
and a multiplicative loss metric. In addition, our problem has much
more complex relationships pertaining to the contribution of any link
to the objective function, as well as time-varying and coupled session
delays (rather than constant link delays as in [9]). As a result, we
conjecture that problem OPT-CLR is NP-complete and it is futile to
pursue exact solutions. Therefore, efficient heuristic algorithms are
desirable for obtaining near-optimal solutions to Problem OPT-CLR.

In [1], we present a Genetic Algorithm (GA)-based approach for
OPT-CLR. In the following, we describe a fast greedy heuristic
algorithm that also computes highly competitive solutions. Compared
with the GA-based algorithm in [1], the greedy heuristic algorithm is
faster in computation, but its solutions are generally slightly inferior
to the GA solutions. We can use the greedy heuristic solutions for
applications having stringent delay constraints, or use it to initialize
the GA population in order to speed up the GA convergence.

III. THE GREEDY HEURISTIC ALGORITHM

Before describing the greedy heuristic algorithm, we first examine
the total end-to-end distortion De

σ of a session σ ∈ S (see (1) and
(2)). The first term Denc

σ , the distortion caused by the encoder is a
monotonically decreasing function of video rate Rσ , ∀σ ∈ S. The
second term Dcg

σ , the distortion caused by congestion, on the other
hand, is a monotonically increasing function of the video rate Rσ ,
as well as the rates of all other sessions Ri, i �= σ, that share one or
more links with session σ, ∀i, σ ∈ S. Both of these two terms are
constrained by the stability constraint (6) and are thus determined by
the available bandwidths of the used links. The third term Dls

σ , the
distortion caused by lost packets, is simply a function of the link loss
probabilities. In order to minimize the video distortion for session σ,
we need to find the paths having the highest end-to-end bandwidth,
the minimal congestion, and the lowest end-to-end loss rate.

Furthermore, we plot Denc
σ in Figure 1 for an H.263 coder with

typical settings (e.g., Intra Rate 1/15, GOP length 15, and frame
rate 30 fps) using the Quarter Common Intermediate Format (QCIF)
formatted “Foreman” sequence. We observe that the curve is concave:
when Rσ increases beyond a certain threshold, further increasing Rσ

will only cause marginal reduction in Denc
σ . For example, when Rσ

1Note that a feasible solution to these constraints could admit circuits
whose edges are disconnected from the produced loop-free paths. However,
the objective function would automatically prohibit this occurrence.
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Fig. 1. Rate distortion curve for the video codec, i.e., Denc
σ versus Rσ .

1. Set the cost of each link {i, j} to cij · (1 − pij), ∀{i, j} ∈ L;
2. For every video session σ ∈ S;
3. Use the algorithm in [10] and use the costs defined in 1. to find the path

having the maximum end-to-end cost. Let this path be Pσ ;
4. Decrease the bandwidth of every link on Pσ by Rσ , i.e., setting the link

costs as (cij − Rσ) · (1 − pij), ∀{i, j} ∈ Pσ ;
5. After the paths for all sessions are found, apply OPT-Rate to determine the

optimal rates for each session.

Fig. 2. GH: A fast greedy heuristic for routing concurrent video flows.

increases from 150Kbps to ∞, there is only a decrease of about 20
in Denc

σ . However, such high rate will cause congestion, resulting in
a much larger increase in Dcg

σ . Therefore, for practical Rσ values,
such as within [100Kbps, 400Kbps], reducing congestion conditions
in the network would be more effective than increasing video rates
in improving overall video quality.

In Figure 2, we describe a greedy heuristic GH for Problem OPT-
CLR. In GH, an empirical compound link cost cij · (1− pij), which
we call the effective available bandwidth, is used. For a given path,
its end-to-end effective available bandwidth is the minimum among
those of its links. By computing the path with the maximum effective
available bandwidth, GH finds the currently “widest” path for session
σ, which has the potential of supporting higher video rates and having
less congestion. Since both link capacity and loss probability are
considered in the compound link cost, GH may produce near-optimal
solutions to Problem OPT-CLR, as will be shown in Section IV. For
each session, the maximum-effective-available-bandwidth path can be
found using the algorithm presented in [10], with a time complexity
of O(|L| · log∗ |N |), where log∗ n is the iterated logarithm function.
Therefore, the overall time complexity of GH is O(|S|·|L|·log∗ |N |).

Finally, for the set of computed path set xk = {Pσ}σ∈S (which po-
tentially has the minimal congestion and path losses), Problem OPT-
CLR reduces to the following nonlinear optimization problem OPT-
Rate, which further reduces the overall video distortion by finding
the optimal video rates for the sessions.

OPT-Rate

Minimize: D(xk) =
σ∈E

De
σ (9)

subject to:

Rσ ≤ Rσ ≤ Rσ, for σ ∈ S (10)

ρij ≤ 1 − ε, ∀{i, j} ∈ L, for some stability tolerance ε. (11)

OPT-Rate is a nonlinear optimization problem with nonlinear con-
straints. It can be efficiently solved using an iterative procedure based
on the Sequential Quadratic Programming (SQP) method [11].

For the path set found by the above procedure, we have the
following proposition holding true.

Proposition 1: The distortion achieved by the path set computed
by GH as depicted in Figure 2 is an upper bound of the total

distortion D defined in (4).
Proof: From Figure 2, it can be easily verified that the path set

is realizable, i.e., it satisfies all the constraints of Problem OPT-CLR.
Therefore, the resulting distortion is an upper bound of the optimal
distortion which is optimized over all feasible solutions.

IV. NUMERICAL RESULTS

In this section, we present the simulation results for Problem OPT-
CLR in order to examine the GH performance. In each experiment,
an ad hoc network was generated by placing a number of nodes at
random locations in a rectangular region. Each video session had a
rate bounded by 100Kbps and 400Kbps. We used an H.263+ codec
and the 400-frame “Foreman” trace in the QCIF format. The video
was encoded with an Intra Rate of 1/15, GOP length of 15, and a
frame rate of 30 fps. A decoding deadline of 100 ms was used for the
results reported in Table I, Figure 3, and Figure 4. The rate-distortion
parameters were found to be D0 = 0.38, R0 = 18.3, ω = 2537, and
κ = 750 [8].

A. GH versus Exhaustive Search

First, we examine the optimality of the GH solutions by comparing
them with those found by a brute force, exhaustive search (ES)
over the entire solution space. For these experiments, link loss
probabilities were randomly chosen from [1%, 10%]; link bandwidths
were randomly chosen from [100Kbps, 400Kbps]. There were three
concurrent video sessions having randomly chosen source and des-
tination nodes. The total distortion values found by GH and ES are
presented in Table I for six randomly generated networks with various
topologies and parameter settings. We find that the GH solutions are
quite competitive. Specifically, for networks III and V, GH actually
found the exact optimal paths, yielding the minimum total distortion.
In most of the cases, the GH distortions are within 10% of the global
optimum, while in the worst case (network IV), the GH distortion
is within 31.8% of the global optimum. The corresponding average
PSNR value for the sessions is also presented in the table, which
is computed as 10 · log(2552/De

σ). Except for network IV, the GH
average PSNR is within 0.7 dB of the global optimal. For all the
cases, GH terminates in a couple of hundred milliseconds, while ES
takes about 20 minutes to run with a Pentium-4 2.4GHz computer
(512 MB memory). This clearly illustrates the time efficiency of GH.

TABLE I
OPTIMALITY OF SOLUTIONS FOUND BY GH

Network I II III IV V VI
Network Size 9 9 9 11 11 11
GH Distortion 690.6 229.2 245.3 264.9 345 232.6
ES Distortion 641.8 201.7 245.3 201.0 345 201.6
GH PSNR (dB) 24.5 29.3 29.0 28.7 27.5 29.2
ES PSNR (dB) 24.8 29.9 29.0 29.9 27.5 29.9

B. Impact of Link Statistics

In order to further examine the performance of the proposed greedy
heuristic algorithm, we present the impact of link statistics in this
subsection. In the following experiments, we used an 11-node ad
hoc network with three video sessions and a fixed topology, while
varying either the average link loss probabilities or the average link
bandwidths. More specifically, we fixed the link bandwidths, while
increasing the link loss probabilities in Figure 3; and fixed the link
loss probabilities, while increasing the link bandwidths in Figure 4.
Then, for each resulting network, we computed the minimal achiev-
able total distortion using an exhaustive search, and then computed
the near-optimal routes and the corresponding total distortion using
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Fig. 3. Impact of link statistics on the GH performance: normalized difference
versus average path loss.
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Fig. 4. Impact of link statistics on the GH performance: normalized difference
versus average path bandwidth.

GH. The normalized difference (defined to be (GH − ES)/ES)
versus average path loss probability and average path bandwidth are
plotted in Figure 3 and Figure 4, respectively.

From Figure 3, it can be seen that the normalized difference is low
(less than 10%) and relatively constant for low path loss probabilities.
However, the normalized difference increases over 20% when the
average path loss probability exceeds 15%. For such cases, the
network can hardly provide satisfactory video quality, due to the large
amount of lost packets (note that more packets will be delayed beyond
their decoding deadline due to congestion, which further degrade the
video quality). Clearly, for cases where the end-to-end loss rates are
less than 15% (which are practical cases in general), GH can provide
quite competitive paths for concurrent video sessions. We observe
similar trend in Figure 4, where the normalized difference gradually
increases with the average path bandwidth. This implies that GH is
more accurate for bandwidth limited networks where congestion is
more persistent. When average link bandwidth gets large, congestion
will be rare and the video quality is mainly determined by link loss
probabilities. We may deploy a pure loss-based routing algorithm for
such cases (e.g., setting link cost to − log(1 − pij) and then using
Dijkstra’s algorithm to compute the minimum cost paths).

C. GH versus Shortest Path Routing

We further examined the GH performance using a 50-node network
with 10 concurrent video sessions. Since ES was not feasible for such
large-sized network, we compared GH with shortest path routing
(SP). Specifically, we considered two SP algorithms: (i) SP-Hop:
using hop count; and (ii) SP-Loss: using − log(1 − pij) as routing
metric for link {i, j} (i.e., finding the minimum loss path). The link
bandwidth cij was randomly chosen from [100Kbps, 1Mbps] and the
link loss probability pij was randomly chosen from [1%, 10%]. The
decoding deadline for the video packets was 450 ms.

The distortion values for the sessions computed by the three
algorithms are plotted in Figure 5. We find that for many sessions, GH
achieves a much lower distortion than the two SP-based algorithms.
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Fig. 5. Distortion values for each video session in a 50-node network obtained
by different algorithms.

Although for several sessions, GH distortion is higher that SP-Hop
or SP-Loss, the difference is quite small in all of these cases. The
total distortion achieved by GH is 976.8, which is much lower that
that achieved by SP-Hop (1767.7) and SP-Loss (2032.8). Such gain
is due to the effective available bandwidth used in GH routing, which
takes into consideration both link capacity and loss probability.

V. CONCLUSIONS

In this paper, we have studied the important problem of supporting
multiple concurrent video sessions in wireless ad hoc networks. We
have developed a fast greedy heuristic algorithm for the cross-layer
optimization problem. Through extensive numerical results, we show
that the greedy algorithm performs very well for practical network
and video system settings.
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