
Design and Analysis of a Rate-based Algorithm for Active Queue Management 

Abstract 

This paper proposes a rate-based active queue 

management algorithm or RAQM. It uses the 

aggregated traffic input rate to calculate packet drop 

probability according to an exponential rule. We 

analyze the stability and investigate practical 

implementation issues of the RAQM. Simulations are 

carried out to study RAQM performance and to 

compare with other AQM algorithms, in particular PI 

and REM schemes. The results demonstrate that RAQM 

achieves better stability and faster response as it can 

quickly regulate the queue length to the expected value 

with small overshoot. RAQM also obtains better 

tradeoff between link utilization and queuing delay, and 

obtains higher goodput with the same buffer size as in 

PI and REM schemes. Finally RAQM has O(1) 

complexity, thus independent of the number of flows. 

1. Introdoction 

Buffer management plays an important role in 
congestion control, whose primary objectives are high 
link utilization and low packet queuing delay. However, 
these two objectives generally conflict, since small 
buffer leads to lower queuing delay but also lower link 
utilization, and vice versa. Therefore, one of the key 
design issues in the buffer management is to strike a 
good tradeoff between them.  
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The traditional algorithm for buffer management is 
First-In-First-Out (FIFO) with Tail-Drop, which drops 
packets only if buffer overflows. This passive behavior 
results in long queuing delay, and is often the cause of 
the correlation among packet drops, resulting in the 
well-known “TCP synchronization” problem [1]. That 
is, many TCP flows may lose packets and decrease 
sending rate simultaneously. To mitigate such problems, 
AQM [1] has been introduced in recent years. 
Comparing with FIOF Tail-Drop, AQM algorithms can 
actively trigger packet drops before buffer overflows, 
which can avoid “TCP synchronization” and achieve 
better link utilization and reduce the possibility of 
congestion. The primary objectives of AQM include: 1) 
High link utility and high goodput (exclude the 
duplicate packets received). On one hand, buffer 
emptiness should be avoided; on the other hand, it is 
also necessary to prevent buffer overflow or longer 
queue length. Otherwise, the timeout of TCP flows 
would occur frequently, resulting in unnecessary 
retransmissions, thus low goodput for them. 2) Low 
queuing delay. This is helpful to prevent TCP timeout 
and also attractive for the ever-increasing real-time 
applications. 3) Simple and efficient. AQM must be 
simple and scalable to be deployed in high-speed 
routers. 4) Stability and robustness. AQM should be 
stable and robust under dynamic environments, i.e.,
retain good performance even if the network parameters, 
such as the number of flows N, round-trip time RTT, as 
well as the characteristics of the flows, such as short-
lived or long-lived, and responsive or unresponsive, 
change frequently without being known a priori.

The key issues in the design of AQM algorithms are 
how to measure link-congestion degree and how to 
determine the behavior of packet dropping (or mark if 
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explicit congestion notification (ECN) [2] is enabled 1).
In the existing AQM algorithms, link-congestion can be 
estimated through (average) queue length, input rate, 
event of buffer overflow or buffer empty, or and 
combination of them. Among them, queue length is the 
most widely used index, e.g., in the original RED [3][4] 
and most of its variants, such as S-RED [5] and ARED 
[6]. The event of buffer overflow or buffer empty is 
used in BLUE [7] to estimate link-congestion level, and 
the input rate is used in AVQ [8]. Recent algorithms, 
such as PI [9], REM [10], and SFC [11], jointly use 
queue length and input rate to estimate link-congestion. 

The motivation in this paper is to design a more 
stable algorithm with faster response or convergence 
rate since the traffics in Internet may be often varied 
and hard to be known exactly, and slow response will 
lead to buffer overflow or emptiness and corresponding 
large queuing delay and low link utility [12]. Also in 
order to flexibly adjust queuing delay, AQM algorithms 
should be capable to effectively regulate the queue 
length to an expected value. The main contribution in 
this paper is the proposed rate-based algorithm or 
RAQM, which obtains good stability and fast response 
under diverse network environment. RAQM can 
regulate the queue length to an expected value and 
achieve a better tradeoff between goodput and queuing 
delay. RAQM has two modes of operations, queue-

independent and queue-dependent modes. In the queue-
independent mode, RAQM periodically measures 
aggregated traffic input rate, and iteratively computes 
the packet drop probability, so as to make the input rate 
close to the expected value r0 . This mode does not use 
any information on the queue length. In the queue-

dependent mode, RAQM also uses instantaneous queue 
length to further adjust packet drop probability besides 
the traffic input rate, and can regulate queue length to 
the expected value q0 . The stability analysis and design 
rules for RAQM are also given out in this paper, which 
jointly with extensive simulations demonstrate the 
advantages of RAQM.    

The rest of this paper is organized as follows. 
Section II presents RAQM algorithm, stability analysis 
and discussions on the implementation. Section III 
presents the numerical results obtained using simulation 
and comparison with other AQM algorithms. Section IV 
concludes the paper and highlights several possible 
extensions. 

2. RAQM algorithm 

1 For easy of exposition, we use “drop” for both cases in the rest of 
this paper, unless explicitly indicated.

RAQM uses aggregated traffic input rate to regulate 
it to the expected value r0 . It needs to periodically 
measure the aggregated traffic input rate rk , and 
iteratively updates the packet drop probability p

k

according to an exponential rule. The rational for using 
the exponential rule is that it can achieve the stability 
and leads to faster convergence of the packet drop 
probability to the expected value. RAQM can also 
jointly use the instantaneous queue length and further 
refine the packet drop probability more each time when 
a new packet arrives, so as to regulate queue length to 
the expected value q0 .

2.1.  Algorithm description 

Like most of other AQM algorithms, RAQM also 
selects the tail-packet (or the arriving packet just now) 
when it needs to drop packet. In RAQM, packet drop 
probability is periodically computed according to the 
measured aggregated traffic input rate rk . Intuitively 
when rk  increases, packet drop probability p

k
 has to 

be set at a larger value, and vice versa. First, the 
aggregated traffic input rate rk  is periodically measured 
using the mechanism proposed in [13] as:  

re
T

l
er k

fTkfT

k 1)1( −
−− +−=                        (1) 

where T is the measure period, l k is the total bytes 
arriving during the k-th measure period, rk  is the input 
rate measured in the end of k-th measure period, and f is 
a constant that will influence the correctness of measure 
result.  

For simplicity, we can rewrite Eq. (1) as: 

rf
T

l
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k
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where f’(= e
fT− <1) is a constant.

After obtaining the aggregated traffic input rate rk ,
packer drop probability p

k
 in RAQM is periodically 

and iteratively calculated at the end of k-th period using 
the exponential rule as: 

pep
kk

rrk

1
)( 0

−
−= α                               (3) 

where r0  is the expected traffic input rate, and 0>α  is 
a parameter to be configured. r0  can be set as the link 
capacity C or Cγ (where 10 ≤< γ ). α  needs to be 

carefully considered since it determines the stability and 
response time of RAQM. For example, if α is too large, 
p

k
will oscillate. On the contrary, p

k
 will adapt slowly 

if α  is too small. This will be analyzed in the next sub-
section. 
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2.2. Performance Analysis 

This sub-section analyzes the stability of RAQM 
and determines how to configure α . Assume that there 
are N long-lived TCP flows, and each flow i has round-
trip time d i , packet size Li , and throughput r

i
k .

According to the TCP throughput model deduced in 
[14], the relationship between the aggregated traffic 
input rate rk  and packet drop probability p

k
 can be 

represented as: 

pd
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where η  is a constant, and =
=

N

i
ii dLH

1
)( . From Eq. (5), 

we have: 
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Lemma 1: The expected traffic input rate r0  is one 
of the stable points for the system defined by Eqs. (3)-
(5).

Proof: assume rrk 0= . From Eq. (3), we can have 

pp
kk 1−= . Then according to Eq. (6), there is: 

rrr kk 01 ==+                                                            Q.E.D 

Lemma 2: The stable point, for the system defined 
by Eqs. (3)-(5), is unique. 

Proof:  assume there is another stable point 'r . Let 
'1 rrr kk ==+ . From Eq. (10), we have pp

kk 1−= . Then it 

is sure to be rr =' 0 , according to Eq. (3). 
                                                                 Q.E.D 

Theorem 1: RAQM is stable iff αα ˆ0 << , where 

)(5.0
ln)2ln(ˆ
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Proof: using Lyapunov Theorem. Firstly, define 
Lyapunov function as:  

)( 0
2

rrV kk −=                                 (7) 
Then its discrete differentiated equation can be 

written as: 
)2)(( 0111 rrrrrVV kkkkkk −+−=− +++           (8) 

From Eqs. (3) and (6), we can have: 

e
r

r rr k

k
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Substituting Eq. (9) into Eq. (8), the differentiated 
equation VV kk −+1  can be calculated as: 

)2)1()(( 0
)(5.0
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Because of 0>V k , we only need to prove that its 
differentiated equation Eq. (10) meets: 01 <−+ VV kk .
Then RAQM (or Eq. (3)) is sure to be stable according 
to Lyapunov theorem. 

Let 01 =−+ VV kk . Assume rr k≠0  and 02 0 >− rr k ,
then:  

αα ˆ
)(5.0
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0
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If 02 0 >− rr k  and rr k≠0 , it can be easily proved 
that 0ˆ >α  whenever rr k>0  or rr k<0 .

Case1: rrk 0> . From Eq. (9), we can get rr kk <+1 .
According to Eqs. (10) and (11), there are: 

If 
002)1(ˆ0 10

)(5.0 0 <−>−+<< +
−−

VVrer kkk
rr kααα ;

If 
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Case2: rrk 0< . From Eq. (9), we can get rr kk >+1 .
According to Eqs.  (10) and (11), there are:  

If 
002)1(ˆ0 10

)(5.0 0 <−<−+<< +
−−

VVrer kkk
rr kααα ;

If 
002)1(0ˆ 10
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VVrer kkk
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Combining the above discussions and the fact that 
0>V k , we conclude: 1) If αα ˆ0 << , then 

01 <−+ VV kk , and RAQM is stable; 2) If 0ˆ >> αα ,
then 01 >−+ VV kk , RAQM becomes unstable; 3) If 

αα ˆ= , then 01 =−+ VV kk , we can’t determine the 
stability of RAQM according to Lyapunov function in 
Eq. (7). 

                 Q.E.D 

Theorem 2: The convergence rate of RAQM is 
determined by value of α . The bigger value of α , the 
faster convergence rate will be obtained. 

Proof: it can be seen from proof of Theorem 1 that 
the absolute value of VV kk −+1  will decrease when α
grows. Therefore, the convergence rate of RAQM will 
increase. 

                                                         Q.E.D 
2.3. Queue-dependent mode 

RAQM mode defined by Eq. (3) aims to control the 
aggregated rate to the expected value r0 . We refer this 
as queue-independent mode. We can further use 
instantaneous queue length to regulate queue length to 
the expected value q0 , and in turn to regulate the 

queuing delay. This is called as queue-dependent mode 
in RAQM, where the packet drop probability p is 
calculated each time a new packet arrives as: 
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)),1min(,0max(
0q

q
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where q is the instantaneous queue length and p
k

 is the 
packet drop probability in queue-independent mode,
calculated from Eq. (3). Fig. 1 presents the detailed 
procedures, respectively, for queue-independent mode 

and queue-dependent mode.

2.4. Implementation issues 

RAQM needs to periodically measure the 
aggregated traffic input rate, and use it to calculate 
packet drop probability. The period T can be set as 
several RTTs to track the variation of input rate, since 
the control cycle in TCP protocol is one RTT. This will 
be verified in the next section through simulations. 
Another parameter to be configured is α , which not 
only determines the stability of the algorithm, but also 
influences the convergence rate. Theorem 1 has 
deduced the upper bound  of α  to maintain the stability 
of RAQM. In fact, α̂  also has its lower bound. 
Assuming rxrk 0.= ( )2,1()1,0(∈x ), α̂  can be simply 
calculated from Eq. (11) as: 

rxcr
x

xx 1
0

1
0 )()

1

))2(ln(2
(ˆ −− =

−
−=α              (13) 

The dynamics of c(x) is presented in Fig. 2. It can be 
observed and easily proved that: 1) c(x)>4, when  

)2,1()1,0(∈x ; 2) when x is close to 1, c(x) has limited 

value of 4; 3) when x is close to 0 or 2, c(x) has no 
limited value or its limited value is +∞ . Since c(x) ≥ 4,  
α̂   is not smaller than r

1
04 −  according to Eq. (13). 

As a result, two ways can be used to configure α : 1)
Static configuration-We can statically set α  in a value 
that is smaller than α̂ .  In order to meets this condition, 
this static value needs to be conservatively set using a 
small value, which will cause slow convergence and 
response according to Theorem 2. Since α̂  has its lower 
bound ( r

1
04 − ) according to the discussions in the last 

paragraph, we can set rm 1
0
−=α (0<m<4). 2) Adaptive 

configuration-In this way α  can be adaptive re-
configured with α̂ , if and only if it is a bit smaller than 
α̂ , so as to keep stability and fast convergence 
simultaneously. We can set ˆ×= ε  directly using Eq. 
(11), where ε  is smaller than 1 but close to 1. 

3. Simulation results 

Among the proposed algorithms, PI [9] and REM 
[10] have excellent stability property and can 
effectively regulate queue length to the expected value, 
like RAQM. SFC [11] can also regulate the queue  

/* Initialization */ 
dropPb=0.0002;      arrByte=0;         inputRate=0; 
/* InputRateMeasure()-Called periodically every T seconds */ 
1            inputRateTemp=arrByte/T;
2            inputRate=(1-f’) inputRateTemp+f’*inputRate;
3            mismatch=inputRate-r0;
4            dropPb=max(0, min(1, dropPb*emismatch));
5            arrByte =0;                
/* Enqueue()-Called each time a new packet arrives */ 
1            arrByte+=Length(arrival packet);
2            if(queue-independent mode) p=dropPb;
3            if(queue-dependent mode)      p=max(0, min(1, dropPb*(qlen/q0));
4            random=uniformRandom(0, 1); 
5            if(buffer is full) { 
6                Drop the packet; 
7            }   else if(random>p)  {  Enqueue the packet; 
9            }   else   { 
10              Drop the packet; 
11          }

Figure 1. RAQM procedures 

Function: c(x)

4

5
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7
8
9

10
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x  (=rk/ro )
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x)

Figure 2. Dynamics of c(x) in Eq. (13) 
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Figure 3. Network topology 

length to the expected value, but it provides no detailed 
procedures (for example, the frequency to estimate the 
traffic rate) to estimate traffic input rate (Fig. 5 in [11]), 
then it is hard to precisely implement it and make 
comparisons with RAQM and other algorithms. 
Therefore we only choose PI and REM in this paper as 
comparison, and use the default value in NS2 [15] for 
their parameters2. The queue-dependent mode of 
RAQM is implemented and its parameters are set as 

2 In PI, a= 0.00001822, b= 0.00001816, sampling frequency is 170. In 
REM, 001.1=φ , 1.0=α , 001.0=γ , sampling interval is 2ms. 
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follows. First, the measure period (T) and the constant f’
in Eq. (2) are set at 1.0s and 0.1 respectively. The α  in 
Eq. (3) is calculated using adaptive configuration

according to Theorem 1, and its initial value is set at 
r

1
02 − , r0  is set to the link capacity. The initial packet 

drop probability can be very small value (such as 
0.0002 in Fig. 1 and the later simulations).  

The network topology is the commonly used dumb-
bell (see Fig. 3), where there is only a single congestion 
link lying from Router 1 to Router 2, and capacity of 
each link is 10Mbps. The link delay (unit in ms) 
between client c(i) and Router 1 is labeled as a 5-tuple 

),,,,( 54321 ddddd . All flows are uniformly configured 

between pairs of client c(i) and server s(i), and issue 
packets from client to server. Packet size is 500 bytes, 
and buffer size is 100 packets throughout this section. 
Simulation time is configured at 200 seconds.  

Although AQM can integrate with ECN [2] 
mechanism, this paper does not considers packet 
marking, but focuses on packet dropping. In simulations, 
we have collected goodput (exclude the duplicated 
packets in receivers), instantaneous queue length, and 
packet drop ratio. We carry out simulations in four 
cases in order to investigate the performance of RAQM 
in a variety of environment. Small RTT and large RTT

are configured respectively in case 1 and case 2, where 
each flow has nearly the same RTT. In case 3, the link 
delay between clients and Router 1 is configured using 
different value. Therefore flows have diverse and 
different RTT. In case 4, a dynamic network 
environment is constructed through introducing 
unresponsive UDP flows and short-lived TCP flows to 
emulate the real network at the best.  

3.1. Case 1-small round-trip time (RTT) 

In this case, we configure the topology with small 
round trip time through setting di (i=1~5)=10ms. The 
expected queue length q0 for PI, REM, and RAQM is 

50 packets. All the traffic flows are long-lived TCP 
flows. We collect the queue length at Router 1, and 
present it in the Fig. 4, which shows that RAQM can 
quickly and effectively regulate the queue length around 
the expected value q0 .  However, PI and REM cause 

slow response and big overshoot, especially when the 
number of TCP flows is large (=400). The queue length 
under RAQM is effectively regulated around q0  with 

much shorter overshoot. 

3.2. Case 2-large round-trip time (RTT) 

In this case, di (i=1~5) is set at 100ms, so as to 
investigate the performance of RAQM under large 

round trip time. The other parameters are the same to 
that in case 1. The responding results about queue 
length are illustrated in Fig. 5, which shows that RAQM 
still obtains better stability and much faster response 
than PI and REM, as that under the small round trip 
time. Moreover, REM is nearly out of control in this 
case when the number of TCP flows is equal to 40. 

3.3. Case 3-diverse round trip time (RTT) 

In this case, the link delay between clients and 
Router 1 are configured at ),,,,( 54321 ddddd =(10, 50, 

100, 150, 200) ms. First we also set the expected queue 
length q0  at 50 packets and the number of TCP flow is 

40 and 400. The queue length is illustrated in Fig. 6 for 
PI, REM, and RAQM. RAQM still achieves better 
stability and much faster response than PI and REM, 
since it is capable to quickly regulate the queue length 
around q0  with much shorter overshoot.  

Second, we fix the number of long-lived TCP flows 
at 100, and vary the expected queue length q0 from 20, 
to 30, 40, 50, 60, 70, 80, and 90. We collect the sum of 
goodput at all servers and packet drop ratio at Router 1. 
Fig. 7 presents the results about goodput and packet 
drop ratio vs. average queue length, and shows that 
RAQM can obtain higher goodput and lower packet 
drop ratio simultaneously at the cost of the same 
average queue length. Even if the average queue length 
is about 20, RAQM still obtains high goodput (about 
0.96). In PI and REM, when the expected queue length 
q0 is bigger than 60, it causes decreased goodput on the 
contrary like the behavior of traditional Tail-Drop. But 
this phenomenon is not observed in RAQM and shows 
that RAQM is capable to more effectively regulate 
queue length and keep higher goodput even if the 
expected queue length is close to the buffer size. 

3.4. Case 4-hybrid traffics 

In this case, hybrid traffics are introduced, such as 
long-lived TCP flows, short-lived TCP flows, and 
unresponsive UDP flows. The long-lived TCP flows are 
active during time interval [0s, 200s], but short-lived 
TCP and UDP flows become active only during [50s, 
150s].  The short-lived TCP is emulated using a Poisson 
process, and its mean arrival rate equals to 10.  The 
duration of each short-lived TCP flow is uniformly 
distributed in [1.0s, 2.0s]. The UDP is the kind of 
ON/OFF CBR flow, with average rate 40Kbps. The 
duration of ON and OFF state is exponentially 
distributed with mean value 1.0s. The total number of 
UDP flow is 50. Other parameters are the same to that 
in case 3. We collect the queue length for each AQM 
algorithm of interest (See Fig. 8), and observe that 
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RAQM still obtains better stability and faster response 
than PI and REM under hybrid traffics.  

4. Conclusions 

A new algorithm (RAQM) for active queue 
management is proposed in this paper, which uses the 
aggregated traffic input rate to iteratively compute the 
packet drop probability according to an exponential rule, 
in order to regulate the input rate to an expected value. 
RAQM can jointly use instantaneous queue length to 
adjust packet drop probability and regulate the queue 
length to its expected value. The stability and design 
rules of RAQM are analyzed, which with the extensive 
simulations demonstrate that RAQM achieves better 
stability and faster response and than PI and REM under 
diverse environments.  RAQM also obtains higher 
goodput at the same cost of average queue length, and 
better tradeoff between goodput and queuing delay. 
Although RAQM needs to measure traffic input rate, 
yet this operation is for the aggregated flows and there 
is no need to differentiate each micro flow. It can be 
executed at scale of second, which is easy for the 
commercial routers. The total complexity of RAQM is 
independent of the number of micro-flows and is in the 
order of O(1).

There are several other issues currently under 
investigation. This paper only investigates the RAQM 
performance under single-hop environment. We will 
evaluate its performance under multi-hop environments 
such as DiffServ capable networks in our future works. 
Another issue is priority supporting or bandwidth 
sharing. If configuring different expected rate value for 
different sub-aggregated flows and separately 
computing packet drop probability for them, RAQM 
can be easily extended to provide bandwidth guarantee 
for different sub-aggregated TCP flows using a single 
physical queue. 
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Appendix: Figure 4-Figure 8 
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(a): The number of long-lived TCP flows is 40 
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(b): The number of long-lived TCP flows is 400 

Figure 4. Queue length in case 1 with small RTT 
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(a): The number of long-lived TCP flows is 40 
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(b): The number of long-lived TCP flows is 400 

Figure 5. Queue length in case 2 with large RTT 
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(a): The number of long-lived TCP flows is 40 
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(b): The number of long-lived TCP flows is 400 
Figure 6. Queue length in case 3 with diverse RTT 
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Figure 7. Goodput and packet drop ratio in case 3 with diverse RTT 

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h 
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h 
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h 
(p

ac
ke

ts
)

Figure 8. Queue length in case 4 with hybrid traffics 
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