
Design and Analysis of a Rate-based Algorithm for Active Queue Management

Abstract

This paper proposes a rate-based active queue

management algorithm or RAQM. It uses the

aggregated traffic input rate to calculate packet drop

probability according to an exponential rule. We

analyze the stability and investigate practical

implementation issues of the RAQM. Simulations are

carried out to study RAQM performance and to

compare with other AQM algorithms, in particular PI

and REM schemes. The results demonstrate that RAQM

achieves better stability and faster response as it can

quickly regulate the queue length to the expected value

with small overshoot. RAQM also obtains better

tradeoff between link utilization and queuing delay, and

obtains higher goodput with the same buffer size as in

PI and REM schemes. Finally RAQM has O(1)

complexity, thus independent of the number of flows.

1. Introdoction

Buffer management plays an important role in
congestion control, whose primary objectives are high
link utilization and low packet queuing delay. However,
these two objectives generally conflict, since small
buffer leads to lower queuing delay but also lower link
utilization, and vice versa. Therefore, one of the key
design issues in the buffer management is to strike a
good tradeoff between them.

This work was supported in part by grants from Research Grants
Council (RGC) under contracts HKUST6196/02E and
HKUST6204/03E, a grant from NSFC/RGC under contract
N_HKUST605/02, and a grant from Microsoft Research under
contract MCCL02/03.EG01. Please send all correspondences to Bo Li
at bli@cs.ust.hk, or Fax: +852 2358 1477.

The traditional algorithm for buffer management is
First-In-First-Out (FIFO) with Tail-Drop, which drops
packets only if buffer overflows. This passive behavior
results in long queuing delay, and is often the cause of
the correlation among packet drops, resulting in the
well-known “TCP synchronization” problem [1]. That
is, many TCP flows may lose packets and decrease
sending rate simultaneously. To mitigate such problems,
AQM [1] has been introduced in recent years.
Comparing with FIOF Tail-Drop, AQM algorithms can
actively trigger packet drops before buffer overflows,
which can avoid “TCP synchronization” and achieve
better link utilization and reduce the possibility of
congestion. The primary objectives of AQM include: 1)
High link utility and high goodput (exclude the
duplicate packets received). On one hand, buffer
emptiness should be avoided; on the other hand, it is
also necessary to prevent buffer overflow or longer
queue length. Otherwise, the timeout of TCP flows
would occur frequently, resulting in unnecessary
retransmissions, thus low goodput for them. 2) Low
queuing delay. This is helpful to prevent TCP timeout
and also attractive for the ever-increasing real-time
applications. 3) Simple and efficient. AQM must be
simple and scalable to be deployed in high-speed
routers. 4) Stability and robustness. AQM should be
stable and robust under dynamic environments, i.e.,
retain good performance even if the network parameters,
such as the number of flows N, round-trip time RTT, as
well as the characteristics of the flows, such as short-
lived or long-lived, and responsive or unresponsive,
change frequently without being known a priori.

The key issues in the design of AQM algorithms are
how to measure link-congestion degree and how to
determine the behavior of packet dropping (or mark if

Chonggang Wang
University of Arkansas

Fayetteville, AR, U.S.A.

E-mail: cgwang@uark.edu

Bo Li
The Hong Kong Univ. of Sci. & Tech.

Hong Kong, China

E-mail: bli@cs.ust.hk

Y. Thomas Hou
Virginia Tech

Blacksburg, VA, U.S.A.

E-mail: thou@vt.edu

Kazem Sohraby
University of Arkansas

Fayetteville, AR, U.S.A.

E-mail: sohraby@uark.edu

Weiwen Tang
Sichuan Communication Research Planning

& Designing Co., Ltd., Chengdu, China

E-mail: tangww@sctele.com

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

explicit congestion notification (ECN) [2] is enabled 1).
In the existing AQM algorithms, link-congestion can be
estimated through (average) queue length, input rate,
event of buffer overflow or buffer empty, or and
combination of them. Among them, queue length is the
most widely used index, e.g., in the original RED [3][4]
and most of its variants, such as S-RED [5] and ARED
[6]. The event of buffer overflow or buffer empty is
used in BLUE [7] to estimate link-congestion level, and
the input rate is used in AVQ [8]. Recent algorithms,
such as PI [9], REM [10], and SFC [11], jointly use
queue length and input rate to estimate link-congestion.

The motivation in this paper is to design a more
stable algorithm with faster response or convergence
rate since the traffics in Internet may be often varied
and hard to be known exactly, and slow response will
lead to buffer overflow or emptiness and corresponding
large queuing delay and low link utility [12]. Also in
order to flexibly adjust queuing delay, AQM algorithms
should be capable to effectively regulate the queue
length to an expected value. The main contribution in
this paper is the proposed rate-based algorithm or
RAQM, which obtains good stability and fast response
under diverse network environment. RAQM can
regulate the queue length to an expected value and
achieve a better tradeoff between goodput and queuing
delay. RAQM has two modes of operations, queue-

independent and queue-dependent modes. In the queue-
independent mode, RAQM periodically measures
aggregated traffic input rate, and iteratively computes
the packet drop probability, so as to make the input rate
close to the expected value r0 . This mode does not use
any information on the queue length. In the queue-

dependent mode, RAQM also uses instantaneous queue
length to further adjust packet drop probability besides
the traffic input rate, and can regulate queue length to
the expected value q0 . The stability analysis and design
rules for RAQM are also given out in this paper, which
jointly with extensive simulations demonstrate the
advantages of RAQM.

The rest of this paper is organized as follows.
Section II presents RAQM algorithm, stability analysis
and discussions on the implementation. Section III
presents the numerical results obtained using simulation
and comparison with other AQM algorithms. Section IV
concludes the paper and highlights several possible
extensions.

2. RAQM algorithm

1 For easy of exposition, we use “drop” for both cases in the rest of
this paper, unless explicitly indicated.

RAQM uses aggregated traffic input rate to regulate
it to the expected value r0 . It needs to periodically
measure the aggregated traffic input rate rk , and
iteratively updates the packet drop probability p

k

according to an exponential rule. The rational for using
the exponential rule is that it can achieve the stability
and leads to faster convergence of the packet drop
probability to the expected value. RAQM can also
jointly use the instantaneous queue length and further
refine the packet drop probability more each time when
a new packet arrives, so as to regulate queue length to
the expected value q0 .

2.1. Algorithm description

Like most of other AQM algorithms, RAQM also
selects the tail-packet (or the arriving packet just now)
when it needs to drop packet. In RAQM, packet drop
probability is periodically computed according to the
measured aggregated traffic input rate rk . Intuitively
when rk increases, packet drop probability p

k
 has to

be set at a larger value, and vice versa. First, the
aggregated traffic input rate rk is periodically measured
using the mechanism proposed in [13] as:

re
T

l
er k

fTkfT

k 1)1(−
−− +−= (1)

where T is the measure period, l k is the total bytes
arriving during the k-th measure period, rk is the input
rate measured in the end of k-th measure period, and f is
a constant that will influence the correctness of measure
result.

For simplicity, we can rewrite Eq. (1) as:

rf
T

l
fr k

k

k 1
'')1(−+−= (2)

where f’(= e
fT− <1) is a constant.

After obtaining the aggregated traffic input rate rk ,
packer drop probability p

k
 in RAQM is periodically

and iteratively calculated at the end of k-th period using
the exponential rule as:

pep
kk

rrk

1
)(0

−
−= α (3)

where r0 is the expected traffic input rate, and 0>α is
a parameter to be configured. r0 can be set as the link
capacity C or Cγ (where 10 ≤< γ). α needs to be

carefully considered since it determines the stability and
response time of RAQM. For example, if α is too large,
p

k
will oscillate. On the contrary, p

k
 will adapt slowly

if α is too small. This will be analyzed in the next sub-
section.

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

2.2. Performance Analysis

This sub-section analyzes the stability of RAQM
and determines how to configure α . Assume that there
are N long-lived TCP flows, and each flow i has round-
trip time d i , packet size Li , and throughput r

i
k .

According to the TCP throughput model deduced in
[14], the relationship between the aggregated traffic
input rate rk and packet drop probability p

k
 can be

represented as:

pd

L
r

ki

ii
k

1−×
×= η

 (4)

p

H

d

L

p
rr

k

N

i
i

i

k

N

i

i
kk

1
1

1
1

−
=

−
=

=== ηη
 (5)

where η is a constant, and =
=

N

i
ii dLH

1
)(. From Eq. (5),

we have:

p

p

r

r

k

k

k

k

1

2

1 −

−

−

= (6)

Lemma 1: The expected traffic input rate r0 is one
of the stable points for the system defined by Eqs. (3)-
(5).

Proof: assume rrk 0= . From Eq. (3), we can have

pp
kk 1−= . Then according to Eq. (6), there is:

rrr kk 01 ==+ Q.E.D

Lemma 2: The stable point, for the system defined
by Eqs. (3)-(5), is unique.

Proof: assume there is another stable point 'r . Let
'1 rrr kk ==+ . From Eq. (10), we have pp

kk 1−= . Then it

is sure to be rr =' 0 , according to Eq. (3).
 Q.E.D

Theorem 1: RAQM is stable iff αα ˆ0 << , where

)(5.0
ln)2ln(ˆ

0

0

rr

rrr

k

kk

−
−−=α

Proof: using Lyapunov Theorem. Firstly, define
Lyapunov function as:

)(0
2

rrV kk −= (7)
Then its discrete differentiated equation can be

written as:
)2)((0111 rrrrrVV kkkkkk −+−=− +++ (8)

From Eqs. (3) and (6), we can have:

e
r

r rr k

k

k)(5.01 0−−+ = α (9)

Substituting Eq. (9) into Eq. (8), the differentiated
equation VV kk −+1 can be calculated as:

)2)1()((0
)(5.0

11
0 rerrrVV rr k

kkkkk −+−=− −−
++

α (10)

Because of 0>V k , we only need to prove that its
differentiated equation Eq. (10) meets: 01 <−+ VV kk .
Then RAQM (or Eq. (3)) is sure to be stable according
to Lyapunov theorem.

Let 01 =−+ VV kk . Assume rr k≠0 and 02 0 >− rr k ,
then:

αα ˆ
)(5.0

ln)2ln(

0

0 =
−

−−=
rr

rrr

k

kk (11)

If 02 0 >− rr k and rr k≠0 , it can be easily proved
that 0ˆ >α whenever rr k>0 or rr k<0 .

Case1: rrk 0> . From Eq. (9), we can get rr kk <+1 .
According to Eqs. (10) and (11), there are:

If
002)1(ˆ0 10

)(5.0 0 <−>−+<< +
−−

VVrer kkk
rr kααα ;

If
002)1(0ˆ 10

)(5.0 0 >−<−+>> +
−−

VVrer kkk
rr kααα .

Case2: rrk 0< . From Eq. (9), we can get rr kk >+1 .
According to Eqs. (10) and (11), there are:

If
002)1(ˆ0 10

)(5.0 0 <−<−+<< +
−−

VVrer kkk
rr kααα ;

If
002)1(0ˆ 10

)(5.0 0 >−>−+>> +
−−

VVrer kkk
rrkααα .

Combining the above discussions and the fact that
0>V k , we conclude: 1) If αα ˆ0 << , then

01 <−+ VV kk , and RAQM is stable; 2) If 0ˆ >> αα ,
then 01 >−+ VV kk , RAQM becomes unstable; 3) If

αα ˆ= , then 01 =−+ VV kk , we can’t determine the
stability of RAQM according to Lyapunov function in
Eq. (7).

 Q.E.D

Theorem 2: The convergence rate of RAQM is
determined by value of α . The bigger value of α , the
faster convergence rate will be obtained.

Proof: it can be seen from proof of Theorem 1 that
the absolute value of VV kk −+1 will decrease when α
grows. Therefore, the convergence rate of RAQM will
increase.

 Q.E.D
2.3. Queue-dependent mode

RAQM mode defined by Eq. (3) aims to control the
aggregated rate to the expected value r0 . We refer this
as queue-independent mode. We can further use
instantaneous queue length to regulate queue length to
the expected value q0 , and in turn to regulate the

queuing delay. This is called as queue-dependent mode
in RAQM, where the packet drop probability p is
calculated each time a new packet arrives as:

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

)),1min(,0max(
0q

q
pp

k
= (12)

where q is the instantaneous queue length and p
k

 is the
packet drop probability in queue-independent mode,
calculated from Eq. (3). Fig. 1 presents the detailed
procedures, respectively, for queue-independent mode

and queue-dependent mode.

2.4. Implementation issues

RAQM needs to periodically measure the
aggregated traffic input rate, and use it to calculate
packet drop probability. The period T can be set as
several RTTs to track the variation of input rate, since
the control cycle in TCP protocol is one RTT. This will
be verified in the next section through simulations.
Another parameter to be configured is α , which not
only determines the stability of the algorithm, but also
influences the convergence rate. Theorem 1 has
deduced the upper bound of α to maintain the stability
of RAQM. In fact, α̂ also has its lower bound.
Assuming rxrk 0.= ()2,1()1,0(∈x), α̂ can be simply
calculated from Eq. (11) as:

rxcr
x

xx 1
0

1
0)()

1

))2(ln(2
(ˆ −− =

−
−=α (13)

The dynamics of c(x) is presented in Fig. 2. It can be
observed and easily proved that: 1) c(x)>4, when

)2,1()1,0(∈x ; 2) when x is close to 1, c(x) has limited

value of 4; 3) when x is close to 0 or 2, c(x) has no
limited value or its limited value is +∞ . Since c(x) ≥ 4,
α̂ is not smaller than r

1
04 − according to Eq. (13).

As a result, two ways can be used to configure α : 1)
Static configuration-We can statically set α in a value
that is smaller than α̂ . In order to meets this condition,
this static value needs to be conservatively set using a
small value, which will cause slow convergence and
response according to Theorem 2. Since α̂ has its lower
bound (r

1
04 −) according to the discussions in the last

paragraph, we can set rm 1
0
−=α (0<m<4). 2) Adaptive

configuration-In this way α can be adaptive re-
configured with α̂ , if and only if it is a bit smaller than
α̂ , so as to keep stability and fast convergence
simultaneously. We can set ˆ×= ε directly using Eq.
(11), where ε is smaller than 1 but close to 1.

3. Simulation results

Among the proposed algorithms, PI [9] and REM
[10] have excellent stability property and can
effectively regulate queue length to the expected value,
like RAQM. SFC [11] can also regulate the queue

/* Initialization */
dropPb=0.0002; arrByte=0; inputRate=0;
/* InputRateMeasure()-Called periodically every T seconds */
1 inputRateTemp=arrByte/T;
2 inputRate=(1-f’) inputRateTemp+f’*inputRate;
3 mismatch=inputRate-r0;
4 dropPb=max(0, min(1, dropPb*emismatch));
5 arrByte =0;
/* Enqueue()-Called each time a new packet arrives */
1 arrByte+=Length(arrival packet);
2 if(queue-independent mode) p=dropPb;
3 if(queue-dependent mode) p=max(0, min(1, dropPb*(qlen/q0));
4 random=uniformRandom(0, 1);
5 if(buffer is full) {
6 Drop the packet;
7 } else if(random>p) { Enqueue the packet;
9 } else {
10 Drop the packet;
11 }

Figure 1. RAQM procedures

Function: c(x)

4

5
6

7
8
9

10

0 0.5 1 1.5 2
x (=rk/ro)

c(
x)

Figure 2. Dynamics of c(x) in Eq. (13)

c
1

c
2

c
4

c
3

c
5

Router1 Router2

s
1

s
2

s
4

s
3

s
5

10Mbps
 5ms

10Mbps
 5ms

10Mbps

(d1,d2,d3,d4,d5)
unit:ms

d1

d2

d3

d4

d5

Figure 3. Network topology

length to the expected value, but it provides no detailed
procedures (for example, the frequency to estimate the
traffic rate) to estimate traffic input rate (Fig. 5 in [11]),
then it is hard to precisely implement it and make
comparisons with RAQM and other algorithms.
Therefore we only choose PI and REM in this paper as
comparison, and use the default value in NS2 [15] for
their parameters2. The queue-dependent mode of
RAQM is implemented and its parameters are set as

2 In PI, a= 0.00001822, b= 0.00001816, sampling frequency is 170. In
REM, 001.1=φ , 1.0=α , 001.0=γ , sampling interval is 2ms.

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

follows. First, the measure period (T) and the constant f’
in Eq. (2) are set at 1.0s and 0.1 respectively. The α in
Eq. (3) is calculated using adaptive configuration

according to Theorem 1, and its initial value is set at
r

1
02 − , r0 is set to the link capacity. The initial packet

drop probability can be very small value (such as
0.0002 in Fig. 1 and the later simulations).

The network topology is the commonly used dumb-
bell (see Fig. 3), where there is only a single congestion
link lying from Router 1 to Router 2, and capacity of
each link is 10Mbps. The link delay (unit in ms)
between client c(i) and Router 1 is labeled as a 5-tuple

),,,,(54321 ddddd . All flows are uniformly configured

between pairs of client c(i) and server s(i), and issue
packets from client to server. Packet size is 500 bytes,
and buffer size is 100 packets throughout this section.
Simulation time is configured at 200 seconds.

Although AQM can integrate with ECN [2]
mechanism, this paper does not considers packet
marking, but focuses on packet dropping. In simulations,
we have collected goodput (exclude the duplicated
packets in receivers), instantaneous queue length, and
packet drop ratio. We carry out simulations in four
cases in order to investigate the performance of RAQM
in a variety of environment. Small RTT and large RTT

are configured respectively in case 1 and case 2, where
each flow has nearly the same RTT. In case 3, the link
delay between clients and Router 1 is configured using
different value. Therefore flows have diverse and
different RTT. In case 4, a dynamic network
environment is constructed through introducing
unresponsive UDP flows and short-lived TCP flows to
emulate the real network at the best.

3.1. Case 1-small round-trip time (RTT)

In this case, we configure the topology with small
round trip time through setting di (i=1~5)=10ms. The
expected queue length q0 for PI, REM, and RAQM is

50 packets. All the traffic flows are long-lived TCP
flows. We collect the queue length at Router 1, and
present it in the Fig. 4, which shows that RAQM can
quickly and effectively regulate the queue length around
the expected value q0 . However, PI and REM cause

slow response and big overshoot, especially when the
number of TCP flows is large (=400). The queue length
under RAQM is effectively regulated around q0 with

much shorter overshoot.

3.2. Case 2-large round-trip time (RTT)

In this case, di (i=1~5) is set at 100ms, so as to
investigate the performance of RAQM under large

round trip time. The other parameters are the same to
that in case 1. The responding results about queue
length are illustrated in Fig. 5, which shows that RAQM
still obtains better stability and much faster response
than PI and REM, as that under the small round trip
time. Moreover, REM is nearly out of control in this
case when the number of TCP flows is equal to 40.

3.3. Case 3-diverse round trip time (RTT)

In this case, the link delay between clients and
Router 1 are configured at),,,,(54321 ddddd =(10, 50,

100, 150, 200) ms. First we also set the expected queue
length q0 at 50 packets and the number of TCP flow is

40 and 400. The queue length is illustrated in Fig. 6 for
PI, REM, and RAQM. RAQM still achieves better
stability and much faster response than PI and REM,
since it is capable to quickly regulate the queue length
around q0 with much shorter overshoot.

Second, we fix the number of long-lived TCP flows
at 100, and vary the expected queue length q0 from 20,
to 30, 40, 50, 60, 70, 80, and 90. We collect the sum of
goodput at all servers and packet drop ratio at Router 1.
Fig. 7 presents the results about goodput and packet
drop ratio vs. average queue length, and shows that
RAQM can obtain higher goodput and lower packet
drop ratio simultaneously at the cost of the same
average queue length. Even if the average queue length
is about 20, RAQM still obtains high goodput (about
0.96). In PI and REM, when the expected queue length
q0 is bigger than 60, it causes decreased goodput on the
contrary like the behavior of traditional Tail-Drop. But
this phenomenon is not observed in RAQM and shows
that RAQM is capable to more effectively regulate
queue length and keep higher goodput even if the
expected queue length is close to the buffer size.

3.4. Case 4-hybrid traffics

In this case, hybrid traffics are introduced, such as
long-lived TCP flows, short-lived TCP flows, and
unresponsive UDP flows. The long-lived TCP flows are
active during time interval [0s, 200s], but short-lived
TCP and UDP flows become active only during [50s,
150s]. The short-lived TCP is emulated using a Poisson
process, and its mean arrival rate equals to 10. The
duration of each short-lived TCP flow is uniformly
distributed in [1.0s, 2.0s]. The UDP is the kind of
ON/OFF CBR flow, with average rate 40Kbps. The
duration of ON and OFF state is exponentially
distributed with mean value 1.0s. The total number of
UDP flow is 50. Other parameters are the same to that
in case 3. We collect the queue length for each AQM
algorithm of interest (See Fig. 8), and observe that

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

RAQM still obtains better stability and faster response
than PI and REM under hybrid traffics.

4. Conclusions

A new algorithm (RAQM) for active queue
management is proposed in this paper, which uses the
aggregated traffic input rate to iteratively compute the
packet drop probability according to an exponential rule,
in order to regulate the input rate to an expected value.
RAQM can jointly use instantaneous queue length to
adjust packet drop probability and regulate the queue
length to its expected value. The stability and design
rules of RAQM are analyzed, which with the extensive
simulations demonstrate that RAQM achieves better
stability and faster response and than PI and REM under
diverse environments. RAQM also obtains higher
goodput at the same cost of average queue length, and
better tradeoff between goodput and queuing delay.
Although RAQM needs to measure traffic input rate,
yet this operation is for the aggregated flows and there
is no need to differentiate each micro flow. It can be
executed at scale of second, which is easy for the
commercial routers. The total complexity of RAQM is
independent of the number of micro-flows and is in the
order of O(1).

There are several other issues currently under
investigation. This paper only investigates the RAQM
performance under single-hop environment. We will
evaluate its performance under multi-hop environments
such as DiffServ capable networks in our future works.
Another issue is priority supporting or bandwidth
sharing. If configuring different expected rate value for
different sub-aggregated flows and separately
computing packet drop probability for them, RAQM
can be easily extended to provide bandwidth guarantee
for different sub-aggregated TCP flows using a single
physical queue.

References

[1] B. Braden, et al., “Recommendations on queue
management and congestion avoidance in the Internet,”
IETF RFC2309, Apr. 1998.

[2] S. Floyd, “TCP and explicit congestion notification,”
ACM Computer Communication Review, vol. 24, pp. 10-
23, Oct. 1994.

[3] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM Trans.

on Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.
[4] S. Floyd, “Recommendation on using the ‘gentle_’

variant of RED,”
http://www.icir.org/floyd/red/gentle.html, Mar. 2000.

[5] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A
self-configuring RED Gateway,” In Proceedings of IEEE
INFOCOMM, vol. 3, pp. 1320-1328, 1999.

[6] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED:
An Algorithm for increasing the robustness of RED’s
active queue management,”
http://www.icir.org/floyd/papers/adaptiveRed.pdf, Aug.
2001.

[7] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “The
blue active queue management algorithms,” IEEE/ACM
Trans. on Networking, vol. 10, no. 4, pp. 513-528, Aug.
2002.

[8] S. Kunniyur and R. Srikant, “Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active queue
management,” In Proceedings of ACM SIGCOMM’01,
pp. 123-134, Aug. 2001.

[9] C. Hollot, V. Misra, D. Towsley, and W. Gong,
“Analysis and design of controllers for AQM routers
supporting TCP flows,” IEEE Trans. on Automatic

Control, vol. 47, pp. 945-959, Jun. 2002.
[10] S. Athuraliya, S. Low, V. Li, and Q. Yin, “REM: Active

queue management,” IEEE Network Magazine, vol. 15,
pp. 48-53, May 2001.

[11] Y. Gao and J. C. Hou, “A state feedback control
approach to stabilizing queues for ECN-enabled TCP
flows,” In Proceedings of IEEE INFOCOM, 2003.

[12] C. Wang, B. Li, K. Sohraby, and Y. Peng, “AFRED: An
adaptive fuzzy-based algorithm for active queue
management,” The 28th Annual IEEE Conference on
Local Computer Networks (LCN), Bonn, Germany,
October 20-24, 2003.

[13] I. Stoica, S. Shenker and H. Zhang, “Core-stateless fair
queuing: Achieving approximately fair bandwidth
allocations in high-speed networks,” in Proceedings of

SIGCOMM 1998, pp.118-130, 1998
[14] J. Padhye, V.Firoiu, D. Towsley, and J. Kurose,

“Modeling TCP throughput: A simple model and its
empirical validation”, In Proceedings of ACM

SIGCOMM’98, 1998.
[15] UCN/LBL/VINT, Network simulator-ns2, http://www-

mash.cs.berkeley.edu/ns.

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

Appendix: Figure 4-Figure 8

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

(a): The number of long-lived TCP flows is 40

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

(b): The number of long-lived TCP flows is 400

Figure 4. Queue length in case 1 with small RTT

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

(a): The number of long-lived TCP flows is 40

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

(b): The number of long-lived TCP flows is 400

Figure 5. Queue length in case 2 with large RTT

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

(a): The number of long-lived TCP flows is 40

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

(b): The number of long-lived TCP flows is 400
Figure 6. Queue length in case 3 with diverse RTT

Goodput vs. Average Q-Length

0.95

0.96

0.97

0.98

0.99

1

0 20 40 60 80 100

Average Queue Length (Packets)

G
oo

dp
ut

P I

REM

RAQM

Packet Drop Ratio vs. Ave Q-Length

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100

Average Queue Length (Packets)

Pa
ck

et
 D

ro
p

R
at

io

P I

REM

RAQM

 (a): Goodput vs. Average queue length (b): Packet drop ratio vs. Average queue length
Figure 7. Goodput and packet drop ratio in case 3 with diverse RTT

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-PI

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-REM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0

25

50

75

100

0 50 100 150 200

T ime (seconds)-RAQM

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Figure 8. Queue length in case 4 with hybrid traffics

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

