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Abstract— In this paper, we study the network lifetime problem
by considering not only maximizing the time until the first node
fails, but also maximizing the lifetime for all the nodes in the
network, which we define as the Lexicographic Max-Min (LMM)
node lifetime problem. The main contributions of this paper
are two-fold. First, we develop a polynomial-time algorithm to
derive the LMM-optimal node lifetime vector, which effectively
circumvents the computational complexity problem associated
with an existing state-of-the-art approach, which is exponential.
Second, we present a simple (also polynomial-time) algorithm to
calculate the flow routing schedule such that the LMM-optimal
node lifetime vector can be achieved. Our results in this paper
advance the state-of-the-art algorithmic design to network-wide
node lifetime problems.

Index Terms— Energy constraint, node lifetime, lexicographic
max-min, flow routing, power control, wireless sensor networks.

I. INTRODUCTION

Wireless sensor networks promise to have a significant
impact on society that could quite possibly dwarf previous
milestones in the information revolution. Although there have
been significant improvements in processor design and com-
puting, advances in battery technology still lag behind, making
energy resource the fundamental challenge in wireless sensor
networking. As a consequence of the energy constraint, a
new performance metric, namely, the network lifetime, has
become a vitally important benchmark for wireless sensor
networks. There have been active research efforts recently at
the networking layer on devising flow routing algorithms to
maximize network lifetime, e.g. [3], [4], [6], [18]. However,
the network lifetime objective in most of these efforts has been
centered around maximizing the time until the first node fails.
Although the time until the first node fails is an important
measure from the complete network coverage point of view,
this performance metric alone cannot measure the lifetime
performance behavior for all nodes in the network. For wireless
sensor networks that are primarily designed for environmental
monitoring or surveillance, the loss of a single node will only
affect the coverage of one particular area and will not affect the
monitoring or surveillance capabilities of the remaining nodes
in the network. Consequently, it is important to investigate how
to maximize the lifetime for, not only the first node, but also
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all the nodes in the network. We call this the Lexicographic
Max-Min (LMM) node lifetime problem, which will be formally
defined in Section II-C.

Recently, Brown et al. [5] studied this problem under the
so-called “maximum node lifetime curve” problem, which is
equivalent to the Lexicographic Max-Min (LMM) node lifetime
problem. Informally, the maximum node life curve attempts to
maximize the time until a set of nodes drain their energy (drop
point) while minimizing the number of nodes that drain their
energy at each drop point. The main contribution by Brown et
al. [5] is the development of a procedure to solve the maximum
node lifetime curve problem. Although this approach can solve
the LMM node lifetime problem, its computational complexity
is shown to be exponential, which could be a potential problem
for large-scale networks.

Inspired by the important work in [5] on the LMM node
lifetime, we develop a polynomial-time algorithm to derive
the LMM-optimal node lifetime vector. We demonstrate that,
for any given network configuration and initial condition,
our approach is computationally more efficient than the slack
variable based (SV-based) approach in [5]. The computational
effectiveness of our approach accrues from two important
techniques. First, we employ a link-based formulation, which
significantly reduces the problem size in comparison with a
flow-based formulation used in [5]. Second, which is also
the most significant contribution in this paper, we exploit
the so-called parametric analysis technique to determine the
minimum energy-drained node set at each drop point. When
the problem is non-degenerate, we show that this technique is
a powerful tool in determining the minimum node set for each
drop point. It has a quadric time complexity in contrast with
the SV-based approach proposed in [5], which requires solving
multiple additional LPs at each drop point (with much higher
order complexity). Even for the rare case, when the problem
is degenerate, using the parametric analysis technique still is
more efficient than the SV-based approach as it decreases the
number of additional LPs that need to be solved at each drop
point.

In addition to providing an efficient polynomial-time algo-
rithm for the LMM-optimal node lifetime vector computation,
we also develop a simple polynomial-time algorithm that
provides a corresponding flow routing schedule at each stage
such that the LMM-optimal node lifetime vector can indeed be
achieved.

The remainder of this paper is organized as follows. Sec-
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Fig. 1. Reference architecture for a two-tiered wireless sensor network.

tion II describes the system model and problem statement for
this research. We also describe a naive approach to address this
problem and discuss why it usually gives an incorrect solution.
Section III presents the link-based formulation and our efficient
serial LP algorithm based on parametric analysis, which we
call SLP-PA. In Section IV, we present a simple algorithm to
calculate the flow routing schedule at each stage such that the
LMM-optimal node lifetime vector can indeed be achieved.
Section V compares the complexity of our algorithm with that
in [5]. Numerical results using the SLP-PA approach and the
corresponding flow routing schedule are given in Section VI.
Section VII reviews related work and Section VIII concludes
this paper.

II. SYSTEM MODELING AND PROBLEM FORMULATION

A. Reference Network Architecture

We focus on a two-tiered architecture for wireless sensor
networks. The two-tiered network architecture is motivated
by recent advances in distributed source coding (DSC) [7],
[12]. Figures 1 (a) and (b) show the physical and hierarchical
network topology for such a network, respectively. Here,
we have three types of nodes in the network: micro-sensor
nodes (MSNs), aggregation and forwarding nodes (AFNs),
and a base-station (BS). The MSNs can be application-specific
sensor nodes (e.g., temperature sensor nodes (TSNs), pressure
sensor nodes (PSNs), and video sensor nodes (VSNs)) and they
constitute the lower tier of the network. They are deployed

in groups (or clusters) at strategic locations for surveillance
or monitoring applications. The objective of an MSN is very
simple: Once triggered by an event, (e.g., the detection of
motion or biological/chemical agents), it starts to capture live
information (e.g., video), which it sends directly to the local
AFN in one hop.

For each cluster of MSNs, there is one AFN, which is
different from an MSN in terms of both its physical properties
and functions. The primary functions of an AFN are: (1) data
aggregation (or “fusion”) for data flows from the local cluster
of MSNs, and (2) forwarding (or relaying) the aggregated data
to the next hop AFN toward the base-station. Although an AFN
is expected to be provisioned with much more energy than
an MSN, it also consumes energy at a substantially higher
rate (due to wireless communication over large distances).
Consequently, an AFN has limited lifetime. Upon the depletion
of energy at an AFN, we expect that the coverage for the
particular area under surveillance will be lost, despite the fact
that some of the MSNs within the cluster may still have
remaining energy.1 Therefore, it is essential to maximize the
lifetime of each AFN, which is the main focus of this paper.

The third component in the two-tiered architecture is the
base-station. The base-station is, essentially, the sink node for
data streams from all the AFNs in the network. We assume
that a base-station has sufficient power resource and does not
have energy constraint as the MSNs and AFNs. In summary,
the main functions of the lower tier MSNs are data acquisition
and compression while the upper-tier AFNs are used for data
fusion and relaying the information to the base-station.

B. Power Control and Consumption Model

An effective technique to control network routing topology
is to adjust the power level of a node’s transmitter [9], [14],
[16], [17]. This in turn will control the distance coverage of
an AFN and form different network routing topologies.

For an AFN, the radio-related power consumption (i.e., in
transmitter and receiver) is the dominant factor [1]. The power
consumption at a transmitter can be modeled as:

pt(i, k) = cik · fik , (1)

where pt(i, k) is the power dissipated at omni-directional
antenna when AFN i is transmitting to k, fik is the rate of the
data stream sent by AFN i to k, cik is the power consumption
cost of link (i, k) and

cik = α + β · dm
ik , (2)

where α is a distance-independent term, β is a coefficient
associated with the distance-dependent term, dik is the distance
between these two nodes, m is the path loss index and 2 ≤
m ≤ 4 [15]. Typical values for these parameters are α = 50
nJ/b and β = 0.0013 pJ/b/m4 for m = 4 [10]. In this paper,
we use m = 4 in all of our numerical results.

1We assume that each MSN can only forward data to its local AFN for
processing.
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The power dissipation at the receiver of AFN j is [15]:

pr(j) = ρ ·
∑

k �=j

fkj , (3)

where fkj (in b/s) is the incoming rate of received data stream
from AFN k. Typical value of ρ is 50 nJ/b [10].

C. The Lexicographic Max-Min Node Lifetime Problem

It is important to maximize the time until any AFN runs
out of energy (also known as the network lifetime), but it is
even more important to concurrently maximize the time that
all AFNs run of energy. That is, it is important to find a flow
routing schedule among the AFNs such that the lifetimes of all
AFNs in the network can achieve the optimal Lexicographic
Max-Min (LMM) vector. A formal definition for the LMM-
optimal node lifetime vector is given as follows.

Definition 1: A sorted network node lifetime vector
[τ1, τ2, · · · , τN ] with τ1 ≤ τ2 ≤ · · · ≤ τN is LMM-
optimal if and only if for any other sorted node lifetime vector
[τ̂1, τ̂2, · · · , τ̂N ] with τ̂1 ≤ τ̂2 ≤ · · · ≤ τ̂N , there exists a
k ∈ [1, N ], such that τi = τ̂i (i = 1, 2, · · · , k−1) and τk > τ̂k.

A naive approach to the LMM node lifetime problem would
be to apply a max-min-like iterative procedure. Under this
approach, an iterative LP for alive nodes could be employed
to find the maximum time until the next node fails. By
calculating the remaining energy at each node at the end
of the iteration, one would attempt to move on to the next
iteration, until all the nodes drain their energy. Although this
approach seems appealing and intuitive, we now show that it
usually gives an incorrect solution. This is because the LMM
node lifetime problem implicitly embeds (or couples) a flow
routing problem, and due to this coupling, any iterative LMM
node lifetime algorithm requiring energy reservation among the
nodes during each iteration is incorrect. Starting from the first
iteration, there usually exist non-unique flow routing solutions
corresponding to the same drop point. Consequently, each of
these flow routing schedules, once chosen, will yield different
remaining energy at the AFNs for future iterations and so forth,
leading to a different node lifetime vector, which may not be
the LMM-optimal node lifetime vector (see Section VI for
numerical results).

Recently, Brown et al. [5] studied the LMM node lifetime
problem under the notion of a “node lifetime curve”. They first
identified the uniqueness of the LMM-optimal node lifetime
vector. Based on this property, they developed an iterative
procedure to solve the LMM node lifetime problem. A key
step in their procedure is to use multiple independent LPs to
determine the minimum node set at each drop point. During
each iteration, only the drop point and the corresponding
minimum set of nodes are determined, and there is no resource
reservation among the nodes at each stage. Although their
proposed approach solves the LMM node lifetime problem and
constitutes a major advance in the basic understanding of node
lifetime problem, this approach is shown to be of exponential
computational complexity, which could become problematic
when the scale of the network becomes large.

III. AN EFFICIENT SERIAL LP ALGORITHM BASED ON

PARAMETRIC ANALYSIS

In this section, we present a polynomial-time algorithm for
the LMM node lifetime problem. Moreover, for any given net-
work configuration and initial condition, our approach is much
simpler than the slack variable based (SV-based) approach in
[5]. The computational effectiveness of our approach hinges
upon two important techniques. First, we employ a link-based
problem formulation that significantly reduces the problem size
in comparison with a flow-based formulation adopted in [5].
Second, we invoke a parametric analysis procedure at each
stage to determine the minimum node set at each drop point.
For non-degenerate case, this parametric analysis results in
only a quadric time computational complexity, while the SV-
based approach in [5] requires solving multiple independent
LPs to determine the minimum set of nodes at each drop point.
Even for the rare case, when the problem is degenerate, using
our parametric analysis technique still is more efficient than
the SV-based approach because it decreases the number of
additional LPs that need to be solved at each drop point. In the
remainder of this section, we elaborate on the details of our
serial LP algorithm based on parametric analysis (SLP-PA).

A. Link-based Formulation

Suppose that [τ1, τ2, · · · , τN ] with τ1 ≤ τ2 ≤ · · · ≤ τN

is LMM-optimal. To keep a track of distinct node lifetimes,
we remove all repetitive elements in the vector and rewrite it
as [a1, a2, · · · , an] such that a1 < a2 < · · · < an, where
a1 = τ1, an = τN , and n ≤ N . Denote Si as the set of nodes
that drain their energy at ai (1 ≤ i ≤ n). Clearly, |S1|+ |S2|+
· · ·+ |Sn| = |S| = N where S denotes the set of all N AFNs
in the network. The problem is to find the LMM-optimal values
of a1, a2, · · · , an and the corresponding sets S1, S2, · · · , Sn.

To formulate this problem into an iterative form, we define
a0 = 0 and S0 = φ. Furthermore, denote δl = al−al−1. Then,
the iterative optimization problem (starting with l = 1) for the
LMM node lifetime problem becomes,
LP-LMM: Max δl

s.t.
ViB+

∑

k �=i

Vik−
∑

m �=i

Vmi−δlgi =al−1gi (i∈S−⋃l−1
j=0Sj) (4)

ViB+
∑

k �=i

Vik−
∑

m �=i

Vmi =ahgi (i∈Sh, h<l) (5)

∑

m �=i

ρVmi+
∑

k �=i

cikVik+ciBViB ≤ei (i∈S−⋃l−1
j=0Sj) (6)

∑

m �=i

ρVmi+
∑

k �=i

cikVik+ciBViB =ei (i∈Sh, h<l) (7)

Vik, ViB , δl ≥ 0 (1≤ i �=k≤N).

The set of constraints in (4) and (5) state that the total in-
coming and local data bit volumes are equal to the total out-
going data bit volumes for each node with and without remain-
ing energy at time al−1, respectively. The set of constrains in
(6) and (7) state that the total energy consumed for receiving
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and transmitting data bit volumes is no more than or equal to
the initial energy for each node with and without remaining
energy at time al−1, respectively.

The above LP formulation can be rewritten in the form:
Max cx, s.t. Ax = b and x ≥ 0, the dual problem for which
is given by: Min wb, s.t. wA ≥ c and w unrestricted [2]. Both
can be solved simultaneously by standard LP techniques (e.g.,
[2]), in polynomial-time. Although solving LP-LMM gives the
optimal value for δl, we need yet to determine the minimum set
of nodes corresponding to this δl, which is the main task in this
investigation. In the remainder of this section, we effectively
exploit post-LP parametric analysis techniques [2] to determine
the minimum node set for each drop point.

B. Minimum Node Set Determination with Parametric Analysis

Denote Ŝl �= φ to be the set of nodes that achieve equality in
(6). Some of the nodes in Ŝl may still be further “stretched” to
live longer under alternative flow routing schedules. Therefore,
we need to determine the minimum set of Sl (Sl ⊆ Ŝl) that
achieves the LMM-optimal solution.

The so-called parametric analysis (PA) technique [2] is
most effective in addressing this type of problems. Considering
a small increase in the right-hand-side (RHS) of (4), i.e.,
changing bi to bi + εi, where εi > 0, node i belongs to Sl

if and only if ∂+δl

∂εi
(0) < 0, i.e., a small increase in node i’s

lifetime (in terms of total bit volume generated at node i) leads
to a decrease in the next drop point.

To compare ∂+δl

∂εi
(0) with 0, we resort to an important duality

relationship in LP theory. If x and w are the respective optimal
solutions to the primal and dual problems, then based on the
parametric duality property [2], we have

∂+δl

∂εi
(0) =

∂+(cx)
∂bi

(bi) ≤ wi . (8)

Recall that these wi can be easily obtained at the same time
when we solve the primal LP problem. Note that by the nature
of the problem, we have wi ≤ 0 for an optimal dual solution.
Therefore, if wi < 0, then we can determine immediately that
i ∈ Sl. On the other hand, if we find that wi = 0, it is not clear
whether ∂+δl

∂εi
(0) is strictly negative or 0 and further analysis

is thus needed.
For each node i with wi = 0, we must perform a complete

PA to see whether i ∈ Sl or not. Assume that the optimal
solution is (xB, xZ), where xB and xZ denote the set of
basic and non-basic variables; B and Z denote the columns
corresponding to the basic and non-basic variables. Denote cB
and cZ the objective function coefficient vectors for the basic
and non-basic variables and q the objective value. Then the
corresponding canonical equations yield

q + (ct
BB−1Z − ct

Z)xZ = ct
BB−1b ,

xB + B−1ZxZ = B−1b .

If b is replaced by b + εiIi, where the column vector Ii has
a single 1 corresponding to node i in (4) and has 0 elements
otherwise, then the only change in the constraints due to this

perturbation is that B−1b will be replaced by B−1(b + εiIi).
Consequently, the objective value for the current basis becomes
ct
BB−1(b + εiIi). Furthermore, as long as B−1(b + εiIi) is

nonnegative, the current basis remains optimal. Denote b̄ =
B−1b and B−1

i = B−1Ii and let ε̂i be an upper bound for εi

such that the current basis remains optimal, we have

ε̂i = min
j

{ b̄j

−B−1
ij

: B−1
ij < 0} . (9)

If ε̂i > 0, the optimal objective value varies according to
ct
BB−1(b + εiIi) for 0 < εi ≤ ε̂i. Since w = ct

BB−1 and
wi = 0, we have ct

BB−1Ii = wi = 0. Thus, the objective
value will not change for εi ∈ (0, ε̂i], and consequently, node
i can live longer beyond current drop point al. That is, node i
does not belong to the minimum node set Sl.

For most problems in practice, this process can determine
whether i ∈ Sl or i �∈ Sl for all i ∈ Ŝl. But in the rare
event where ε̂i = 0, the problem is degenerate. To develop a
polynomial-time algorithm, denote Wl as the set of all nodes
with wi < 0 and Ul the set of all nodes with wi = 0 and
ε̂i = 0. Then we solve the following LP to maximize the slack
variables (SV) for nodes in Ul.
MSV: Max

∑
i∈Ul

εi

s.t.
ViB+

∑

k �=i

Vik−
∑

m �=i

Vmi−εigi =algi, (i ∈ Ul)

ViB +
∑

k �=i

Vik −
∑

m �=i

Vmi = ahgi, (i∈⋃l−1
h=1 Sh)

ViB +
∑

k �=i

Vik −
∑

m �=i

Vmi = algi, (i �∈Ul

⋃l−1
h=1Sh)

∑

m �=i

ρVmi+
∑

k �=i

cikVik+ciBViB =ei, (i∈Ul

⋃
Wl

⋃l−1
h=1Sh)

∑

m �=i

ρVmi+
∑

k �=i

cikVik+ciBViB ≤ei, (i �∈Ul

⋃
Wl

⋃l−1
h=1Sh)

Vik, ViB , εi ≥ 0, (1≤ i �=k≤N).

If the optimal objective value is 0, then no node in Ul can have
a positive εi. That is, these nodes should all belong to Sl and we
have Sl = Wl +Ul. On the other hand, if the optimal objective
value is positive, then some nodes in Ul must have positive
εi, i.e., these nodes should not belong to Sl. Consequently, we
remove these nodes from Ul and if Ul �= φ, we solve another
MSV. This procedure will terminate when the optimal objective
value is 0 or Ul = φ.

To ensure that MSV determinate the minimum node set
correctly, we need the following lemma, the proof of which
is omitted due to space limitation.

Lemma 1: The minimum node set at each drop point under
the LMM-optimal solution is unique.

In a nutshell, the complete PA procedure for the determina-
tion of whether or not a node i (∈ Ŝl) belongs to the minimum
node set Sl can be summarized as follows.

Algorithm 1: (Minimum Node Set Determination)

1) Initialize Wl = φ and Ul = φ.
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2) For each node i ∈ Ŝl,

a) if wi < 0, add node i to Wl;
b) otherwise, using B−1 (which is readily available

after solving an LP-LMM), compute b̄ = B−1b,
B−1

i = B−1Ii, and ε̂i according to (9). If ε̂i = 0,
add i to Ul.

3) If Ul =φ, let Sl =Wl and stop, else build and solve an
MSV.

4) If the optimal objective value is 0, let Sl = Wl +Ul and
stop. Otherwise, remove all nodes with εi > 0 from Ul

and go to Step 3.

IV. LMM-OPTIMAL FLOW ROUTING SCHEDULE

In this section, we present a simple polynomial-time algo-
rithm that provides an LMM-optimal flow routing schedule.
The main task of this algorithm is to define flows based on the
bit volumes (Vik and ViB values), which are obtained upon
the completion of the LP-LMM in our SLP-PA approach. The
main result here is that for all the remaining alive nodes at each
stage, if we let the total amount of out-going flow at a node be
distributed proportionally to the bit volumes on each out-going
link, then we can achieve the drop points a1, a2, · · · , an as
well as the corresponding minimum node sets S1, S2, · · · , Sn.
The algorithm is formally described as follows.

Algorithm 2: (An Optimal Flow Routing Schedule)
Upon the completion of the SLP-PA algorithm for the LMM
node lifetime vector, we have the drop points (in strictly
increasing order) a1, a2, · · · , an, the corresponding minimum
physical node sets S1, S2, · · · , Sn, and the total amount of bit
volume on each radio link (i.e., Vik and ViB). The following
iterations give an LMM-optimal flow routing schedule for the
corresponding time interval (al−1, al], where a0 = 0 and
l = 1, 2, · · · , n.

1) Denote Ul = S − ⋃l−1
j=0 Sj , with S0 = φ. Initialize all

flows to zero, i.e., f
(l)
ik = 0, f

(l)
iB = 0 for 1 ≤ i �= k ≤ N .

2) If Ul =φ, then stop, else choose a node i ∈ Ul such that2

• either node i does not receive data from any other
node, or

• all nodes from which node i receives data are not in
Ul.

3) The flow routing at node i during (al−1, al] is then
defined as

f
(l)
ik =

Vik

ViB +
∑

k �=i Vik
(
∑

m �=i

f
(l)
mi + gi) , (∀k �= i)

f
(l)
iB =

ViB

ViB +
∑

k �=i Vik
(
∑

m �=i

f
(l)
mi + gi) ,

where the f
(l)
mi values, if not zero, have all been defined

before calculating the flow routing for node i.

2It can be shown that an LMM-optimal solution is cycle free in terms of
flow routing. Consequently, the node i under consideration must exist when
Ul �= φ.

4) Let Ul = Ul − {i} and go to Step 2.
The proof that Algorithm 2 will indeed give the LMM-

optimal node lifetime vector is omitted due to space limit.
As shown in this algorithm, for each time interval (al−1, al],
l = 1, 2, · · · , n, we initialize Ul as the set of remaining alive
nodes at this stage, which is represented by Ul = S−⋃l−1

j=0 Sj .
For these nodes, we compute a flow routing by starting with
the “boundary” nodes and then move to the “interior” nodes.
More precisely, we calculate the flow routing for a node i if
and only if we have calculated the flow routing for each node
m that has traffic coming into node i. The out-going flow at
node i is calculated by distributing the aggregated in-coming
flow proportionally according to the overall bit volume along
its out-going radio links.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

It is clear that SLP-PA is strictly polynomial due to the poly-
nomial complexity of LP. Here, we compare the complexity
of our approach with the SLP-SV approach in [5]. First of
all, SLP-SV needs to keep track of each sub-flow along its
route from the source node toward the base-station. Such a
flow-based (or more precisely, sub-flow based) approach makes
the size of the LP coefficient matrix exponential, which leads
to an exponential-time algorithm even with the most efficient
LP technique (e.g., [2]). Second, even if a link-based LP
formulation such as ours is adopted in [5], the computational
efficiency of slack variable based (SV-based) approach would
be still worse than SLP-PA. This is because that at each
stage, the SV-based approach in [5] solves several additional
LPs (up to |Ŝl − Sl|) to determine Sl, in contrast with the
simpler parametric analysis for the SLP-PA approach, which
only involves O(N2) effort for the non-degenerate case. Even
for the degenerate case, the number of additional LPs are up
to |U (0)

l − Sl| (≤ |Ŝl − Sl|). Consequently, for any problem,
our approach is computational more efficient than the SLP-SV
approach in [5].

Finally, we discuss a hybrid link-flow approach mentioned
in [5]. This approach requires a sub-flow accounting on each
link and results in an order of magnitude more constraints
than the link-based approach proposed in this paper. Although
this approach can solve the LMM node lifetime problem in
polynomial-time (e.g., using interior point methods [2]), the
overall complexity is still orders of magnitude higher than that
for our proposed SLP-PA approach. Furthermore, there remains
the additional burden associated with the SLP-SV approach
for solving the additional LPs even using the hybrid link-flow
based approach.

VI. NUMERICAL INVESTIGATION

In this section, we use numerical results to illustrate the
solution to the LMM node lifetime problem and compare
our SLP-PA to some other approaches. In particular, we will
compare SLP-PA with the naive approach (see Section II-
C) that uses a serial LP “blindly” to solve the LMM node
lifetime problem. We call this naive approach Serial LP (SLP).
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TABLE I

LOCATIONS (IN METERS) FOR EACH AFN IN A 10-NODE NETWORK.

AFN Location AFN Location
1 (400, -320) 6 (-500, 100)
2 (300, 440) 7 (-400, 0)
3 (-300, -420) 8 (420, 120)
4 (320, -100) 9 (200, 140)
5 (340, -120) 10 (220, -340)

TABLE II

LIFETIME (IN DAYS) FOR THE 10-AFN NETWORK.

Sorted SLP-PA SLP MPR
Index AFN τi AFN τi AFN τi

1 3 45.71 1 45.71 7 28.91
2 6 45.71 2 45.71 3 46.09
3 7 45.71 3 45.71 6 61.63
4 1 146.08 5 45.71 9 87.75
5 2 146.08 6 45.71 4 92.77
6 4 146.08 7 45.71 5 118.79
7 5 146.08 10 45.71 8 142.96
8 8 146.08 4 303.70 2 150.29
9 9 146.08 8 303.70 10 157.62
10 10 146.08 9 303.70 1 182.55

We also compare our SLP-PA approach with the Minimum-
Power Routing (MPR) approach that has been considered in the
literature (see, e.g. [8], [9], [11], [13]) and is used to achieve
energy efficiency. Under the MPR approach, an AFN always
chooses the path that consumes the minimum amount of power
toward the base-station.3

A. Network Configuration and Parameters

We consider a network consisting of 10 AFNs. The base-
station B is assumed to locate at the origin (0, 0) (in meters).
The locations for the 10 AFNs are generated at random and
are shown in Tables I.

B. Results

We assume that the initial energy at each AFN is 50 kJ
and local data generated by each AFN is 0.2 kb/s. The power
dissipation behaviors for transmission and reception are defined
in (1) and (3), respectively.

Table II gives each AFN’s lifetime under each approach.
The “sorted index” column represents the node index, in
which AFNs are sorted in node lifetimes nondecreasing order.
Clearly, the node lifetime vector under SLP-PA is much more
superior than that under the SLP and MPR approaches with
respect to the LMM-optimal node lifetime vector definition
(see Definition 1). For example, comparing the node lifetime
vector under SLP-PA and SLP, we find that τSLP−PA

1 = τSLP
1 ,

τSLP−PA
2 = τSLP

2 , τSLP−PA
3 = τSLP

3 , and τSLP−PA
4 >

τSLP
4 . Similarly, comparing the node lifetime vector under

SLP-PA and MPR, we have τSLP−PA
1 > τMPR

1 . In general,

3The results for the SLP-SV approach is not shown since they are the same
as those under SLP-PA. The difference is in the computational complexity.

τMPR
1 (28.91 days) is the smallest among the three approaches

(45.71 days under both SLP-PA and SLP) since minimum
power routing does not guarantee a good performance with
respect to node lifetime performance. Although SLP and SLP-
PA have the same node lifetime (45.71 days) at the first stage,
SLP-PA gives a smaller AFN set (|SSLP−PA

1 | = 3) at this drop
point than SLP (|SSLP

1 | = 7), which shows that the naive SLP
approach cannot offer the correct solution to the LMM node
lifetime problem.

We now show how to use Algorithm 2 to calculate a flow
routing schedule that achieves the LMM-optimal node lifetime
vector for the 10-AFN network. Under the SLP-PA approach,
we have a1 = 45.71 days with S1 = {3, 6, 7} and a2 = 146.08
days with S2 = {1, 2, 4, 5, 8, 9, 10}. Also, we obtain the
following bit volumes (all in 104 kb) among the nodes from
the last LP-LMM solution:
V1,5 = 320.0419, V1,B = 46.7550;
V2,9 = 233.8006, V2,B = 18.6306;
V3,7 = 48.6548, V3,B = 30.3317;
V4,B = 303.3560;
V5,4 = 50.9249, V5,8 = 390.6881, V5,B = 130.8601;
V6,7 = 22.2673, V6,B = 56.7191;
V7,B = 149.9086;
V8,9 = 576.2578, V8,B = 66.8615;
V9,B = 1062.4895;
V10,1 = 114.3658, V10,B = 138.0654.

We now find the flow routing schedule for each interval, i.e.,
[0, a1] and (a1, a2], respectively. For time interval [0, a1], we
obtain the following.

• Nodes 2, 3, 6, and 10 do not receive any data. Using
Algorithm 2, node 2 sends 0.185 kb/s to node 9 and 0.015
kb/s to the base-station B. Similarly, we can calculate the
flows for node 3, 6, and 10.

• Now, since the in-coming flow to nodes 1 and 7 are
defined, we can calculate their out-going flow rates. For
example, node 1 sends 0.254 kb/s to node 5 and 0.037
kb/s to the base-station B.

• Next, we consider node 5. After calculation, we find that
node 5 should send 0.040 kb/s to node 4, 0.310 kb/s to
node 8, and 0.104 kb/s to the base-station B.

• Following this, we consider nodes 4 and 8. We find that
node 4 sends 0.240 kb/s to the base-station B; node 8
sends 0.457 kb/s to node 9 and 0.053 kb/s to the base-
station B.

• Finally, we consider node 9. Using Algorithm 2, we find
that node 9 sends 0.842 kb/s to the base-station B.

In summary, during [0, a1] = [0, 45.71], we have the
following flow rates (all in kb/s):
f1,5 = 0.254, f1,B = 0.037;
f2,9 = 0.185, f2,B = 0.015;
f3,7 = 0.123, f3,B = 0.077;
f4,B = 0.240;
f5,4 = 0.040, f5,8 = 0.310, f5,B = 0.104;
f6,7 = 0.057, f6,B = 0.143;
f7,B = 0.380;
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f8,9 = 0.457, f8,B = 0.053;
f9,B = 0.842;
f10,1 = 0.091, f10,B = 0.109.

The application of Algorithm 2 for the interval (a1, a2] =
(45.71, 146.08] is similar and is thus omitted here due to space
limit. It is easy to verify that the flow routing schedule will
indeed achieve the LMM-optimal node lifetime vector.

VII. RELATED WORK

The closest work related to ours is that in [5], which has
been discussed in detail in the paper. In this section, we briefly
review relevant work that contributed to the background for our
investigation.

There have been many recent efforts in the area of power-
aware routing (see e.g., [8], [9], [11], [13]). Most schemes
under power-aware routing use a shortest path algorithm with
a power-based metric, rather than a hop-count based metric.
However, as we have shown in the numerical results section,
power-aware routing (e.g., minimum-power path) cannot en-
sure good performance in maximizing network lifetime. For
example, using the most energy-efficient route may still result
in a premature depletion of energy at certain nodes, which is
not optimal from the network lifetime perspective.

The notion of network lifetime for wireless sensor networks
has been studied in [3], [4], [6], [18]. The notion of network
lifetime discussed in these work focuses on the time until the
first node fails without further consideration of the remaining
nodes in the network. As wireless sensor networks will typi-
cally remain useful even if some nodes run out of energy, it
is essential to further investigate how to maximize the lifetime
for all the remaining nodes in the network, which is the focus
of this paper.

VIII. CONCLUSIONS

In this paper, we have considered the problem of how to
maximize the lifetime for all the nodes in a wireless sensor
network. We formally defined this optimization problem as the
Lexicographic Max-Min (LMM) node lifetime problem and
investigated approaches to solve it. The main contributions in
this paper are two-fold. First, we developed a polynomial-
time algorithm to obtain the LMM-optimal node lifetime
vector, which theoretically improves upon the exponential
computational complexity associated with a state-of-the-art
approach. Second, we presented a simple (also polynomial-
time) algorithm to calculate the flow routing schedule among
the AFNs such that the LMM-optimal node lifetime vector
can be achieved. The results in this paper lay the essential
groundwork on studying network lifetime problems in energy-
constrained wireless sensor networks.
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