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Abstract— Adopting Time-to-Live (TTL) based hierarchical
caching systems is considered to be a viable approach to support
Web content delivery under the weak consistency paradigm.
However, with a strictly hierarchical structure in these systems,
a single user request may trigger multiple consecutive miss
events at cache servers of different levels. This undesirable miss
synchronization can cause a sudden degradation of user-perceived
performance in terms of response time. In this paper, we offer
a comprehensive examination of this undesirable behavior and
propose a randomized request redirection approach to circumvent
the structural restrictions in TTL-based hierarchical caching
systems. Performance analysis and evaluation indicate that the
proposed approach can effectively rebalance server overhead and
network delay, which in turn reduces end user response time.

Index Terms— Internet, content delivery, hierarchical caching,
weak consistency, miss synchronization

I. INTRODUCTION

Time-to-Live (TTL) based hierarchical caching systems
have been proposed, developed and deployed in recent years
to support Web content delivery under the weak consistency
paradigm [2], [8]. Within these systems, there is a strictly
hierarchical structure that consists of multiple cooperative
cache servers at different levels in network space [3]. This
hierarchy is adopted to aggregate user requests and to share
cached objects. On the other hand, a TTL-based expiration
scheme is used for cached objects to ensure a certain degree
of guarantee in object validity. Under this paradigm, since a
cached object is only validated periodically, the cached copy
may become stale if the original one is updated at its origin
server before the next validation. For most Web applications,
such discrepancy may still be tolerable in practice to allow
users to extract useful (or at least non-harmful) information
from the received objects. Moreover, users always have the
option to obtain the latest copy of an object by reloading it
directly from its origin server.

When an object is retrieved from its origin server, the
remaining lifetime, or TTL, of this object is initialized to a
value reflecting the maximal tolerance by end users of possible
discrepancy. In HTTP/1.1, TTL can either be explicitly speci-
fied by origin server with the Expires response directive or
max-age cache control, or it can be heuristically calculated
by cache server through the origin server’s Last-Modified
directive [16]. When an object is cached somewhere, the
associated TTL is expected to reduce its value continuously
and linearly with time. The cached object is considered valid
only if it has a positive remaining TTL. If a cached object

has a non-positive (or expired) TTL when being requested, the
cached copy has to be revalidated by or, if necessary, retrieved
from its origin server or a cache server of higher levels in the
hierarchy. It has been shown in [1], [3], [8] that due to its
relatively lower overhead and less complexity, a TTL-based
hierarchical caching system is a viable approach to scale up
with explosive growth of the Web.

However, due to the structural restrictions, for end users
who are associated with a cache server that is logically farther
away from the origin server of an object, a strictly hierarchical
caching system may be biased against these users. Specifically,
a leaf user is more likely to experience a longer response time
per request, a higher cache miss ratio, and a smaller average
remaining TTL for cached objects. Also, when a local cache
miss happens, it is very likely that regenerated inter-cache re-
quests encounter multiple misses at several higher level servers
throughout the hierarchy. This behavior is referred to as miss
synchronization, and is responsible for a sudden increase in
user-perceived response time. These behaviors unnecessarily
penalize end users in a hierarchy, and compromise the design
goal of a hierarchical caching system.

In this paper, we focus on this structural deficiency with the
aim of devising an approach to improve user-perceived per-
formance. The proposed approach introduces request random-
ization with a geometric probability model to redirect inter-
cache requests randomly to a higher level cache server rather
than only to the immediate parent cache server. Consequently,
this breaks the structural restrictions imposed by a traditional
hierarchical caching system.

Our main contributions are two-fold. First, by using request
randomization, we can considerably avoid miss synchroniza-
tion, since cached objects are no longer doomed to expire at
the exact same time in consecutive cache servers. Second, by
avoiding this unwanted synchronization, we will substantially
reduce user-perceived response time, since network delay
and server overhead can be reactively rebalanced when a
local cache miss occurs. Through a combination of analysis
and simulations, we demonstrate that the proposed approach
can effectively compensate the structural differentiation in a
hierarchical caching system.

The rest of this paper is organized as follows. In Section II,
we review properties and performance of TTL-based hierar-
chical caching systems. We then examine the miss synchro-
nization behaviors. In Section III, we propose a randomized
request redirection approach to alleviate miss synchronization
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Fig. 1. Modeling of hierarchical caching systems

and to reduce user-perceived response time in hierarchical
caching systems. The efficacy and performance of the pro-
posed request randomization approach are substantiated with
extensive evaluation results in the same section. Section IV
reviews related work. Section V concludes the paper.

II. SYSTEM MODEL

A. Hierarchical Caching Systems

Fig. 1(a) illustrates a tree-like hierarchical caching system.
When a cache server (CS) receives a request from its local
users or downstream CSs, if the requested object is cached
locally with a positive remaining TTL, the object is returned
immediately. This is considered as a hit event. Otherwise, a
miss event happens, and the CS generates another request to
its immediate parent CS. This process is recursive until either
obtaining a valid copy of the object or reaching the origin
server (OS) that always has the latest copy available. When an
object is retrieved from the OS, its TTL is initialized to a value
(τ ) corresponding to the maximal tolerable time-discrepancy
by end users, and the TTL value decreases when the object is
cached at CSs. If we take the longest simple path from the OS
in Fig. 1(a) and convert all user requests to CSs not in this path
as aggregated client (AC), we have a chain-like structure in
Fig. 1(b). This process is also recursive; the model developed
here can be applied to each branch individually. Therefore, we
will focus on the chain model.

In [8], we developed a generic analytical model and derived
E(Td), the average TTL that a CSd (i.e., a level-d CS) can
expect from its parent CSd−1, where 1 ≤ d ≤ D and D is
the chain depth. Denote λd as the request rate from ACd to
CSd for a particular object. Although the request pattern from
an individual user can be very complicated [4], it is sufficient
to approximate the aggregated requests with an exponential
inter-arrival time when a very large user population (e.g., a
CS serves users from a metropolitan area) is considered. With
Λd = λd + λd+1 + · · · + λD, we have

E(Td) =
Λdτ + (Λ1 − Λd)(τ − 1−e−Λdτ

Λd
)

Λd + (Λ1 − Λd)(1 − e−Λdτ )
. (1)

It is obvious that Λd1 ≥ Λd2 if d1 < d2, since Λd1 =
λd1+λd1+1+· · ·λd2−1+Λd2 and λd ≥ 0. Moreover, given Λ1,
E(Td1) ≥ E(Td2), as Λd1 ≥ Λd2 . This property shows that in a
strict hierarchy, the closer a CS is to the OS, the larger average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

av
er

ag
e 

T
T

L 
- 

E
(T

d)

level - d

LRHL/ttl.sim
LRHL/ttl.cal

UNFM/ttl.sim
UNFM/ttl.cal
HRLL/ttl.sim
HRLL/ttl.cal

Fig. 2. Average retrieved object TTL at different levels

TTL the CS can expect. Fig. 2 plots the analytical calculation
(lines) of (1) and simulation results (points) normalized to τ
for the following three request patterns.

• Light-Root-Heavy-Leaf (LRHL): λd = 0.2d − 0.1 per τ
and 1 ≤ d ≤ D = 10.

• Uniform (UNFM): λd = 1 per τ .
• Heavy-Root-Light-Leaf (HRLL): λd = 2.1 − 0.2d per τ .
We derived the system miss ratio Γs

d and user response time
σu

d in [8] for CSd and ACd, respectively. If CSd caches
an object with the remaining TTL τ(t∗) at t∗, it will not
contact CSd−1 before t∗+τ(t∗) for the same object. Using the
aggregation property of Poisson processes, we know that there
is one upstream request for CSd in the time period Id +E(Td)
where Id = 1

Λd
is the idle time for the subtree rooted at CSd.

With γs
d = 1

Id+E(Td) , we have the system miss ratio

Γs
d =

λd

Λd
· 1
(λd + γs

d+1)E(Td)
+

Λd − λd

Λd
· 1
λdE(Td)

, (2)

and the user miss ratio

Γu
d =

λd

Λd(1 + λd)E(Td)

if omitting the requests from downstream CSs accordingly.
The user response time at level d is recursively defined as

σu
d = Γu

d(tn + ts +
Λdσ

s
d−1

Λd−1Γs
d−1

) , (3)

where tn is the network delay to CSd−1, ts is the server
overhead, in terms of server delay, at CSd−1, and

σs
d = Γs

d(tn + ts +
Λdσ

s
d−1

Λd−1Γs
d−1

)

is the system response time for CSd. When d = 1, σu
1 =

Γu
1 (tn + ts) and σs

1 = Γs
1(tn + ts).

Moreover, we find that user-perceived performance also
depends on request patterns. For example, in Fig. 2, LRHL
has a higher average TTL than UNFM, which in turn has a
much higher average TTL than HRLL, although the overall
user request rate is the same at Λ1 = D per τ for these three
request patterns. In the following sections, we will use UNFM
as a benchmark for performance comparison.
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Fig. 3. Probability of the number of servers involved for a local miss
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Fig. 4. TTL evolution at different levels during a time window

B. Cache Miss Synchronization

Although (3) gives the average user response time, we are
more interested in the case when a user request incurs a miss
at the local CS. In many Web applications, the user-perceived
quality of online experience is determined by the worst-case,
instead of average performance. To link tn and ts for the end
user-experienced response time t when a local miss occurs,
we use a linear utility function

t = wntn + wsts , (4)

where wn and ws = 1 − wn are the weights for network
delay and server overhead, respectively. Therefore, we need
to examine how many CSs are involved in order to obtain
a valid object when a local miss occurs, which determines
the associated server overhead and network delay. Fig. 3
illustrates the probability of the number of servers involved
for a missed user request at different levels. For a level-d
request, the possible outcomes are {1, 2, · · · , d}, since with
a strict hierarchy, the request incurs at most d cache misses
before reaching the OS.

In Fig. 3, we observe an undesirable synchronization be-
havior. When a user request incurs a cache miss at its local
CS, it is very likely that the regenerated requests trigger several
misses at multiple upstream CSs. With a very high probability,
the request is finally fulfilled by the OS. During this process,
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Fig. 5. Randomized Request in hierarchical caching systems

the request has gone through each CS and incurred additional
processing at CSs along its path toward the OS.

There are two factors that cause the observed miss syn-
chronization. First, in a strictly hierarchical structure, each CS
is only allowed to contact its immediate parent CS. Second,
the parent and child CSs share the same TTL timeout value.
Therefore, if the TTL becomes 0 at CSd, all CSd+ for d+ ≥ d
have a 0 TTL as well. Wherever there is an ACd∗ request
within the subtree rooted at CSd, all CSd∗

− for d∗ ≥ d∗− ≥ d
guarantee a cache miss. Therefore, this particular user request
suddenly experiences an unexpected long response time.

This behavior is also illustrated in Fig. 4 for the TTL
evolution at CSs of different levels during a time window in
the simulation. In this figure, the connected lines represent the
remaining TTL value, and the disconnected crosses represent
a user or inter-cache request. Due to the aforementioned two
restrictions in a strictly hierarchical structure, a TTL triangle
at CSd is always covered by a triangle at CSd−1; moreover,
these two triangles coincide at the same time when TTL is
reduced to 0. No matter when a new request comes, both CSd

and CSd−1 will encounter a cache miss, which means that the
request has to travel further and inquire more CSs.

One approach to alleviating such miss synchronization and
its consequence is to introduce the request randomization
technique. In addition, if we can trade slightly increased
network delay for considerably reduced server overhead, we
can overcome the undesired synchronization associated with
a strict hierarchy. That is, instead of only being allowed to
contact its immediate parent CS, a CS will have the option to
choose one of its upstream CSs randomly. We will elaborate
the details of this approach in the next section.

III. RANDOMIZED REQUEST

Fig. 5 illustrates the proposed request randomization ap-
proach. For instance, when a level 5 user request incurs a
miss at its local CS, the CS can randomly choose either the
OS or one of the level 1, 2, 3, 4 CSs along its path toward the
OS. Suppose that it picks the level 3 CS. In turn, the level
3 CS can choose either the OS or one of the level 1, 2 CSs,
if another cache miss occurs. In this example, the level 1 CS
is chosen. This randomized process is recursive; it terminates
after either obtaining a valid object or reaching the OS.

When a valid object is retrieved, only the CSs that partici-
pate in this query process will be updated, since other CSs are
bypassed and unaware of this cache update. In this example,
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only the chosen level 1, 3, and 5 CSs are updated. After this
update, when the object at CS4 expires, it is possible that CS5

still has a positive remaining TTL for the same object, since
it has recently received a fresher copy from CS3 directly.

A. Probability Model

Here, we adopt a geometric probability model for the
randomized request. Suppose that there is a cache miss at CSd,
CSd can direct the request to the OS at level 0 with probability
pr
0 = p, or to CS1 with probability pr

1 = r · p, or to CS2 with
probability pr

2 = r2 · p, and so on. The probability to direct
a request to its immediate parent CSd−1 is pr

d−1 = rd−1 · p.
Given

∑d−1
i=0 pr

i = 1, we have p = (
∑d−1

i=0 ri)−1 when r �= 0.
Clearly, the choice of r can affect the query behavior.

• When r → ∞, it becomes the basic model with a strictly
hierarchical structure within which any CSd can only
contact its immediate parent CSd−1.

• When r = 0, it becomes a flat structure without any
hierarchy, i.e., any CSd can only contact the OS directly.

• When r = 1, requests are uniformly distributed to one of
upstream CSs or the OS.

• When r > 1, an optimistic strategy is in effect, since CSd

believes that an object with the valid remaining TTL is
nearby; it therefore will most likely direct the request to
an immediate, or one of the next-to-immediate, CSs.

• When 0 < r < 1, a pessimistic strategy is in effect, since
CSd believes that an object with the valid remaining TTL
is only available near the OS; it therefore is likely to
direct the request to a CS that is farther away from itself,
i.e., near the OS.

However, if CSd overestimates or underestimates the avail-
ability of a nearby valid object in either the optimistic or
pessimistic case, an adverse effect on overall performance may
occur. With overestimation, there is likely another cache miss
at nearby CSs, which means higher server overhead. On the
other hand, underestimation would mandate further travel, with
a larger network delay. Therefore, it is important to examine a
broad range of r for a given request pattern in order to find a
good balance between the network delay and server overhead
experienced by a particular user request.

B. Performance Evaluation

1) Server overhead: We choose r ∈ {1
8 , 1

4 , 1
2 , 1, 2, 4, 8} and

present the simulation results with the UNFM request pattern.
Fig. 6 shows the probability density of server overhead at
different levels with the randomized request (r = 2) when
a miss occurs. Comparing Fig. 6 to Fig. 3, we find that for
most levels, only 1 or 2 CSs are sufficient to fulfill a request,
which greatly reduces server overhead. In contrast, in Fig. 3,
there is a high probability that a request has to contact every
upstream CS (until the OS) with doomed misses.

Next, we show the effect of r on randomization behavior.
Fig. 7 plots that the lower (or more pessimistic) that r is, the
less number of CSs are involved. This is because a lower r
implies that a request jumps further and quicker toward the
OS on each attempt. The basic model consistently has the
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Fig. 6. Probability of the number of servers involved for a local miss (r = 2)
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highest number of involved CSs for all levels, since a CS is
only allowed to contact its immediate parent CS. It is worth
pointing out that the lower level CSs (instead of the leaf CSs)
have the highest server overhead due to relatively lower request
aggregation and average TTL.

2) Network delay: Fig. 8 shows the network delay corre-
sponding to the different rs in Fig. 7. Clearly, a lower server
overhead typically comes with a higher network delay. As
shown in Fig. 8, network delay almost increases linearly with
d when r is 0.125. The higher the r is, the slower network
delay increases with d. When r > 1, network delay increases
even faster at lower CSs (except leaf CSs) due to relatively
lower request aggregation and smaller average TTL. If r → ∞,
network delay is proportional with the server overhead in
Fig. 7, since a request has to contact each upstream CS
sequentially. Obviously, there is a tradeoff between the server
overhead and network delay for a given request pattern.

3) Response time: Fig. 9 further illustrates the weighted
overall response time for ws ∈ {0.9, 0.8, · · · , 0.1} when r = 2.
When the per-server overhead is higher than the per-hop
network delay, i.e., ws ≥ 0.5 ≥ wn, the randomized request
approach has consistently better overall performance than that
of a strictly hierarchical structure. Therefore, it is appropriate
to trade slightly increased network delay for considerably
reduced server overhead, especially in the current Web context,

GLOBECOM 2003 - 3838 - 0-7803-7974-8/03/$17.00 © 2003 IEEE



0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

ne
tw

or
k 

de
la

y 
- 

dn d

level - d

r=0.125
r=0.25
r=0.5
r=1.0
r=2.0
r=4.0
r=8.0
basic

Fig. 8. Network delay with randomized request for a local miss

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10

ov
er

al
l l

at
en

cy
 -

 w
sd

s+
w

nd
n

level - d

ws=0.9
ws=0.8
ws=0.7
ws=0.6
ws=0.5
ws=0.4
ws=0.3
ws=0.2
ws=0.1

basic

Fig. 9. Response time with randomized request for a local miss (r = 2)

within which many popular Web servers and their cache
servers are already highly overloaded [12], [13]. When taking
both network delay and server overhead into consideration, we
find that an r that is slightly greater than 1 (e.g., r = 2) is
a good choice to balance these two sources of user-perceived
response time. For r = 2, request randomization is optimistic
in the availability of a nearby valid object; at the same time,
it avoids too much overestimation.

IV. RELATED WORK

There have been many attempts to introduce randomization
techniques into Web caching systems. Realizing a centralized
cache server can impose a performance bottleneck and a
single-point failure, Malpani et al. [5] proposed to let a client
randomly choose its own master proxy from a group of
cooperative cache servers, and to allow these servers to com-
municate over the IP multicast. This per-client randomization
approach can also be extended to the per-object approach,
i.e., choosing the proxy server based on object content or
identifiers (e.g., URL). There are other related efforts. Psounis
et al. [15] proposed a randomized cache replacement scheme;
Feder et al. [14] proposed a randomized request reordering
scheme for cache servers. Many inter-cache protocols and
their performance [6], [7], [9] have been developed and
analyzed for cooperative cache servers. These efforts focus

on introducing randomization in the horizontal dimension
(i.e., choosing the cache server that users should contact,
and arranging communication among sibling cache servers).
These studies are complementary to our work, which focuses
on introducing randomization in the vertical dimension in
a hierarchical caching system, i.e., among parent and child
cache servers. There are other cooperative caching schemes
based on distributed hashing functions [10], [11] which allow
minimal object reassignment when cache servers change. No
matter whether it is in the horizontal or vertical dimension,
cooperative caching systems can improve the performance
for hit events. However, these systems unavoidably suffer
additional overhead when a cache miss occurs. The approaches
developed in this paper can be applied in these contexts to help
improve system performance even when miss events occur.

V. CONCLUSIONS

This paper examined the performance issues and underlying
causes associated with the synchronization of miss events
in hierarchical caching systems. We proposed a randomized
request redirection approach that logically breaks the re-
strictions in a strictly hierarchical system. Our analysis and
evaluation results demonstrated that the proposed approach can
help mitigate the structural discrimination in such hierarchical
systems, and can improve end user-perceived performance.
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