
A Core-Stateless Buffer Management Mechanism for Differentiated Services
Internet

Y. Thomas Hou t* Dapeng Wu t Jason Yao t Takafumi Chujo t

t Fujitsu Laboratories of America, Sunnyvale, CA, USA
4 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

The IETF differentiated services (DiFerv) framework
achieves scalability by moving complexity out of the core
of the network into edge routers which process fewer num-
ber ofjlows. Recently, an end-to-end service called the pre-
mium service (PS) has been proposed under the Dimerv
model to provide coarse grained guaranteed rate service.
This paper presents a buffer management mechanism based
on simple FIFO scheduling to support integrated transport
of the PS and the traditional best effort (BE) service. A
key feature in our buffer management is to perform selec-
tive packet discarding from an embedded queue at a shared
buffel: We show that such a buffer management mecha-
nism is capable of achieving the following objectives: (1)
A core router does not maintain any state information for
any jlow (i.e., stateless); (2) The bandwidth for an PSflow
is guaranteed (in conjunction with a bandwidth broker (BB)
for admission control). Simulation results demonstrate that
our buffer management mechanism can achieve integrated
transport of the PS and the BE services.

1. Introduction

The current Internet offers the so-called best effort (BE)
service, which does not make any service quality commit-
ment. Such a simple service model allows IP routers to be
stateless: except routing state, which is highly aggregated.
As the Internet evolves into a global communication infras-
tructure, there is a growing demand to support more sophis-
ticated service quality than the traditional BE service.

One solution for Internet QoS is to design a stateful ar-
chitecture (e.g., the integrated services (IntServ) model [3]).
Under such an architecture, each router must maintain per-
flow state (e.g., per-flow QoS scheduling state and per-flow

reservation state). Performing per-flow management inside
the network affects both the core network scalability and ro-
bustness. Under such an architecture, bandwidth guarantee
are typically achieved by using per-flow queueing mecha-
nism such as virtual clock (VC) [23] or weighted fair queue-
ing (WFQ) [8, 181. However, the scalability issue related to
such mechanisms has been questioned.

Another approach to Internet QoS is to maintain the
stateless property of the original IP architecture, e.g., the
differentiated services (DiffServ) model [2]. DiffServ pro-
vides a coarse level of service differentiation with a small
number of traffic classes and offers greater scalability than
the IntServ architecture. Under the DiffServ approach, all
the routers within a DiffServ domain can be identified as an
edge router or a core router. Edge routers maintain per-flow
state and mark packets passing through them into specific
service classes by marking each packet header. Core routers
employ simple scheduling and buffer management mecha-
nisms to process packets based on the marking bits in each
packet’s header.

Under the DiffServ model, a new service, call the pre-
mium service (PS) [16] was proposed to provide a coarse
grained end-to-end service. The PS is designed to provide
a guaranteed rate, low loss, and low delay jitter through a
DiffServ domain. Such a service is similar to the service
provided by a leased line. Consequently, it is called “virtual
leased line” service. Example applications using PS service
include Internet telephony and video conferencing.

The BE service will remain under the DiffServ architec-
ture and is expected to make up the bulk of the Internet traf-
fic [16].

This paper presents a buffer management mechanism
(in conjunction with a bandwidth broker (BB) for admis-
sion control) under the DiffServ model to support integrated
transport of the PS and the BE services. On the data plane,
we propose a selective packet discarding mechanism from
an embedded queue at a shared buffer. On the control plane, *Please direct all correspondence to Y.T. Hou, Fujitsu Laboratories of

America, 595 Lawrence Expressway, Sunnyvale, CA 94085, USA. Email: we a centralized BB for each DiffServ domain and
thou@fla.fujitsu.com. remove per-flow QoS reservation state information away

168
0-7695-0912-6/00 $10.00 0 2000 IEEE

mailto:thou@fla.fujitsu.com

from the routers. Under this architecture, we show that our
buffer management mechanism is capable of achieving the
following two objectives: (1) A core router does not main-
tain any state information for any flow (i.e., stateless); and
(2) The bandwidth for an PS flow is guaranteed (in con-
junction with a BB admission control). Simulation results
demonstrate that our buffer management mechanism can
achieve integrated support of the PS and the BE services.

Gupta er al. [121 and Nichols er al. [161 proposed class-
based queueing (CBQ) with strict priority (SP) or WFQ
among the class-based queueing (CBQ) to support multi-
ple service quality. Under this approach, all the PS flows
share the same queue while traffic of other classes share
other queues. The PS packets will always depart the routers
first (under SP) or will be guaranteed a service rate (un-
der WFQ). While CBQ with SP or WFQ is a feasible solu-
tion to support integrated traffic of the PS and the BE flows,
this paper proposes an alternative solution based on simple
FIFO scheduling. Our approach shows that a simple selec-
tive packet discarding mechanism based on FIFO schedul-
ing can also support integrated traffic of the PS and the BE
services.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work on buffer management.
Section 3 describes our selective packet discarding mech-
anism in detail. In Section 4, we discuss how to perform
admission control using a BB under our DiffServ architec-
ture. Section 5 uses simulation results to demonstrate the
performance of our buffer management mechanism. Sec-
tion 6 concludes this paper.

2. Related work on buffer management

Traditional technique for managing router queues in the
BE Internet is the drop-tail mechanism, which drops the in-
coming packet when there is not enough free buffer space.
A key problem associated with drop-tail is that it can bring
about global synchronization among the TCP flows travers-
ing the same node, in which case both link utilization and
overall throughput can be significantly reduced [4]. Fur-
thermore, the drop-tail mechanism is unable to offer service
differentiation between the PS and the BE traffic.

Random Early Detection, or RED [ll], is an active
queue management algorithm for routers that resolves the
TCP synchronization problem associated with drop tail. In
contrast to drop tail, which drops packets only when the
buffer is full, the RED algorithm drops arriving packets
probabilistically before the buffer is full. More specifically,
it computes the average queue size and when the average
queue size exceeds a certain threshold, it drops each arriving
packet with a certain probability, which is a function of the
average queue size. The probability of dropping increases
as the estimated average queue size grows. Such random-

ization in packet dropping keeps TCP connections back off
at different times, which avoids the global synchronization
effect of all connections and maintains high throughput for
TCP traffic. Although RED is a viable solution for BE traf-
fic [4], it is not sufficient to achieve service differentiation
among the PS and the BE packets under our DiffServ archi-
tecture.

RED has many variants and the variants can be classified
into the following two classes depending on whether the al-
gorithm maintains per-flow state information. The first class
extends the RED algorithm without any per-flow manage-
ment [7,9,10] while the second class employ per-flow man-
agement [1,15,17] by using either a fixed size table [171 or
per active flow accounting [1, 1.51. Since this paper focuses
on core-stateless architectures, we will only discuss the first
class algorithms, i.e., buffer management algorithms with-
out requiring per-flow management.

Due to paper length limitation, we will only discuss
RED with In and Out (RIO) by Clark and Fang [7], which
we consider the most important extension of RED algo-
rithm within the first class of algorithms. RIO retains all
the attractive features of RED and with the added capabil-
ity of discriminating against out-of-profile packets during
congestion. RIO employs two RED algorithms for drop-
ping packets, one for in-profile packets and one for out-of-
profile packets. By appropriately choosing the parameters
for the respective thresholds for the in-profile and out-of-
profile packets, RIO is able to preferentially drop out-of-
profile packets. Although RIO can offer service differenti-
ation among different traffic classes, it is not clear how the
PS can be supported under the RIO mechanism.

The so-called pushout (PO) packet discarding mecha-
nism allows an incoming packet to enter the buffer by dis-
carding some other packets in the buffer [6, 201. Com-
pared to other threshold-based packet discarding mecha-
nisms, pushout offers: (1) better buffer utilization since
packet discarding only occurs when the buffer is full; (2)
higher reliability to certain higher-priority packets. The
problem with PO mechanism is that it does not address how
to avoid global synchronization problem associated with
TCP traffic.

3. A stateless buffer management mechanism

In this section, we present our stateless buffer manage-
ment mechanism to support the PS and the BE traffic. Fig-
ure 1 shows the flow chart of our proposed buffer manage-
ment mechanism.

According to Fig. 1, when an PS packet arrives at the
node, our node mechanism makes every effort to let it enter
the buffer by potentially discard BE packets in the buffer.
On the other hand, when a BE packet arrives at the buffer,
our node mechanism will let it join the buffer only if there

169

Tail poinler of Unked list ha Head pointu of linked Urt +a
I I

t t t

Figure 1. Flow chart of selective packet dis-
carding mechanism.

is enough buffer space and RED decides to accept it (with
a probability). Therefore, our node mechanism achieves the
highest possible loss protection for the PS while providing
randomization in packet dropping for the BE packets.

In our implementation, we maintain two variables QBE
and R (both in unit of bytes) at a buffer as follows.

QBE: is the sum of packet size (in bytes) of all the BE
packets in the buffer. It is used to keep track of the
buffer occupancy by all the BE packets.

R: is the remaining free buffer space (in bytes).

We maintain the following data structure in the buffer to
achieve our selective packet discarding mechanism. Each
data unit in the buffer consists of a physical IP packet and
three pointers, of which two pointers are used for doubly
linked list LTotal and the third is used for linked list LBE.

Linked list L ~ ~ t ~ l is an FIFO-like doubly linked list of all
packets (both the PS and the BE services) in the buffer.
L ~ ~ t ~ l is updated whenever an incoming packet joins
the tail of the queue or a packet is served at the front
of the queue by the output link or pushed out in the
middle of the queue.

Linked list LBE is the linked list of the BE packets embed-
ded in the linked list LTota[. LBE is updated whenever
an incoming BE packet joins the tail of the queue or a

Tail poinles of linked list 4, Head poinles of linked list

A BE paclra - Doubly linked U s t kd (fa all packas in the buffer)

- - -- Unked Us be (fa LA service packas)

---o Hend a WI poinles of a Unked Us1

Figure 2. Linked list data structure for selec-
tive packet discarding mechanism. Linked
list LBE is embedded in L ~ ~ t ~ l .

BE packet is either served by the output link or dis-
carded by our node mechanism.

Figure 2 shows the linked list structure for packets in the
buffer at a node. Similar to the FIFO queueing mechanism,
packets can only be served at the head of linked list LTotal

and any incoming packet can only join the tail of linked list
LTotal. A second linked list LBE (embedded in L ~ ~ t ~ l)
keeps track of the BE packets in the buffer. In our buffer
management mechanism, when an PS packet arrives and
the remaining free buffer space cannot accommodate this
packet, BE packet(s) will be discarded if such discarding
can make sufficient free buffer space to accommodate this
incoming PS packet. Should there be enough buffer space
for the incoming PS packet after discarding BE packet(s),
we discard BE packets from the head of linked list LBE
along linked list LBE until there is just enough free buffer
space to allow the incoming PS packet to enter the buffer.
The reason why we discard BE packets from the head (in-
stead of from the tail) of linked list LBE is that this will
make TCP acknowledgment be conveyed to the TCP source
earlier than is the case under tail-discarding, which trans-
lates into quicker reaction to congestion and considerable
performance improvement [141.

Note that a doubly linked list is employed for LTotal in
Fig. 2. This is because the head of LBE can be anywhere in
LTotal and only a doubly linked list for LTotal can preserve
the connectivity of LTotal when the packet at the head of
LBE is discarded. On the other hand, a singly linked list
is sufficient for the BE packets since packet discarding for
LBE always takes place at its head.

Figure 3 provides a detailed description of our packet
discarding mechanism, with R being initialized to the total
buffer space.

170

When a packet of size P arrives at the output port of a switch:
examine the packet header field;
if (BE packet) {

if (R > P) { / * i.e.. sufficient remaining buffer space * /
use RED to decide whether or not to accept the incoming BE packet;
if (RED accepts the incoming BE packet) {

let the incoming BE packet join the tail of linked list L T o t a i ;
update linked list L T ~ ~ , , ~ ;

update linked list L B E ;
Q W E := Q W E + P ;
1

R := R - P ;

else / * i.e., RED does not accept the incoming BE packet * /
discard the incoming BE packet:

1
else I * i.e., R < P , insufficient remaining buffer space ‘ I

discard the incoming BE packet;
1

else / * i.e., PS packet * / {
if (R > P) {

accept the incoming PS packet and let it join the tail of L ~ ~ t , , l ;
update linked list LTotoj;
R := R - P ;
1
if (Q w E + R < P)
/ * i.e., insufficient buffer space even if all BE packets are discarded * /

else {
/ * i.e., there is enough free buffer space available if some BE packets are discarded * /

else / * i.e., R < P * / {

discard the incoming PS packet;

discard BE service packets (with a total of z bytes) from the head of linked list L B E
until (R + z > P) ;
update linked list L E E ;
Q B E : = Q B E - z : R : = R + z ;
accept the incoming PS packet and let it join the tail of linked list L ~ ~ t ~ l ;
update linked list LTotoi;
R := R - P :

When a packet of size P departs from the head of linked list L ~ ~ t , , l at the output port of a switch:
update linked list L T ~ ~ ~ I ;
R := R + P ;
if (the departing packet belongs to BE service) {

update linked list L E E ;
Q B E := Q B E - P ;

Figure 3. Selective packet discarding algorithm.

Figure 4. A schematic of bandwidth broker on the control plane to manage resources for an IP network
domain.

171

Figure 5. A schematic of multiple bandwidth brokers on the control plane, one for each IP network
domain.

4. Admission control for the PS flows

Note that our buffer management mechanism only con-
trols data plane QoS and itself would not be sufficient to
support the PS flows without appropriate admission control
on the control plane.

We promote to use a centralized bandwidth broker (BB)
that maintains topology as well as the some state informa-
tion of all nodes in the network [16]. A BB is configured
with the organizational policies and manages the resources
of a DiffServ domain (see Fig. 4).

Admission control is implemented on the BB, eliminat-
ing the need for maintaining distributed reservation state.
Such a centralized approach is ideal for the PS since such
flows are relatively long lived, and set-up and tear-down
events are relatively on a much larger time scale than round
trip time.

For an PS flow initiates and terminates within a sin-
gle DiffServ domain, it is straightforward to use a BB to
perform admission control. The sender requesting PS first
sends a message to the BB indicating such request. The BB
makes an admission control decision based on the network
topology and traffic volume on the network. If the request is
denied, the BB sends a message to the sender. If the request
is accepted, the BB will send a message to the edge routers
so that they can set up the traffic conditioning functions for
the PS flow (e.g., classification, shaping, and marking). Fi-
nally, the BB sends a message to the sender and the sender
can start transmitting the PS packets.

For an PS flow traversing multiple DiffServ domains, we
need to deploy a BB for each domain and coordinate among
the BBs to perform admission control (see Fig. 5) . More
specifically, after receiving a request from the sender, the
BB within the same domain will first check to see if there
is sufficient network resource to accommodate the PS flow
within its own domain. Then it communicates with the BB
in the next DiffServ domain (in the direction towards to the
receiver) to see if there is sufficient resource to accommo-
date this flow, and so forth. Only when the BBs at all the
DiffServ domains between the sender and receiver have suf-
ficient network resource to accommodate the flow and agree
to accept the new PS flow, the BBs will send messages to the
edge routers so that appropriate traffic conditioning func-
tions can be set up. Finally, the BB within the sender’s do-
main sends a message to the sender indicating admission or
rejection.

Note that the BB still needs to maintain states for the PS
flows so that the resources in the network will not be overly
subscribed. Work is currently underway to design flow ag-
gregation algorithm to alleviate the storage and processing
requirements at BBs.

5. Simulation results

In this section, we implement our selective packet-
discarding buffer management mechanism on our network
simulator. We perform simulations of integrated traffic

172

Figure 6. An example of video object (VO) concept in MPEG-4 video. A video plane in (a) is segmented
into two VO planes in (b) and (c), where VO1 (b) is the foreground and V02 (c) is the background.

G2 G3 G4

Figure 7. A chain network.

of real-time video streaming’ application and traditional
TCPKJDP traffic under our DiffServ architecture. We use
MPEG-4 video as our real-time streaming application and
use application level perceptual quality as performance
measure. The purpose of our simulation study is to demon-
strate that our buffer management mechanism can provide
integrated support of the PS and the BE services.

5.1. Simulation settings

The network configuration that we use is the chain net-
work shown in Fig. 7, where path G1 consisting of multiple
flows and traverses from the first switch (SW1) to the last
switch (SW4), while all the other paths traverse only one
hop and “interfere” the flows in G1. In our simulations, G1
consists of one MPEG-4 source, three TCP connections and
three UDP connections while G2, G3 and G4 all consist of
three TCF connections and three UDP connections, respec-
tively. The link capacity between the switches is 200 kb/s
on Linkl2, Link23, and Link34.

For MPEG-4 video, at the source side, we use the
standard raw video sequence “Akiyo” in QCIF format for
~~~~~ 

‘Video streaming implies that the content need not be downloaded in 
full before being played, but is played out while it is being received and 
decoded [22]. 

the MPEG-4 video encoder [21]. The encoder performs 
MPEG-4 coding described in [5]. The encoded MPEG-4 
bit-stream is packetized and classified into the PS and the 
BE service packets before being sent to the network. In par- 
ticular, we identify the foreground VO as VO1 (Fig. 6(b)) 
and the background object as V02 (Fig. 6(c)). For arriving 
packets, the receiver extracts the packet content to form the 
bit-stream for the MPEG-4 decoder. To prevent error prop- 
agation due to packet loss, we let the source encoder encode 
an Intra-VOP every 100 frames [ 131. 

We assume all TCP sources are persistent during the sim- 
ulation run. For UDP connections, we use an exponentially 
distributed o d o f f  model with average E(Ton) and E(T, f f )  
for on and off periods, respectively. During each on period, 
the packets are generated at peak rate I-,. The average bit 
rate for a UDP connection is, therefore, I-,. e. 

Table 1 lists the parameters used in our simulation. We 
use 576 bytes for the path MTU. Therefore, the maximum 
payload length, MaxPL, for MPEG-4 is 526 bytes (576 
bytes minus 50 bytes of overhead) [19]. 

For the RED mechanism used for the BE service, we use 
a linear probability function for pa where max{p,} = 0.1. 
The parameter wq is used to calculate the average queue 
size uvg and is set to 0.02 [ 113. The minth and ” c t h  
parameters are set to 5 packets and 15 packets, respectively. 

We run our simulation for 450 seconds for all config- 
urations. Since there are only 300 continuous frames in 
“Akiyo” sequence available, we repeat the video sequence 
cyclically during the 450-second simulation run. 

5.2. Results 

We organize our simulation results as follows. As a first 
case (Case l), we mark both VO1 and V02 packet streams 
under BE service and interact with other TCPKJDP (also 
marked as BE service). This is the case under the traditional 
BE Internet where there is no service differentiation among 
all the packets. We expect to see packet loss from both VO1 

173 



Table 1. Sin 
End system MPEG-4 

Mean packet processing delay 
Packet processing delay variation 
Packet size 

1 Maximum receiver window size 
Default timeout 

, Timergranularity 
TCP version 
E(Ton) 
E(T0f f 1 
TP 
Packet size 
Buffer size 
Packet processing delay 
speed 
Distance 
Distance 

I 
Switch 

300 ps 
10 ps 
576 bytes 
64 Kbytes 
500 ms 
500 ms 
Reno 
100 ms 
150 ms 
100 kbls 
576 bytes 
10 Kbytes 
4 I1s 
10 Mbls 
1 km 
loo0 km 

ulation parameters. 

1 F z a t e  rate 
VO1 (foreground) rate 

1 V02 (background) rate 

20 kbls 
13.2 kbls 
6.8 kbls 

' Buffer size- I lMbvtes 

and V02 packet stream. In the second case (Case 2), we 
mark only VO1 under the PS service and thus is guaran- 
teed with 13.2 kb/s while V02 is marked under BE service 
(together with other interfering TCPNDP traffic). Under 
this case, we expect that there is no packet loss from VO1 
stream while there may be packet loss from V02 stream. 
Finally, in Case 3, we mark both VO1 and V02 under the 
PS and require 20 kb/s (13.2 + 6.8) guaranteed bandwidth. 
Under this scenario, we do not expect any packet loss from 
VO1 and V02 video stream under our DiffServ architec- 
ture. Only TCPNDP traffic (marked under the BE service) 
may be subject to loss. 

Case 1: BE Service Internet 
Under the BE architecture, the packet loss ratio are 

2.88% for VO1 and 2.68% for V02, respectively. Figure 8 
shows the peak signal to noise ratio (PSNR) for VO1 and 
V02 under the BE architecture. Note that both VO1 and 
V02 have wide oscillations of PSNR, which translates into 
substantial perceptual degradation. To examine the percep- 
tual quality of the MPEG-4 video, we play out the decoded 
video sequence at the receiver. A sample frame is shown in 
Fig. ll(a). 

Case 2: DiffServ Internet with VO1 under the PS 
In this case, we find that there is no packet loss for VO1 

and the packet loss ratio for V02 is 3.77% under our Diff- 
Serv architecture. Figure 9 shows the PSNR for VO1 and 
V02 under the our DiffServ architecture. Note that only 
V02 have substantial performance degradation in terms of 
PSNR while the PSNR for VO1 is excellent, indicating that 
the PS service offers guaranteed rate for such packets. To 
examine the perceptual quality of the MPEG-4 video, we 

play out the decoded video sequence at the receiver. A sam- 
ple frame is shown in Fig. 1 l(b). 

Case 3: DiffServ Internet with both VO1 and V02  under 
the PS 

Under our DiffServ architecture, there is no loss for both 
VO1 and V02 packets. Figure 10 shows the PSNR for VO1 
and V02 under the DiffServ architecture. Note that only 
PSNR for V02 have substantial performance improvement 
(over that under Case 2) while the PSNR for VO1 is the 
same as that under Case 2, indicating that the PS offers guar- 
anteed rate for both VO1 and V02 packets. To examine the 
perceptual quality of the MPEG-4 video, we play out the 
decoded video sequence at the receiver. A sample frame is 
shown in Fig. 1 l(c). 

6. Conclusion 

This paper presented a buffer management mechanism 
under core-stateless DiffServ architecture for integrated 
transport of the PS and the BE services. A key feature in our 
buffer management is to perform selective packet discard- 
ing from an embedded queue under a simple FIFO sched- 
uler. We showed that such buffer management mechanism 
is capable of achieving the following objectives: (1) A core 
router does not maintain any state information for any flow 
(i.e.. stateless); (2) The bandwidth for an PS flow is always 
guaranteed (in conjunction with the BB's admission con- 
trol). Simulation results demonstrated that our buffer man- 
agement mechanism can achieve integrated support of the 
PS and the BE services. 

174 



Figure 8. PSNR of (a) VO1 and (b) V02 at the receiver under Case 1. 

Figure 10. PSNR of (a) VO1 and (b) V02 at the receiver under Case 3. 

Figure 11. Sample frames at the receiver. (a) Case 1: both VO1 and V02 under the BE service; (b) 
Case 2: VO1 under the PS but V02 under the BE service; and (c) Case 3: both VO1 and V02 under 
the PS. 

175 



References [14] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The drop 
from front strategy in TCP and in TCP over ATM,” in 
Proc. IEEE INFOCOM’96, pp. 1242-1250, San Francisco, 
CA, March 1996. 

EM. Anjum and L. Tassiulas, “Fair bandwidth sharing 
among adaptive and non-adaptive flows in the Internet,” in 
Proc.jEE2 INFOCOM, pp. i412-1420, March 1999, New 
York, NY. 

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and 
W. Weiss, “An architecture for differentiated services,” RFC 
2475, Internet Engineering Task Force, Dec. 1998. 

1151 D. Lin and R. Mods ,  “Dynamics of random early detec- 
tion,” in Proc. ACM SlGCOMM’97, Sept. 1997, Cannes, 
France. 

[16] K. Nichols, v. Jacobson, and L. Zhmg, “A two-bit differ- 
entiated services architecture for the Internet,” RFC 2638 

R. Braden, D. Clark, and S. Shenker, “Integrated services in 
the Internet architecture: An overview,” RFC 1633, Internet 
Engineering Task Force, July 1994. 

B. Braden, D. Black, J. Crowcroft, B. Davie, S. Deering, 
D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, 
L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, 
and L. Zhang, “Recommendations on queue management 
and congestion avoidance in the Internet,” RFC 2309, Inter- 
net Engineering Task Force, April 1998. 

T. Chiang and Y.-Q. Zhang, “A new rate control scheme us- 
ing quadratic rate distortion model,” IEEE Trans. on Circuits 
and Systems for video Technology, vol. 7, no. 1, pp. 246- 
250, Feb. 1997. 

I. Cidon, L. Georgiadis, R. Guerin, and A. Khamisy, “Op- 
timal buffer sharing,” IEEE Journal on Selected Areas in 
Communications, vol. 13, no. 7, pp. 1229-1240, Sept. 1995. 

D.D. Clark and W. Fang, “Explicit allocation of best-effort 
packet delivery service,” IEEWACM Trans. on Networking, 
vol. 6, no. 4, pp. 362-373, Aug. 1998. 

Internet Engineering Task Force, July 1999. 

[17] T.J. Ott, T.V. Lakshman, and L. H. Wong, “SRED: Sta- 
bilized RED,” in Proc. IEEE INFOCOM, pp. 1346-1355, 
March 1999, New York, NY. 

[ 181 A. K. Parekh and R. G. Gallager, “A generalized processor 
sharing approach to flow control -the single node case,’’ in 
Proc. IEEE INFOCOM’92, pp. 915-924, May 1992. 

[19] H. Schulzrinne, D. Hoffman, M. Speer, R. Civanlar, 
A. Basso, V. Balabanian, and C. Herpel, “RTP payload for- 
mat for MPEG-4 elementary streams,” Intemet Draj?, Inter- 
net Engineering Task Force, March 1998, work in progress. 

[20] L. Tassiulas, Y.C. Hung, and S.S. Panwar, “Optimal 
buffer control during congestion in an ATM network node,” 
IEEWACM Trans. on Networking, vol. 2, no. 4, pp. 374- 
386, Aug. 1994. 

[21] D. Wu, Y.T. Hou, W. Zhu, H.-J. Lee,T. Chiang, Y.-Q. Zhang, 
and H.J. Chao, “On end-to-end architecture for transporting 
MPEG-4 video over the Internet,” IEEE Trans. on Circuits 
andsystems for video Technology, vol. 10, no. 6, Sept. 2000. 

[22] D. Wu, Y.T. Hou, and Y.-Q. Zhang, “Transporting real-time 
video over the Internet: challenges and approaches,” Pro- 
ceedings of the IEEE, vol. 88, no. 12, Dec. 2000. 

A. Demers, S .  Keshav, and S .  Shenker, “Analysis and sim- 
ulations of a fair queueing algorithm,” in Proc. ACM SIG- 
COMM’89, Austin, TX, 1989, pp. 1-12. 

W. Feng, D. Kandlur, D. Saha, and K.G. Shin, “Adaptive 
packet marking for providing differentiated services in the 
Internet,” in Proc. IEEE Intemational Conference on Net- 

[23] L. Zhang, “VirtualClock A new traffic control algorithm 
for packet switching networks,” ACM Trans. Computer Sys- 
tems, vol. 9, pp. 101-124, May 1991. 

work Protocols (ICNP’98). October 1998. 

W. Feng, D.D. Kandlur, D. Saha, and K.G. Shin, “BLUE: 
A new class of active queue management algorithms,” Tech. 
Report CSE-TR-387-99, Univ. of Michigan, April 1999. 

S. Floyd and V. Jacobson, “On random early detection gate- 
ways for congestion avoidance,” IEEWACM Trans. on Net- 
working, vol. 1, no. 4, pp. 397413, Aug. 1993. 

A. Gupta, D. Stahl, and A. Whinston, “Priority pricing of in- 
tegrated services networks,” in Intemet Economics, L. McK- 
night and J. Bailey, Eds., MIT Press, Cambridge, MA. 1997, 
pp. 253-279. 

ISO/IEC JTC l/SC 29/WG 11,  “Information technology - 
coding of audio-visual objects, part 1:  systems, part 2: vi- 
sual, part 3: audio,” FCD 14496, Dec. 1998. 

176 


