
Packet Scheduling in a Combined Input and Output Queued Switch
Using Virtual Time. Reference System

Yiwei Thomas Hou* Zhi-Li Zhangt Takeo Hamadaz

Abstract
There i s an increasing demand for Internet core nodes

to have (I) quality-of-service (QoS) guarantees and (2)
higher switching capacity. The combined input and out-
put queued (CiOQ) switching has been shown to be a
promising solution to meet such demand. However,
many of the proposed scheduling algorithms fo r a CIOQ
switch cannot be practically implemented due to prob-
lems from scalability and complexity. This paper shows
how the virtual t ime reference system (V T R S) proposed
in [15] can be applied to packet scheduling in a CIOQ
switch. The V T R S is a unifying scheduling framework
to provide scalable support f o r guaranteed services. i n the
context of packet scheduling fo r a CIOQ switch, we show
that the use of V T R S can eliminates both the scalabil-
i t y and complexity problems associated with many of the
scheduling algorithms proposed in the literature. More
important, we show that in term of of providing end-to-
end guaranteed service, packet scheduling using V T R S
for a CIOQ switch has the same performance as an out-
put queued (OQ) switch employing weighted fair queue-
ing (WFQ) scheduler.
Key Words: Packet switching; Scheduling; QoS; Guaran-
teed service; Weighted fair queueing; Scalability

1 Introduction
The Internet backbone is facing two problems simul-

taneously: (1) there is a need to introduce guaranteed
QoS, and (2 there is a need for faster switching infras-

switches using the so-called output-queueing,’ which is
employed by many commercial switches and routers to-
day. This approach is known to achieve the throughput
of the switch to 100%. Furthermore, powerful scheduling
algorithms (e.g., WFQ [5, 91) can be placed at the out-
put port and thus provide QoS guarantee. But output
queueing for an N x N switch requires the switching fab-
ric and memory to run N times as fast as the line rate.
This is impractical to design high speed switches (e.g.,
terabit switch) since memories with sufficient bandwidth
are simply not available at such high speed.

To build faster switches, an input-queued (IQ) switch
architecture can be employed since the fabric and mem-
ory of an IQ switch need only run as fast as the line

tructure. T h e first problem can be solved by building

*Y. T. Hou is with Fujitsu Laboratoriesof America, Sunnyvale,

tZ.-L. Zhangis with University of Minnesota, Minneapolis, MN,

t T. Hamada is with Fujitsu Laboratories of America, Sunny-

When we refer to output-queueing in this paper, we include

CA, USA.

USA.

vale, CA, USA.

designs that employ centralized shared memory.

0-7695-0571-6/00 $10.00 0 2000 IEEE
239

rate. Furthermore, it has been shown that by using a
scheme known as vzrtual output queuezng (VOQ
possible to eliminate entirely the so-called hea h2, -of-lzne it is
(HOL) blocking problem3 associated with an IQ switch.
However, i t remains to be seen how an IQ switch without
any speedup can guarantee QoS.

Recently, it has been shown that it is possible to use
a combined znput and output port queued (CIOQ) switch
with a small speedup (e.g., 2-4) to provide guaranteed
&OS [3, 111. Under such architecture, buffers are em-
ployed at both the input ports and output ports and the
switch can remove up to S (1 5 S 5 N) packets from
each input and deliver up to S packets to each output
within a time slot, where a time slot is the time between
packet arrival a t input ports. I t has been shown in [3, 111
that with a small speedup (e.g., 2-4), a CIOQ switch can
behave zdentzcally to an OQ switch for all types of traffic.
Here, “behave identically” means that, when the same
inputs are applied to both the OQ switch and to the
CIOQ switch, the corresponding output processes from
the two switches are completely indistinguishable.

Although the algorithms presented in [3, 111 theoret-
ically enable a CIOQ switch with a small speedup to
mimic an OQ switch with WFQ scheduling algorithm,
in practice, such algorithms may not be implementable
for the following two problems: (1) it is not scalable
(and thus not feasible) to maintain per-flow QoS state
in a high speed CIOQ switch to mimic an OQ switch
with WFQ scheduler, and (2) even if i t were feasible to
maintain per-flow state at the CIOQ switch, the calcula-
tion of departure time for scheduling in a CIOQ switch
in [3, 111 requires complex communication among var-
ious input and output ports, which is simply not im-
plementable for a switch operating at very high speed.
Therefore, t,here is a need to design an implementation-
friendly scheduling algorithm for a CIOQ to guarantee
QoS.

This paper shows how to use a novel vzrtual t ime ref-
erence system (VTRS) proposed by Zhang et. a1 [15]
to perform packet scheduling in a CIOQ switch and to
achieve end- t 0- end &OS guarantee.

The VTRS extends the work of Stoica and Zhang [14]
and is a a unzfyzng scheduling framework t o provide scal-
able support for guaranteed services. In the same way
that the WFQ reference system relates to the Integrated
Services (IntServ) architecture [2, 41, the VTRS is de-
signed as a conceptual framework upon which guaran-
teed services [12] can be implemented in a scalable man-

’VOQ refers that each input maintains a separate queue for
each output [SI.

3HOL blocking refers that if each input port maintains a single
FIFO, the throughput of an IQ switch is limited to just 58.6%
(under uniform traffic) [7].

ner using the Differentiated Services (DifTServ) paradigm
[l]. More specifically, the VTRS provides a unifying
framework to characterize, in terms of their abilities to
provide delay and bandwidth guarantees, both the per-
hop behaviors of core routers and the end-do-end prop-
erdies of their concatenation. The key construct in the
VTRS is the notion of packed virtual time stamps, which,
as part of the packet state, are referenced and updated
as packets traverse each core switch. A key property of
packet virtual time stamps is that they can be computed
using solely the packet state carried by packets (plus a
couple of fixed parameters associated with core routers).
In this sense, the VTRS is core stateless, as no per-flow
state is needed at core routers for computing packet vir-
tual time stamps.

This paper shows that the VTRS can be applied to
packet scheduling in a CIOQ switch and to resolve both
the scalability problem (associated with maintaining per-
flow QoS state information a t a switch) and the complex
inter-port communication problem (encountered in cal-
culating and updating departure time for each packet)
associated with an CIOQ switch in [3, 111. More specifi-
cally, the virtual jinish t ime associated with each incom-
ing packet to a CIOQ switch can be used for scheduling
in a CIOQ switch to mimic a core stateless virtual clock
(CgVC). The novelty and power of using virtual finish
time associated with each packet under the VTRS is:
virtual finish time can be calculated directly from the
packet virtual time stamps carried in the packet and
thus eliminates the needs of maintaining the per-flow
QoS state information at a switch as well as the complex
inter-port communications required to calculate/update
packet departure time used in [3, 111. More important,
since the CsVC has the same per hop delay performance
as a WFQ, in terms of end-to-end delay guarantee, a
CIOQ switch using virtual finish time for scheduling pro-
vides the same performance as an OQ switch with WFQ
scheduler.

This rest of this paper is organized as follows. In
Section 2, we outline the architecture of a CIOQ switch
as well as some proposed packet scheduling algorithms.
We show the implementation problems associated with
scheduling in a CIOQ switch in order to mimic an OQ
switch under WFQ scheduler. Section 3 presents the
framework of VTRS. In Section 4, we show how to apply
the VTRS for packet scheduling in a CIOQ switch and
provide end-to-end QoS guarantee. Section 5 concludes
this paper.

2 Architecture of a CIOQ Switch

2.1 Basic Architecture
Consider a single stage, N x N CIOQ switch. Under

VOQ, each input maintains a separate queue for packets
destined for each output (see Fig. l(a) for an example
3 x 3 crossbar CIOQ switch). For simplicity, we assume
all input and output buffers have infinite capacity. Al-
though packets arriving to the switch may have variable
length, we will assume that they are treated internally
as fixed length packets (or “cell”). This is common prac-
tice in high performance switches; variable length pack-
ets are segmented into fixed length cells at the input
ports, transferred across the switch fabric as cells, and
reassembled back into packets again at the output ports.
For the ease of exposition, we assume all packets have

I

Figure 1: An example 3 x 3 crossbar CIOQ switch with
S = 2 (a) and its reference OQ switch (b).

the same fixed length a,nd we take the time between such
fixed-length packet as the basic time unit.

A scheduling algorithm selects a matching between in-
puts and outputs in such a way that each non-empty in-
put is matched with at most one output and, conversely,
each output is matched with at most one input. The
matching is used to configure the switch before packets
are transferred from the input side to the output side.
A CIOQ switch with a speed up of S is able t o make S
such transfers each time slot.

2.2 Mimicking FIFO OQ Switch
In an OQ switch (see Fig. l (b)) , arriving packets are

immediately forwarded to their corresponding outputs.
This (1) ensures that outputs never idle so long as there
is a packet destined for them in the system, and (2)
allows the departure of packets to be scheduled (e.g.,
WFQ) to meet delay constraints. In [ll], Prabhakar and
McKeown presented a novel scheduling algorithm called
the Most Urgeni Cell Fzrd Algorithm (MUCFA) for a
CIOQ switch to mimic a FIFO OQ switch. They show
that with a speedup of S = 4, an N x N switch operating
under MUCFA can behave identically to a FIFO O Q
switch, regardless of input traffic patterns and for any
switch size N .

A key aspect of MUCFA is the concept of the “ur-
gency of a packet”, which is defined in reference to a
shadow OQ switch (see Figure 1). With respect to the
OQ switch (Figure l (b) each arriving cell to this switch
is stamped with a num 6 er, which i s its “urgency value”
at that time. This number indicates the time from the
present that i t will depart from the switch. At each suc-
cessive time slot, the urgency value is decremented by
one. When the value reaches zero, the cell will depart at
the end of this time slot. If two packets a and b arriving
at two different inputs a t the beginning of the same time
slot and both destine for the same output port, then the
urgency of packet a , say ua, is less than the urgency of
packet b, say U,$, if and only if the number of the input
port a t which packet a arrives is less than the number
of the input port at which packet b arrives. Tha t is, the
OQ switch is assumed to transfer packets from inputs
to outputs in a round robin fashion starting with the
smallest numbered input first.

Now consider the CIOQ switch Figure 1 a)). By as-
sumption, the same input is applie 6 6 to it an to the O Q
switch. Thus for every packet p in the CIOQ switch,
there is an exact copy in the OQ switch, which is re-
ferred to as the clone of p. Therefore, packet p arrives
a t input i a t time T and is destined for output j. Since
the speedup 1 5 S 5 N , packet p may not be forwarded

240

to the output buffer j at the end of time slot T . Note
that packet p may not be required at output j for some
time, because its clone in the OQ switch may still be
some distance from the HOL. Therefore, the urgency is
an indication of how much time there is before packet p is
needed at its output if the CIOQ switch is to mimic the
behavior of the OQ switch. The following is the formally
definition for urgency.

Def in i t ion 1 The urgency of a packet in a CIOQ
switch a t any t ime is the distance its clone is from the
head of the output buffer in the corresponding reference
O Q switch. 0

The packets in any output buffer of the CIOQ switch
are arranged in increasing order of urgencies, with the
most urgent packet a t the head. Once packet p is for-
warded to its output in the CIOQ switch, its position is
determined by its urgency.

Algorithm 1 (MUCFA)

1. At the beginning of each phase4, each output tries
to obtain its most urgent packet from the input.

2. If more than one output request the same input,
then the input will grant t o that output whose
packet has the smallest urgency value. If there is
a tie between two or more outputs, then the output
with the smallest port number wins.

3. Output that lose such contention at an input will
try to obtain their next most urgent packet from
a.nother (unmatched) input port.

4. When no more matching of inputs and outputs is
possible, packets are transferred and MUCFA goes

0

Theorem 1 A n N x N CIOQ switch operating under
MUCFA and speedup 5’ 2 4, can behave identically to a
FIFO OQ switch, regardless of input traffic patterns and

0

to the next phases (Step 1).

for arbitrary switch size N .

The proof of Theorem 1 can be found in [ll].

2.3 From FIFO to WFQ
The MUCFA can be used to mimic an OQ switch

employing a wider range of output scheduling policies
than just FIFO. Essentially, the extension to these non-
FIFO scheduling policies involves very little change to
the basic structure of MUCFA.

The MUCFA can be extended to the so-called mono-
ton,e scheduling policy, which is defined as follows.

Def in i t ion 2 A n output scheduling policy is said to
be monotone ifi once it has been determined, the rela-
tive departure order of any two packets p and q does not
change over lime. 0

4For a CIOQ switch with speedup S, a time slot is said to be
divided into S equal phases. During each phase Q i , 1 5 i 5 S, the
switch can remove at most one packet from each input port and
can transfer at most one packet to each output port. It is assumed
that packets arriving at the switch input ports will do so at the
beginning of phase 41, while departures from the switch output
ports take place at the end of phase 4s.

A simple way of visualizing this class of output
scheduling policies is to imagine a single “push-in” queue
a t the output, where an arriving packet may be pushed
into any location but packets may depart only from front.
Note that newly arriving packets may increase the ab-
solute departure time of an existing packet, bu t cannot
change the position of the existing packet relative to an-
other. The importance of the class of monotone policies
is that i t includes several policies that are commonly
used to provide QoS guarantees (e.g., WFQ).

The following definition of expected urgency (EU)5 ex-
tends the definition for urgency and sets the stage to ex-
tend MUCFA for monotone output scheduling policies.

Def in i t ion 3 The expected urgency, EU,(t) , of a
packet p at an t ime slot t as the time from the present
that it would depart from the switch if no new packets

0 arrive to the switch after t ime t .

When the output scheduling policy is FIFO, the
EU,(t) of packet p is the same as the its urgency. For
FIFO output scheduling policies EU, (2) decreases ex-
actly by one every time slot. This need not be the case
under a general monotone output scheduling policy since
new packets may be pushed into the output queue and
take precedence over an existing packet, causing its EU
t o zncrease.

Let MUCFA-E be the algorithm that during any
phase of time slot t schedules the transfer of packets
from inputs to outputs in exactly the same manner as
MUCFA, except for basing its scheduling decisions on
a packet’s expected urgency EU instead of its urgency
U . I t have been shown that MUCFA-E may be used in a
CIOQ switch with a speed of S 2 4 to behave identically
to an OQ switch employing any monotone scheduling
policy [I I].

2.4 Implementation

There are two components in implementing the
MUCFA for CIOQ switch: (1) The process of match-
ing inputs and outputs for transferring packets, and (2)
Determining the urgency of an arriving packet. Regard-
ing the first problem, i t has been shown in [ll] that for
an N x N CIOQ switch employing MUCFA and an in-
ternal speedup of at least 4, the number of iterations
required to match inputs and outputs in each phase is
never more than N .

As for the second problem, i t is not surprising that the
difficulty of inferring the urgency depends on the output
scheduling policy of the reference OQ switch. For the
simple FIFO (and strict priority scheduling), the imple-
mentation is straightforward and can be practically im-
plemented. But the difficulty quickly changes when it
comes to other scheduling policy such as WFQ, which
we elaborate as follows.

5Actually, the term “expected departure time” instead of “ex-
pected urgency” is used in [I l l . In order to avoid confusion with
our own definition of “expected departure time” in this paper, we
opt to use the term “expected urgency.”

24 1

Figure 2: A conceptual network model for VTRS.

Edge conditioner t

Figure 3: Edge conditioning (or shaping) and its effect
in the VTRS.

2.4.1 An Open Problem

The implementation of MUCFA-E for a CIOQ switch to
mimic an OQ switch under WFQ scheduler face the the
following two problems: (1) i t is not scalable (and thus
may not be feasible) to maintain per-flow QoS state at a
high speed CIOQ switch, and (2) even if it were feasible
to maintain per-flow state at the switch, the calcula-
tion of departure time for scheduling in a CIOQ switch
in [3, 111 requires complex communication among var-
ious input and output ports, which is simply not im-
plementable for a switch operating a t very high speed.
Therefore, there is a need to design an implementation-
friendly scheduling algorithm for a CIOQ to guarantee
QoS .

3 Virtual Time Reference System
3.1 Basic Architecture

The VTRS is defined and implemented within a single
administrative domain. Conceptually, the VTRS con-
sists of three logical components (see Figs. 2, 3 and 4):
packet state carried by packets, edge traffic condition-
ing at the network edge, and per-hop virtual time refer-
ence/update mechanism at core switches or routers (e.g.,
CIOQ switch). The packet state carried by a packet
contains three types of information: (1) QoS .reservation
information of the flow the packet belongs to (e.g., the
reserved rate of the flow); (2) a virtual time stamp of the
packet; and (3) a virtual time adjustment term.

We summarize the important notation used in the pa-
per as follows.
General Notation
p l i k : the kth packet of flow j
L J ! k : packet length of plvk
Li,max: maximum packet length of flow j
L*,max. . maximum packet length of all flows at a node
r j : reserved rate of flow j
h: number of hops (nodes) along the path of flow j

I

1 I
Mllu ;i lime

Figure 4: A schematic of VTRS: (a) Virtual time refer-
ence/update mechanism; and (b) Virtual traffic shaping.

Notation for the Ideal Per-Flow System
a ivk : arrival time of packet plvk at node i
f i ' k : finish time of packet p l i k at node i
A{Ik: cumulative queueing delay packet pl i k experienced
up to server i (inclusive)

Notation for the Virtual Time Reference System
G!'k : virtual time s tamp of packet p l > k a t node i
fii'k: virtual finish time of packet p l j k at node i
6jrk: virtual time adjustment term for packet pT,k : d l k =

ii'k: virtual delay of packet at node i: iirk = F ; l k -

t i i l k : actual time packet p l y k arrives at node i
j j r k : actual time packet plrk departs from node i
!Vi: error term of scheduling blackbox at node i
ai,i+l: propagation delay from the i th node to the (i +
1)th node

Edge traffic conditioning ensures that traffic of a flow
will never be injected in to the network core at, a rate
exceeding its reserved rate (see Fig. 3) . Formally, for a
flow j with a reserved rate r3, the inter-arrival time of
two consecutive packets of the flow is such that

Gjrk
2

As a packet traverses each core router along the path
of its flow, a virtual time stamp is "attached" to the
packet. This virtual time stamp represents the arrival
time of the packet a t the core router in the virtual time,
and thus i t is also referred to as the virtual arrival time of
the packet at the core router. The virtual time stamps
associated with packets of a flow satisfy an important
property, which we refer to as the virtual spacing prop-
erty as follows:

for all IC. Comparing (2) with (l) , we see that with respect
to the virtual time, the inter-arrival time spacing is pre-
served at a core router. Another key property of packet
virtual time stamps is that at a core router the virtual
arrival t ime of a packet always lags behind its real arrival
time. This property (referred to as the reality check con-
dition) is important in deriving end-to-end delay bound

242

Ideal perflow reference system

Figure 5: An ideal per-flow system.

experienced by packets of a flow across the network core.
The per-hop virtual time referencelupdate mechanism
at a core router is designed in such a manner so as to
ensure that these properties of the packet virtual time
stamps are satisfied at the entry point, and/or exit point
of the core router (see the illustration in Fig. 4).

Conceptually, for each packet traversing a core router,
a vtrlualfinzsh tzme is computed and assigned to it. This
virtual finish time is derived from its virtual time stamp
and other packet state information. Intuitively, i t repre-
sents the time the packet finishes its service in an zdeal
per-flow reference system, where the flow t o which the
packet belongs to is the only flow serviced by the sys-
tem. The per-hop behavzor of a core router as defined
an terms of an upper bound on the dzfference between
the actual departure tzme and vzrtual finzsh tame of a
packet traversang the core router. This upper bound is
referred to as the error term of the core router. There-
fore, the scheduling mechanism of the core router can be
abstracted into a schedulzng blackbox characterized by an
error term. This simple abstraction enables us to derive
end-to-end delay bounds for flows traversing an arbitrary
concatenation of such scheduling blackboxes.

3.2 An Ideal Per-flow VTRS

In this subsection we introduce the notion of packet
virtual time stamps in the context of an ideal per-flow
system. The VTRS defined in this context will then be
extended in the next section to account for the effect of
packet scheduling in a real network system.

Figure 5 illustrates an ideal per-flow system, where a
regulated flow is serviced by a dedicated channel. The
dedicated channel consists of a series of servers in tan-
dem. Packets of a flow j are serviced in order from server
1 to server h. For simplicity of exposition here, we as-
sume that in this ideal per-flow system the propagation
delay from one server to the next server is zero. (We
will take into account of propagation delay in the next
subsection.) For the purpose of this paper, we will only
consider the so-called rate-based servers.6 A rate-based
server has a service capacity equal to the reserved rate
rj of flow j. Hence a rate-based server takes Lj>k/r j
amount of time to process packet p l , k of flow j.

6 A more general study including delay-based servers can be
found in [15].

3.2.1 End-to-end Delay

Let be the arrival time7 of packet p l , k of flow j at
the first server of the ideal per-flow system. Then the
edge spacing condition holds, namely, - ajlk 1 2
L j , k + l / r j for IC = 1 , 2 , For i = 1 , 2 , . . . , h , let ailk
denote the time packet p l i k arrives a t server Si, and f / l k

the time it leaves server i. In the ideal per-flow system,
it is not hard to see that the following recursive relation-
ships among ajlk's and fi'kls hold. For any k = 1 , 2 , . . .,
ailk = fjLk1 i = 2 , . . . , h , and

1 hl

where we have used the convention that fiSo = 0.

For i = 1 , 2 , . . ., h , let A i r k denote the cumulative
queueing delay experienced by packet plrk up to server i
(inclusive). Formally, A i t k = f!,rc-(a{'k+i$). We can
derive an important recursive relation, A{'k to A{'"-'
and the arrival times of packets plvk-l and p l i k at the
first-hop server as follows [15]: For any packet p l t k , IC =
1 , . . ., and i = 1 , 2 , . . ., h , Ai t1 = 0 , and

$3)
The importance of this relation lies in the fact that or
each p l p k l AX'k can be calculated (recursively) at the net-
work edge.

Therefore, the end-to-end delay of packet 9,' in the
ideal per-flow system is f i s k - aivk = A i k + h $.
In particular, i t can be shown that A t k + h L j , k / r j 5
h L j) m a x / r j . Thus, f i ' k - ailk 5 h 7 .

J *

L'""'

3.2.2 Packet Virtual Time Stamps

The key construct in the proposed VTRS is the notion
of packet virtual time stamps. For i = 1 , 2 , . . . , h , let
denote the virtual time stamp associated with packet p l i k
at server Si. Intuitively, we can regard C I j ' k as the (vir-
tual) arrival time of packet p l y k at server S; according to
the virtual tame. At server Si, packet p l , k is also assigned
a virtual finish t ime, denoted by fijlkl where C!>k 3 Gi".
T h e difference ijlk = f i f I k - G:lk is referred to as the
virtual delay associated with packet $ 2 ' at server S;.

We postulate the following properties that packet vir-
tual time stamps (and the corresponding virtual finish
times) of flow j must satisfy at each server Si.

'Note that in order to model non-preemptive, non-cut-through
network system, throughout the paper we adopt the following con-
vention: a packet is considered to have arrived at a server o n l y
when its last bit has been received, and it to have departed the
server only when its last bit has been serviced.

243

Virtual Spacing: for b = 1,2,. . ., ~ i , ' + l - ~;li" 2
~ 3 > k + 1
-. P3

Reality Check: G f r k 2 where recall that a i r k is
t.he real time packet p l j k arrives a t server Si.

Bounded Delay: f i ' k = ; i l k , or more generally, f i I k -
is bounded from above.

Core Stateless: the virtual time stamp & i l k of each
packet plyk can be calculated at each server Si us-
ing solely the packet state information carried by
the packet (possibly with some additional constant
parameters associated with the server).

In the following we provide a definition of packet vir-
tual time stamps for the ideal per-flow system, and show
that it satisfies all the four properties listed above.

Consider the ideal per-flow system shown in Fig. 5 .
For each packet pl", define = A i k / h . For i =
1 , 2 , . . . , h, the virtual delay i!lk associated with packet

p l i k at server Si is computed from the packet state in-
formation using the following formula:

At the first-hop server SI, the virtual time stamp of
packet p l f k is defined to be & i l k = ai", which is the time
packet p l , k is injected to the ideal per-flow system and ar-
rives at SI. This value is inserted into the packet state of
plyk at the network edge. The corresponding virtual fin-
ish time of p l j k at server Si is given by C;lk = Gi" + iiSk.

For i = 2, . . . , h, the virtual time stamp G{Ik and the
corresponding virtual finish time i j i , k associated with
packet p l , k at server Si are defined as follows:

From the above definition, it is clear that the core state-
less property holds trivially. It can be shown that the
other three properties are also satisfied [15].

3.3 VTRS and Packet Scheduling in Real
Network System

To extend the VTRS defined in the context of ideal
per-flow system to a network system where each core
router is shared by multiple flows, we introduce a key
notion called the error t e r m of a core router (or rather,
of its scheduling mechanism).

Consider a flow j , whose path through a network core
is shown in Fig. 2. Flow j has a reserved rate rj. The
traffic of flow j is regulated at the network edge such
that for L = 1 , 2 , . . .,

(5)

where is the actual time packet p l i k of flow j arrives
a t the first router along its path, after being injected into
the network core.

As shown in Fig. 2, the path of flow j consists of h
core routers, each of which employs certain scheduling
mechanism to provide guaranteed service for flow j. For
i = 1 , 2 ,..., h, we will refer to the scheduler at core
router i as a scheduling blackbox, and denote it by Si.
In the following, we will first characterize the per-hop
behavior of the scheduling blackboxes, and then show
how end-to-end delay bounds can be derived based on
this characterization of their per-hop behavior.

3.3.1 Scheduling Blackbox

For a rate-based scheduling blackbox Si, packet p l i k of
flow j is assigned a virtual delay 2:: = L j , k rj + Si-'.
Gjlk be the virtual time stamp associated with packet
p l > k as it enters Si. We will provide a definition for G{lk
shortly and establish its properties. At this point, we
only assume that the reality check condit ion holds at Si,
namely, aiyk 5 bilk, where aitk is the actual time that
packet p l i k enters the scheduling blackbox S;. At Si,
packet p l i k is assigned a virtual finish time q7k, where
c ; , k = wi - i , k Let f:,k denote the actual time packet
p l i k departs S j ' k , i.e., f j Y k is the real finish t i m e of p l j k .
We say that the scheduling blackbox Si can guarantee
packets of flow j their virtual delays with an error t e r m
Vi, if for any k ,

For any flow j traversing the scheduling black b ox Si, let

fy 5 ;!J + Qi.

In other words, each packet is guaranteed to depart the
scheduling blackbox Si by the time + Q i = i ; j ! k I +

By using the packet virtual finish time as a reference
point to quantify the real finish time of a packet a t a
core router, we are able to abstract and characterize the
per-hop behavior of a core router via an error term. This
error term captures the ability of the core router to pro-
vide guaranteed services to a flow.

J!rk + Q i .

3.3.2 End-to-End Delay Bounds

Consider the path of flow j shown in Figure 2. For
i = 1 , 2 , . . . , h , let Q i be the error term associated with
the scheduling blackbox Si. We now define i;!" and
show that this definition satisfies the four requirements
of packet virtual time stamps, namely, the vir tual spacing
property , the reality check condition, the bounded delay
property and the core s tateless p roper t y . Here in defining
the reality check condition and bounded delay property,
the quantities airk and f : ' k defined in Section 3.2.2 are
replaced by and E l k , which denote the real arrival
t i m e and real f inish t i m e of packet p l i k at Si, respec-
tively.

As in the ideal per-flow system, the virtual time stamp
associated with packet p l i k at the first-hop router SI is
set to its (real) arrival time, i.e.,

244

Thus q ' , k = ,$,k + Jj2k = 6 j - k + Ji,k

From (5), the virtual spacing property is clearly met
at the first-hop router. Furthermore, the reality check
condition also holds trivially. Therefore, by the defini-
tion of Q1, we have

,ji4 * .

fl - 1 + @ l .

For i = 1 , 2 , . . ., h - 1, let ?~i,i+l denote the propaga-
tion delay from the zth hop router Si to the (i+ 1)th hop
router &+I. Then

$fl = Zi,k fi + Ti,i+l.

By the definition of @ i , we have

ii!f1 5 zxk + Q i + ?Ti,$+l. (6)
In order to ensure tha t the reality check condition holds
as packet enters the (i + 1)th hop router &+I , the
relation (6) suggests that the virtual time stamp Gi;"l
associated with packet p l i k at &+I should be defined as
follows:

G j x k t + l - - vi - i , k + Q i + Xi, i+ l = & ; I k + (+k + Q i + "i,i+l. (7)

Then ajtl 5 Wjcl.
Since @i's and ?~i,i+l 's are fixed parameters associ-

ated with the core routers and the path of flow j , i t is
clear that the packet virtual time stamps defined using
(7) are core stateless. Namely, they can be computed
at each core router using only the packet state informa-
tion carried by the packets (in addition to the two fixed
parameters associated with the routers and the flow's
path). Thus no per-flow state needs to be maintained at
these core routers.

Since @i + ? ~ i , i + l is a constant independent of p l rk ,
comparing the definition of G i P k in (7) and that in (4),
i t is easy to see that the virtual spacing property also
holds at each core router Si. Furthermore, we have

G j , k - ,jf,k
t + l - * + @i + Ti , i+ l

i i

q=l q = l q=1

In particular, we see that the bounded delay property
holds, as

h h h

q = 1 q = l q=2

This completes the construction of packet virtual time
stamps for flow j .

Using the VTRS, the following end-to-end delay
bound for flow j can be easily derived from the bounded
delay property of packet virtual time stamps:

i=l i = l

i=l i = l
,-

This bound is analogous to those derived for fair-
queuein /latency-rate-server based scheduling algo-

where L*rma" is the maximum packet size permissible a t
the ith router and Ci is its service capacity, then the
above inequality yields precisely the same delay bound
as is obtained for a flow in a network of WFQ schedulers
[5, 101 (or Virtual Clock (VC) schedulers [SI).
3.4 Core Stateless Virtual Clock Schedul-

The notion of packet virtual time stamps can be used
to design new core stateless scheduling algorithms. For
the purpose of this paper, we only show a particular rate-
based core stateless scheduling algorithm and establish
its error terms using the properties of packet virtual time
stamps.

A core stateless virtual clock (CyVC) scheduler S is a
rate-based scheduler. I t services packets in the order of
their virtual finish time. For any packet 9pk traversing
S, let G i , k be the virtual time carried by 91' as i t enters
S, and J j i k = $ + bjsk be its virtual delay. Then the
virtual finish time iij3k of p l s k is given by CIj'k + $ r k . It
can be shown that the C3VC scheduler can guarantee
each flow j its reserved rate ~j with the minimum error
term QC,VC = L*,"""/C, provided that an appropriate
schedulability condition is met. This fact is stated for-
mally in the following theorem, the proof of which can
be found in [15].

rithms f6, 10, 131. In particular, if Q i = L*imaZ ICi,

ing Algorithm

Theorem 2 Consider N Pows traversing a Cy VC
scheduler S such that the schedulability condition
Cy=, rj 5 C is satisfied. Suppose that bjgk 5 CIivk for
any packet p l $ k of flow j , j = 1 , 2 , . . ., N . Then

In other words, Q\kc,vc = F. 0

3.5 Latency-Rate Servers and the VTRS
The VTRS framework does not exclude the use of

statefu1 scheduling algorithms, namely, those schedul-
ing algorithms that maintain per-flow state information
in order to provide guaranteed services. To accommo-
date these stateful scheduling algorithms into the VTRS
framework, it suffices to identify the error term incurred
by these stateful scheduling algorithms. As an example
to show how this can be done generally, we consider the
class of scheduling algorithms introduced in [13]-the
latency-rate servers. This class encompasses virtually
all known fair-queueing algorithms and its variations. I t
can be shown that any latency-rate server with a latency
Oj (with respect to flow j) has an error term such that

For several well-known scheduling algorithms studied
in [13], i t can actually be shown that \E = Oj - F.
In particular, Oj for PGPS/WFQ, VC, FFQ and SPFQ
are all % + % and each has the error term of

\k 5 03.

, m a r m o t

L'*m-
c .

245

4 Using VTRS for Scheduling in a CIOQ
Switch

In this section, we show how to apply the VTRS for
packet scheduling in a CIOQ switch so as to resolve both
the the scalability problem and complex inter-port com-
munication problems encountered in [3, 111. More im-
portant, we show that in terms of providing end-to-end
guaranteed service [12] , packet scheduling using VTRS
in a CIOQ switch has the same performance as an OQ
switch using WFQ scheduler.

4.1 Extension of MUCFA
Now let’s revisit the MUCFA in Algorithm 1. Recall

that the MUCFA is a scheduling algorithm used by a
CIOQ switch to mimic an OQ switch with FIFO schedul-
ing.

Under the MUCFA, the urgency of each packet, say
U, is decremented by one at the end of each time slot.
Denote T the current time slot for U, then using U +
T instead of U for scheduling in MUCFA would yield
the same outcome as the original MUCFA because this
merely adds the same current T for all packets in the
switch.

Denote D as the departure time of the packet and let
TA and lJA be the arrival tzme and urgency upon arrival
of the packet, respectively. In order words, UA is the
urgency of the packet upon arrival a t time TA. I t is easy
to see that the following relation holds:

D = T A + U A = T 3 - U .

The above is true since (I) time T is incremented by 1 at
the end of each time slot while urgency U is decremented
by 1 at the end of each time slot, and (2) T and U starts
with TA and U A , respectively, upon the packet’s arrival
to the switch.

With the above discussion, it is clear that we can
use a slightly variant of the original MUCFA to per-
form scheduling in a CIOQ switch and yields identical
output behavior as an OQ switch with FIFO schedul-
ing policy. The following is the slightly extended version
of MUCFA, which we call smallest departure t ime first
algorithm (SDTFA) so as to distinguish it from MUCFA.

Algorithm 2 (SDTFA)

1. At the beginning of each phase, each output tries to
obtain its packet with the smallest departure time
from the input.

2. If more than one output request the same input,
then the input will grant to tha t output whose
packet has the smallest departure time. If there is
a tie between two or more outputs, then the output
with the smallest port number wins.

3. Outputs that lose such contention at an input will
try to obtain their packet with the next smallest de-
parture time from another (unmatched) input port.

4. When no more matching of inputs and outputs is
possible, packets are transferred and SDTFA goes

U to the next phases (Step 1).

Note that once the departure time D is assigned to
the packet upon arrival, i t will not change over t ime and
there is no need to update this value (as in the case for
urgency under the MUCFA) at the end of each time slot.
We will show that such extension not only simplifies the
original MUCFA in implementation for mimicking OQ
switch under FIFO scheduling, bu t it also sets the stage
for our design of scheduling algorit.hm using VTRS to
achieve the same performance as WFQ for end-to-end
delay guarantee (which will soon be made clear).

Theorem 3 A n N x N CIOQ switch operating under
SDTFA and speedup S 2 4, can behave identically t o a
FIFO OQ switch, regardless of input trafic patterns and

0 for arbitrary switch sire N .

The proof of Theorem 3 is almost identical to tha t for
Theorem 1, which is given in [ll].

Similarly, the SDTFA can be extended to the so-
called monotone scheduling policy as in the case of
MUCFA. The following definition of ezpecled departure
time (EDT) extends the definition for departure time
(D) and sets the stage to extend SDTFA for monotone
output scheduling policies.

Definition 4 The expected departure time, E D T p (t) ,
o f a packet p a t an t ime slot t is the time i t umld depart
from the switch if no new packets arrive to the switch
after t ime 1. 0

When the output scheduling policy is FIFO, the
E D T p (t) of packet p is the same as the its departure
time D and does not change at the end of each time slot.
This need not be the case in a general monotone output
scheduling policy since new packets may be pushed into
the output queue and take precedence over an existing
packet, causing its E D T to increase.

Let SDTFA-E be the algorithm that during any phase
of time slot t schedules the transfer of packets from in-
puts to outputs in exactly the same manner as SDTFA,
except for basing its scheduling decisions on a packet’s
expected departure time E D T instead of its departure
time U. Then we have the following theorem, which
extends Theorem 3.

Theorem 4 A n N x N CIOQ switch operating under
SDTFA-E and a speedup S 2 4 can behave identically to
an OQ switch employing a monotone output scheduling
policy, regardless of input traffic patterns and for arbi-
trary switch size N. 0

The proof of Theorem 4 is similar to the proof for
MUCFA-E (see [ll]) and is omitted here due to paper
length limitation.

4.2 Mimicking an OQ Switch with C$VC
Scheduling Policy

Lemma 1 Under VTRS, the core stateless virtual
0 clock (C, VC) scheduling policy is monotone.

Proof. Recall that under VTRS, CxVC scheduler ser-
vices packets in t h e order of their vidual finish time.
For any packet p l i k traversing the OQ switch S, let Gj’k

246

be the virtual time carried by pl’k as it enters S, and
dJXk = $ + Sjyk be its virtual delay. Then the virtual
finish time Firk of p i s k is given by G i > k + ~ $ 3 ~ . There-
fore, at the output port of an OQ switch, an arriving
packet is pushed into the appropriate location based on
its virtual finish time f i l l k while packets depart only from
front. Note that newly arriving packets cannot change
the position of the existing packet relative to another.
By Definition 2 for monotone scheduling policy, the lem-

The following is the scheduling algorithm used by
a CIOQ switch to mimic an OQ switch with CgVC
scheduling. As expected, this algorithm is almost iden-
tical to the SDTFA-E, except that it schedules pack-
ets based on their virtual finish time Yj i k instead of its
expected departure time E D T . We call this algorithm
smallest virtual finish time first algorithm (SVFTFA) so
as to distinguish it from SDTFA-E.

-_

mas is proved. 0

Algorithm 3 (SVFTFA)

1. At the beginning of each phase, each output tries
to obtain its packet with the smallest virtual finish
time from the input.

2 . If more than one output request the same input,
then the input will grant to that output whose
packet has the smallest virtual finish time. If there
is a tie between two or more outputs, then the out-
put with the smallest port number wins.

3. Outputs that lose such contention at an input will
try to obtain their packet with the next smallest
virtual finish time from another (unmatched) input
port.

4. When no more matching of inputs and outputs is
possible, packets are transferred and SVFTFA goes

0

There is a difference between SVFTFA and the
SDTFA-E. Under the SDTFA-E, the expected departure
time E D T (t) is used by the monotone scheduler for the
shadow OQ switch and packet will depart precisely at
E D T (t) if no new packets arrive at time 2 . But CqVC
uses virtual finish time i i i i k for scheduling and the ac-
tual packet departure time fi,k, in general, is not the
same as the packet’s virtual finish time Cjik, but rather,
flyk _< f i j z k + F. However, this does not cause any
problem for SVFTFA in a CIOQ switch to mimic an
OQ switch with CgVC scheduler since both Cg V C and
SVFTFA use the same virtual finish time in scheduling
and thus the relative ordering of packets is the same un-
der both schedulers.

to the next phases (Step 1).

A .

Theorem 5 An N x N CIOQ switch operating under
SVFTFA and speedup S 2 4, can behave identically t o
a C$ V C OQ switch, regardless of input traffic patterns
and for arbitrary switch size N. 0

The proof of Theorem 5 is almost identical to that
for Theorem 3 and is omitted here due to paper length
constraint.

4.3 Equivalence of CsVC and WFQ for OQ
Switch in Providing End-to-end Delay
Guarantee

Recall that the VTRS provides a unifying framework
to formalize the per-hop behavior of a core switch or
router and to quantify its ability to provide delay guar-
antees. Under VTRS, the scheduling mechanism of the
core router can be abstracted into a scheduling blackbox
characterized by an error term. Such simple abstraction
enabled us to derive end-to-end delay bounds for flows
traversing an arbitrary concatenation of such schedul-
ing blackboxes. Furthermore, the VTRS is a unifying
scheduling framework that can accommodate both core
stateless and stateful scheduling algorithms.

1. The VTRS can be used t o design new core state-
less scheduling algorithm where the VTRS (more
precisely, the virtual finish time) is directly used in
packet scheduling, e.g., C$VC.

2 . In the case when the VTRS is not used in packet
scheduling in stateful scheduling algorithms, e.g.,
WFQ, the switch performs a per-hop virtual time
update mechanism to maintain the continual pro-
gression of the virtual time embodied in the packet
virtual time stamps. In order words, the node up-
dates the virtual time in the packet header so that
the property of the virtual time is preserved for fu-
ture hops and thus provide end-to-end delay guar-
antee.

The following lemma shows that in terms of support-
ing end-to-end delay guarantee, a CsVC OQ switch has
the same performance as a WFQ OQ switch because
both of them have the same error term.

Lemma 2 In terms of providing end-io-end d e l a y
guarantee, under the V T R S , an OQ switch employing the
Cg VC scheduling algorithm has the same performance as
an OQ switch employing the WFQ scheduling algorithm.
0

Proof. Since under the VTRS, both the CgVC and the
WFQ have the same error term \E = L*zmaX/C, an OQ
switch employing either CgVC or WFQ will contributes
the same worst case per-hop delay. Therefore, in terms of
overall end-to-end delay performance, an OQ switch with
CgVC scheduling algorithm has the same performance

0

Note that although the worst case delay performance
of an OQ switch is the same under either the CgVC
scheduler or WFQ scheduler, the output processes of the
switch, in general, are not identical.

4.4 Main Result

ready to present the following main result.

as an OQ switch under WFQ.

With the above results in this section, we are now

Theorem 6 In terms of providing end-to-end de lay
guarantee, an N x N CIOQ switch operating under
SVFTFA using V T R S and speedup S 2 4 has the
same performance as an OQ switch employing the WFQ
scheduling algorithm.

247

Proof. The theorem is proved by combining Theorem 5
and Lemma 2. 0

Note that Theorem 6 does not, in general, guarantee
a CIOQ switch to behave iden t i ca l l y to an OQ switch un-
der WFQ scheduling. Although the CIOQ switch under
SVFTFA can mimic an OQ switch with C9VC scheduler
(i.e., behave identically), an OQ switch with CsVC does
not, in general, have identical behavior as an OQ switch
with WFQ scheduler. In this regard, one might be a
little bit disappointed as our original design objective is
to find a practical implementation for a CIOQ switch to
behave identically to an OQ switch with WFQ sched-
uler. But we point out that the ultimate objective for
an OQ switch employing WFQ scheduler is to provide
end-to-end delay guarantee and in this regard, we have
succeeded since the CgVC scheduler under VTRS pro-
vides the same end-to-end delay guarantee as the WFQ
scheduler.

5 Concluding Remarks
The CIOQ switching architecture has been proposed

as a solution to meet the high speed switching and QoS
requirements for Internet core nodes. However, many
of the existing QoS scheduling algorithms for a CIOQ
ewit.ch cannot be practically implemented due to prob-
lems such as scalability and complexity.

This paper showed how t.he v i rha l time reference sys-
tem (VTRS) can be applied to packet scheduling in a
CIOQ switch. The VTRS is a unifying scheduling frame-
work to provide scalable support for guaranteed services.
In the context of packet scheduling for a CIOQ switch,
we showed that the use of VTRS can eliminate both
the scalability and complexity problems associated with
existing scheduling algorithms in the literature. More
important, we showed tha t in term of providing end-to-
end guaranteed services, packet scheduling for a CIOQ
switch using VTRS has the same performance as an out-
put queued (OQ) switch employing weighted fair queue-
ing (WFQ) scheduler.

Acknowledgments
We wish to thank Dr. Toshitaka Tsuda and Dr. Iwao

Toda of Fujitsu Laboratories Ltd., Kawasaki, Japan, for
their support in our work. Y. T. Hou thanks Prof. Balaji
Prabhakar and Shang-Tse Chuang of Stanford Univer-
sity for discussions on matching output queueing with a
combined input/output queued switch.

References

[I] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated services,”
RFC 2475, Internet Engineering Task Force, Dec. 1998.

[2] R. Braden, D. Clark and S. Shenker, “Integrated ser-
vices in the Internet architecture: an overview,” RFC
1633, Internet Engineering Task Force, July 1994.

[4] D. Clark, S. Shenker and L. Zhang, “Supporting real-
time applications in an integrated services packet net-
work: architecture and mechanisms,” Proc. ACM SIG-
COMM, August 1992, Baltimore, MD.

[5] A. Demers, S. Keshav and S. Shenker, “Analysis and
simulations of a fair queueing algorithm,” in Proc. ACM
SIGCOMM, Austin, TX, Sept. 1989, pp. 1-12.

[6] N. Figueira and J. Pasquale, “An upper bound on de-
lay for the virtual clock service discipline,” IEEE/ACM
Trans. on Networking, vol. 3, no. 4, pp. 399-408, Au-
gust 1995.

[7] M. Karol, M. G. Hluchyj and S. P. Morgan, “Input
vs. output queueing on a space-division packet switch,”
IEEE Trans. on Commun., vol. 35, no. 12, pp. 1347-
1356, Dec. 1987.

[8] N. McKeown, “The SLIP scheduling algorithm for
IEEE/ACM Trans. on Net- input-queued switches,”

working, vol. 7, no. 2, pp. 188-201, April 1999.

[9] A. K. Parekh and R. G. Gallager, “A generalized pro-
cessor sharing approach to flow control in integrated
services networks: the single-node case,” IEEE/A CM
Trans. on Networking, vol. 1, no. 3, pp. 344-357, June
1993.

[lo] A. K. Parekh and R. G. Gallager, “A generalized proces-
sor sharing approach to flow control in integrated ser-
vices networks: the multiple node case,” IEEE/A CM
Trans. on Networking, vol. 2, no. 2, pp. 137-150,
April 1994.

[Il l B. Prabhakar and N. McKeown, “On the speedup re-
quired for combined input and output queued switch-
ing,” Automatica, vol. 35, issue 12, pp. 1909-1920,
Dec. 1999.

[12] S. Shenker, C. Partridge and R. Guerin, “Specification
of guaranteed quality of service,” RFC 2212, Internet
Engineering Task Force, Sept. 1997.

[13] D. Stiliadis and A. Varma, “Latency-rate servers: A
general model for analysis of traffic scheduling algo-
rithms,” IEEE/ACM Trans. on Networking, vol. 6,
no. 5, pp. 611-624, Oct. 1998.

[14] I. Stoica and H. Zhang, “Providing guaranteed ser-
vices without per flow management,” Proc. ACM SIG-
COMM, Sept. 1999, Cambridge, MA

[15] Z.-L. Zhang, Z. Duan and Y. T. Hou, “Virtual time
reference system: a unifying scheduling framework for
scalable support of guaranteed services,” submitted to
IEEE J. on Select. Areas in Commun. (special issue on
Internet QoS).

[3] S.-T. Chuang, A. Goel, N. McKeown and B. Prab-
hakar, “Matching output queueing with a combined
inputjoutput-queued switch,” IEEE J . Select. Areas in
Commun., vol. 17, no. 6, pp. 1030-1039, June 1999.

248

