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Abstract 
There i s  an increasing demand for  Internet core nodes 

to  have (I) quality-of-service (QoS) guarantees and (2) 
higher switching capacity. The combined input and out- 
put queued (CiOQ) switching has been shown to be a 
promising solution to  meet such demand. However, 
many of the proposed scheduling algorithms fo r  a CIOQ 
switch cannot be practically implemented due to prob- 
lems from scalability and complexity. This paper shows 
how the virtual t ime reference system ( V T R S )  proposed 
in [15] can be applied to  packet scheduling in  a CIOQ 
switch. The V T R S  is a unifying scheduling framework 
to  provide scalable support f o r  guaranteed services. i n  the 
context of packet scheduling fo r  a CIOQ switch, we show 
that the use of V T R S  can eliminates both the scalabil- 
i t y  and complexity problems associated with many of the 
scheduling algorithms proposed in the literature. More 
important, we show that in  term of of providing end-to- 
end guaranteed service, packet scheduling using V T R S  
for  a CIOQ switch has the same performance as an out- 
put queued (OQ) switch employing weighted fair queue- 
ing (WFQ) scheduler. 
Key Words: Packet switching; Scheduling; QoS; Guaran- 
teed service; Weighted fair queueing; Scalability 

1 Introduction 
The Internet backbone is facing two problems simul- 

taneously: (1) there is a need to introduce guaranteed 
QoS, and (2  there is a need for faster switching infras- 

switches using the so-called output-queueing,’ which is 
employed by many commercial switches and routers to- 
day. This approach is known to achieve the throughput 
of the switch to 100%. Furthermore, powerful scheduling 
algorithms (e.g., WFQ [5, 91) can be placed at the out- 
put port and thus provide QoS guarantee. But output 
queueing for an N x N switch requires the switching fab- 
ric and memory to run N times as fast as the line rate. 
This is impractical to design high speed switches (e.g., 
terabit switch) since memories with sufficient bandwidth 
are simply not available at such high speed. 

To build faster switches, an input-queued (IQ) switch 
architecture can be employed since the fabric and mem- 
ory of an IQ switch need only run as fast as the line 

tructure. T h e first problem can be solved by building 
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rate. Furthermore, it has been shown that  by using a 
scheme known as vzrtual output queuezng (VOQ 
possible to  eliminate entirely the so-called hea h2, -of-lzne it is 
(HOL) blocking problem3 associated with an IQ switch. 
However, i t  remains to be seen how an IQ switch without 
any speedup can guarantee QoS. 

Recently, it has been shown that  it is possible to use 
a combined znput and output port queued (CIOQ) switch 
with a small speedup (e.g., 2-4) to provide guaranteed 
&OS [3, 111. Under such architecture, buffers are em- 
ployed at  both the input ports and output ports and the 
switch can remove up to S (1 5 S 5 N )  packets from 
each input and deliver up to  S packets to each output 
within a time slot, where a time slot is the time between 
packet arrival a t  input ports. I t  has been shown in [3, 111 
that  with a small speedup (e.g., 2-4), a CIOQ switch can 
behave zdentzcally to an OQ switch for all types of traffic. 
Here, “behave identically” means that,  when the same 
inputs are applied to both the OQ switch and to the 
CIOQ switch, the corresponding output processes from 
the two switches are completely indistinguishable. 

Although the algorithms presented in [3, 111 theoret- 
ically enable a CIOQ switch with a small speedup to 
mimic an OQ switch with WFQ scheduling algorithm, 
in practice, such algorithms may not be implementable 
for the following two problems: (1) it is not scalable 
(and thus not feasible) to maintain per-flow QoS state 
in a high speed CIOQ switch to mimic an OQ switch 
with WFQ scheduler, and (2) even if i t  were feasible to  
maintain per-flow state at the CIOQ switch, the calcula- 
tion of departure time for scheduling in a CIOQ switch 
in [3, 111 requires complex communication among var- 
ious input and output ports, which is simply not im- 
plementable for a switch operating at very high speed. 
Therefore, t,here is a need to design an implementation- 
friendly scheduling algorithm for a CIOQ to guarantee 
QoS. 

This paper shows how to use a novel vzrtual t ime ref- 
erence system (VTRS) proposed by Zhang et. a1 [15] 
to  perform packet scheduling in a CIOQ switch and to  
achieve end- t 0- end &OS guarantee. 

The VTRS extends the work of Stoica and Zhang [14] 
and is a a unzfyzng scheduling framework t o  provide scal- 
able support for guaranteed services. In the same way 
that  the WFQ reference system relates to  the Integrated 
Services (IntServ) architecture [2, 41, the VTRS is de- 
signed as a conceptual framework upon which guaran- 
teed services [12] can be implemented in a scalable man- 

’VOQ refers that each input maintains a separate queue for 
each output [SI. 

3HOL blocking refers that if each input port maintains a single 
FIFO, the throughput of an IQ switch is limited to just 58.6% 
(under uniform traffic) [7]. 



ner using the Differentiated Services (DifTServ) paradigm 
[l]. More specifically, the VTRS provides a unifying 
framework to characterize, in terms of their abilities to 
provide delay and bandwidth guarantees, both the per- 
hop behaviors of core routers and the end-do-end prop- 
erdies of their concatenation. The key construct in the 
VTRS is the notion of packed virtual time stamps, which, 
as part of the packet state, are referenced and updated 
as packets traverse each core switch. A key property of 
packet virtual time stamps is that  they can be computed 
using solely the packet state carried by packets (plus a 
couple of fixed parameters associated with core routers). 
In this sense, the VTRS is core stateless, as no per-flow 
state is needed at  core routers for computing packet vir- 
tual time stamps. 

This paper shows that the VTRS can be applied to 
packet scheduling in a CIOQ switch and to  resolve both 
the scalability problem (associated with maintaining per- 
flow QoS state information a t  a switch) and the complex 
inter-port communication problem (encountered in cal- 
culating and updating departure time for each packet) 
associated with an CIOQ switch in [3, 111. More specifi- 
cally, the virtual jinish t ime associated with each incom- 
ing packet to a CIOQ switch can be used for scheduling 
in a CIOQ switch to  mimic a core stateless virtual clock 
(CgVC). The novelty and power of using virtual finish 
time associated with each packet under the VTRS is: 
virtual finish time can be calculated directly from the 
packet virtual time stamps carried in the packet and 
thus eliminates the needs of maintaining the per-flow 
QoS state information at a switch as well as the complex 
inter-port communications required to calculate/update 
packet departure time used in [3, 111. More important, 
since the CsVC has the same per hop delay performance 
as a WFQ, in terms of end-to-end delay guarantee, a 
CIOQ switch using virtual finish time for scheduling pro- 
vides the same performance as an OQ switch with WFQ 
scheduler. 

This rest of this paper is organized as follows. In 
Section 2, we outline the architecture of a CIOQ switch 
as well as some proposed packet scheduling algorithms. 
We show the implementation problems associated with 
scheduling in a CIOQ switch in order to mimic an OQ 
switch under WFQ scheduler. Section 3 presents the 
framework of VTRS. In Section 4, we show how to apply 
the VTRS for packet scheduling in a CIOQ switch and 
provide end-to-end QoS guarantee. Section 5 concludes 
this paper. 

2 Architecture of a CIOQ Switch 

2.1 Basic Architecture 
Consider a single stage, N x N CIOQ switch. Under 

VOQ, each input maintains a separate queue for packets 
destined for each output (see Fig. l(a) for an example 
3 x 3 crossbar CIOQ switch). For simplicity, we assume 
all input and output buffers have infinite capacity. Al- 
though packets arriving to the switch may have variable 
length, we will assume that they are treated internally 
as fixed length packets (or “cell”). This is common prac- 
tice in high performance switches; variable length pack- 
ets are segmented into fixed length cells at the input 
ports, transferred across the switch fabric as cells, and 
reassembled back into packets again at the output ports. 
For the ease of exposition, we assume all packets have 

I 

Figure 1: An example 3 x 3 crossbar CIOQ switch with 
S = 2 (a) and its reference OQ switch (b). 

the same fixed length a,nd we take the time between such 
fixed-length packet as the basic time unit. 

A scheduling algorithm selects a matching between in- 
puts and outputs in such a way that  each non-empty in- 
put is matched with at most one output and, conversely, 
each output is matched with at most one input. The  
matching is used to  configure the switch before packets 
are transferred from the input side to  the output side. 
A CIOQ switch with a speed up of S is able t o  make S 
such transfers each time slot. 

2.2 Mimicking FIFO OQ Switch 
In an OQ switch (see Fig. l (b)) ,  arriving packets are 

immediately forwarded to their corresponding outputs. 
This (1) ensures that  outputs never idle so long as there 
is a packet destined for them in the system, and (2) 
allows the departure of packets to  be scheduled (e.g., 
WFQ) to  meet delay constraints. In [ll], Prabhakar and 
McKeown presented a novel scheduling algorithm called 
the Most Urgeni Cell Fzrd Algorithm (MUCFA) for a 
CIOQ switch to mimic a FIFO OQ switch. They show 
that with a speedup of S = 4, an N x N switch operating 
under MUCFA can behave identically to a FIFO O Q  
switch, regardless of input traffic patterns and for any 
switch size N .  

A key aspect of MUCFA is the concept of the “ur- 
gency of a packet”, which is defined in reference to a 
shadow OQ switch (see Figure 1). With respect to  the 
OQ switch (Figure l (b )  each arriving cell to this switch 
is stamped with a num 6 er, which i s  its “urgency value” 
at that time. This number indicates the time from the 
present that  i t  will depart from the switch. At each suc- 
cessive time slot, the urgency value is decremented by 
one. When the value reaches zero, the cell will depart at 
the end of this time slot. If two packets a and b arriving 
at two different inputs a t  the beginning of the same time 
slot and both destine for the same output port, then the 
urgency of packet a ,  say ua,  is less than the urgency of 
packet b, say U,$, if and only if the number of the input 
port a t  which packet a arrives is less than the number 
of the input port at which packet b arrives. Tha t  is, the 
OQ switch is assumed to transfer packets from inputs 
to outputs in a round robin fashion starting with the 
smallest numbered input first. 

Now consider the CIOQ switch Figure 1 a)). By as- 
sumption, the same input is applie 6 6  to it an to the O Q  
switch. Thus for every packet p in the CIOQ switch, 
there is an exact copy in the OQ switch, which is re- 
ferred to  as the clone of p.  Therefore, packet p arrives 
a t  input i a t  time T and is destined for output j. Since 
the speedup 1 5 S 5 N ,  packet p may not be forwarded 
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to the output buffer j at  the end of time slot T .  Note 
that packet p may not be required at output j for some 
time, because its clone in the OQ switch may still be 
some distance from the HOL. Therefore, the urgency is 
an indication of how much time there is before packet p is 
needed at its output if the CIOQ switch is to mimic the 
behavior of the OQ switch. The following is the formally 
definition for urgency. 

Def in i t ion  1 The urgency of a packet in  a CIOQ 
switch a t  any t ime is the distance its clone is from the 
head of the output buffer in  the corresponding reference 
O Q  switch. 0 

The packets in any output buffer of the CIOQ switch 
are arranged in increasing order of urgencies, with the 
most urgent packet a t  the head. Once packet p is for- 
warded to its output in the CIOQ switch, its position is 
determined by its urgency. 

Algorithm 1 (MUCFA) 

1. At the beginning of each phase4, each output tries 
to obtain its most urgent packet from the input. 

2. If more than one output request the same input, 
then the input will grant t o  that  output whose 
packet has the smallest urgency value. If there is 
a tie between two or more outputs, then the output 
with the smallest port number wins. 

3. Output that lose such contention at  an input will 
try to  obtain their next most urgent packet from 
a.nother (unmatched) input port. 

4. When no more matching of inputs and outputs is 
possible, packets are transferred and MUCFA goes 

0 

Theorem 1 A n  N x N CIOQ switch operating under 
MUCFA and speedup 5’ 2 4, can behave identically to  a 
FIFO OQ switch, regardless of input traffic patterns and 

0 

to the next phases (Step 1). 

for arbitrary switch size N .  

The proof of Theorem 1 can be found in [ll]. 

2.3 From FIFO to WFQ 
The MUCFA can be used to  mimic an OQ switch 

employing a wider range of output scheduling policies 
than just FIFO. Essentially, the extension to these non- 
FIFO scheduling policies involves very little change to 
the basic structure of MUCFA. 

The MUCFA can be extended to  the so-called mono- 
ton,e scheduling policy, which is defined as follows. 

Def in i t ion  2 A n  output scheduling policy is said to 
be monotone ifi once it has been determined, the rela- 
tive departure order of any two packets p and q does not 
change over lime. 0 

4For a CIOQ switch with speedup S, a time slot is said to be 
divided into S equal phases. During each phase Q i ,  1 5 i 5 S, the 
switch can remove at most one packet from each input port and 
can transfer at most one packet to each output port. It is assumed 
that packets arriving at the switch input ports will do so at the 
beginning of phase 41, while departures from the switch output 
ports take place at the end of phase 4s. 

A simple way of visualizing this class of output 
scheduling policies is to imagine a single “push-in” queue 
a t  the output, where an arriving packet may be pushed 
into any location but packets may depart only from front. 
Note that newly arriving packets may increase the ab- 
solute departure time of an existing packet, bu t  cannot 
change the position of the existing packet relative to  an- 
other. The importance of the class of monotone policies 
is that  i t  includes several policies that  are commonly 
used to provide QoS guarantees (e.g., WFQ). 

The following definition of expected urgency (EU)5 ex- 
tends the definition for urgency and sets the stage to  ex- 
tend MUCFA for monotone output scheduling policies. 

Def in i t ion  3 The expected urgency, EU,( t ) ,  of a 
packet p at an t ime slot t as the time from the present 
that it would depart from the switch if no new packets 

0 arrive to the switch after t ime t .  

When the output scheduling policy is FIFO, the 
EU,(t) of packet p is the same as the its urgency. For 
FIFO output scheduling policies EU, ( 2 )  decreases ex- 
actly by one every time slot. This need not be the case 
under a general monotone output scheduling policy since 
new packets may be pushed into the output queue and 
take precedence over an existing packet, causing its EU 
t o  zncrease. 

Let MUCFA-E be the algorithm that during any 
phase of time slot t schedules the transfer of packets 
from inputs to outputs in exactly the same manner as 
MUCFA, except for basing its scheduling decisions on 
a packet’s expected urgency EU instead of its urgency 
U .  I t  have been shown that  MUCFA-E may be used in a 
CIOQ switch with a speed of S 2 4 to behave identically 
to an OQ switch employing any monotone scheduling 
policy [I I]. 

2.4 Implementation 

There are two components in implementing the 
MUCFA for CIOQ switch: (1) The process of match- 
ing inputs and outputs for transferring packets, and (2) 
Determining the urgency of an  arriving packet. Regard- 
ing the first problem, i t  has been shown in [ll] that for 
an N x N CIOQ switch employing MUCFA and an in- 
ternal speedup of at least 4, the number of iterations 
required to  match inputs and outputs in each phase is 
never more than N .  

As for the second problem, i t  is not surprising that  the 
difficulty of inferring the urgency depends on the output 
scheduling policy of the reference OQ switch. For the 
simple FIFO (and strict priority scheduling), the imple- 
mentation is straightforward and can be practically im- 
plemented. But the difficulty quickly changes when it 
comes to other scheduling policy such as WFQ, which 
we elaborate as follows. 

5Actually, the term “expected departure time” instead of “ex- 
pected urgency” is used in [I l l .  In order to avoid confusion with 
our own definition of “expected departure time” in this paper, we 
opt to use the term “expected urgency.” 
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Figure 2: A conceptual network model for VTRS. 

Edge conditioner t 

Figure 3: Edge conditioning (or shaping) and its effect 
in the VTRS. 

2.4.1 An Open Problem 

The implementation of MUCFA-E for a CIOQ switch to 
mimic an OQ switch under WFQ scheduler face the the 
following two problems: (1) i t  is not scalable (and thus 
may not be feasible) to  maintain per-flow QoS state at a 
high speed CIOQ switch, and (2) even if it were feasible 
to maintain per-flow state at the switch, the calcula- 
tion of departure time for scheduling in a CIOQ switch 
in [3, 111 requires complex communication among var- 
ious input and output ports, which is simply not im- 
plementable for a switch operating a t  very high speed. 
Therefore, there is a need to  design an implementation- 
friendly scheduling algorithm for a CIOQ to guarantee 
QoS . 

3 Virtual Time Reference System 
3.1 Basic Architecture 

The VTRS is defined and implemented within a single 
administrative domain. Conceptually, the VTRS con- 
sists of three logical components (see Figs. 2,  3 and 4): 
packet state carried by packets, edge  traffic condition- 
ing at the network edge, and per-hop virtual time refer- 
ence/update mechanism at  core switches or routers (e.g., 
CIOQ switch). The packet state carried by a packet 
contains three types of information: (1) QoS .reservation 
information of the flow the packet belongs to (e.g., the 
reserved rate of the flow); (2) a virtual time stamp of the 
packet; and (3) a virtual time adjustment term. 

We summarize the important notation used in the pa- 
per as follows. 
General Notation 
p l i k :  the kth packet of flow j 
L J ! k :  packet length of plvk 
Li,max: maximum packet length of flow j 
L*,max. . maximum packet length of all flows at a node 
r j :  reserved rate of flow j 
h: number of hops (nodes) along the path of flow j 

I 

1 I 
Mllu ;i lime 

Figure 4: A schematic of VTRS: (a) Virtual time refer- 
ence/update mechanism; and (b) Virtual traffic shaping. 

Notation for the Ideal Per-Flow System 
a ivk :  arrival time of packet plvk at node i 
f i ' k :  finish time of packet p l i k  at node i 
A{Ik: cumulative queueing delay packet pl i k  experienced 
up to server i (inclusive) 

Notation for the Virtual Time Reference System 
G!'k :  virtual time s tamp of packet p l > k  a t  node i 
fii'k: virtual finish time of packet p l j k  at node i 
6jrk:  virtual time adjustment term for packet pT,k :  d l k  = 

ii'k: virtual delay of packet at node i: iirk = F ; l k  - 

t i i l k :  actual time packet p l y k  arrives at node i 
j j r k :  actual time packet plrk departs from node i 
!Vi: error term of scheduling blackbox at node i 
ai,i+l: propagation delay from the i th node to the (i + 
1)th node 

Edge traffic conditioning ensures that  traffic of a flow 
will never be injected in to  the network core at, a rate 
exceeding its reserved rate (see Fig. 3) .  Formally, for a 
flow j with a reserved rate r3, the inter-arrival time of 
two consecutive packets of the flow is such that 

Gjrk 
2 

As a packet traverses each core router along the path 
of its flow, a virtual time stamp is "attached" to the 
packet. This virtual time stamp represents the arrival 
time of the packet a t  the core router in the virtual time, 
and thus i t  is also referred to as the virtual arrival time of 
the packet at the core router. The virtual time stamps 
associated with packets of a flow satisfy an important 
property, which we refer to  as the virtual spacing prop-  
erty as follows: 

for all IC. Comparing (2) with ( l ) ,  we see that with respect 
to the virtual time, the inter-arrival time spacing is pre- 
served at a core router. Another key property of packet 
virtual time stamps is that  at a core router the virtual 
arrival t ime of a packet always lags behind its real arrival 
time. This property (referred to  as the reality check con- 
dition) is important in deriving end-to-end delay bound 
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Ideal perflow reference system 

Figure 5: An ideal per-flow system. 

experienced by packets of a flow across the network core. 
The per-hop virtual time referencelupdate mechanism 
at  a core router is designed in such a manner so as to 
ensure that these properties of the packet virtual time 
stamps are satisfied at the entry point, and/or exit point 
of the core router (see the illustration in Fig. 4). 

Conceptually, for each packet traversing a core router, 
a vtrlualfinzsh tzme is computed and assigned to it. This 
virtual finish time is derived from its virtual time stamp 
and other packet state information. Intuitively, i t  repre- 
sents the time the packet finishes its service in an zdeal 
per-flow reference system, where the flow t o  which the 
packet belongs to  is the only flow serviced by the sys- 
tem. The per-hop behavzor of a core router as defined 
an terms of an upper bound on the dzfference between 
the actual departure tzme and vzrtual finzsh tame of a 
packet traversang the core router. This upper bound is 
referred to as the error term of the core router. There- 
fore, the scheduling mechanism of the core router can be 
abstracted into a schedulzng blackbox characterized by an 
error term. This simple abstraction enables us to  derive 
end-to-end delay bounds for flows traversing an arbitrary 
concatenation of such scheduling blackboxes. 

3.2 An Ideal Per-flow VTRS 

In this subsection we introduce the notion of packet 
virtual time stamps in the context of an ideal per-flow 
system. The VTRS defined in this context will then be 
extended in the next section to  account for the effect of 
packet scheduling in a real network system. 

Figure 5 illustrates an ideal per-flow system, where a 
regulated flow is serviced by a dedicated channel. The 
dedicated channel consists of a series of servers in tan- 
dem. Packets of a flow j are serviced in order from server 
1 to server h. For simplicity of exposition here, we as- 
sume that in this ideal per-flow system the propagation 
delay from one server to the next server is zero. (We 
will take into account of propagation delay in the next 
subsection.) For the purpose of this paper, we will only 
consider the so-called rate-based servers.6 A rate-based 
server has a service capacity equal to the reserved rate 
rj of flow j. Hence a rate-based server takes Lj>k/r j  
amount of time to process packet p l , k  of flow j. 

6 A  more general study including delay-based servers can be 
found in [15]. 

3.2.1 End-to-end Delay 

Let be the arrival time7 of packet p l , k  of flow j at 
the first server of the ideal per-flow system. Then the 
edge spacing condition holds, namely, - ajlk 1 2  
L j , k + l / r j  for IC = 1 , 2 , .  . .. For i = 1 , 2 , .  . . , h ,  let ailk 
denote the time packet p l i k  arrives a t  server Si, and f / l k  

the time it  leaves server i. In the ideal per-flow system, 
it is not hard to  see that the following recursive relation- 
ships among ajlk's and fi'kls hold. For any k = 1 , 2 , .  . ., 
ailk = fjLk1 i = 2 , .  . . , h ,  and 

1 hl 

where we have used the convention that fiSo = 0. 

For i = 1 , 2 , .  . ., h ,  let A i r k  denote the cumulative 
queueing delay experienced by packet plrk up to  server i 
(inclusive). Formally, A i t k  = f!,rc-(a{'k+i$). We can 
derive an important recursive relation, A{'k to  A{'"-' 
and the arrival times of packets plvk-l and p l i k  at the 
first-hop server as follows [15]: For any packet p l t k ,  IC = 
1 , .  . ., and i = 1 , 2 , .  . ., h ,  Ai t1  = 0 ,  and 

$3) 
The  importance of this relation lies in the fact that  or 
each p l p k l  AX'k can be calculated (recursively) at the net- 
work edge. 

Therefore, the end-to-end delay of packet 9,' in the 
ideal per-flow system is f i s k  - aivk = A i k  + h $ .  
In particular, i t  can be shown that  A t k  + h L j , k / r j  5 
h L j ) m a x / r j .  Thus, f i ' k  - ailk 5 h 7 .  

J *  

L'""' 

3.2.2 Packet Virtual Time Stamps 

The  key construct in the proposed VTRS is the notion 
of packet virtual time stamps. For i = 1 , 2 , .  . . , h ,  let 
denote the virtual time stamp associated with packet p l i k  
at server Si. Intuitively, we can regard C I j ' k  as the (vir- 
tual) arrival time of packet p l y k  at server S; according to  
the virtual tame. At server Si, packet p l , k  is also assigned 
a virtual finish t ime, denoted by fijlkl where C!>k 3 Gi". 
T h e  difference ijlk = f i f I k  - G:lk is referred to as the 
virtual delay associated with packet $ 2 '  at server S;. 

We postulate the following properties that  packet vir- 
tual time stamps (and the corresponding virtual finish 
times) of flow j must satisfy at each server Si. 

'Note that in order to model non-preemptive, non-cut-through 
network system, throughout the paper we adopt the following con- 
vention: a packet is considered to have arrived at a server o n l y  
when its last bit has been received, and it to have departed the 
server only when its last bit has been serviced. 
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Virtual Spacing: for b = 1,2,. . ., ~ i , ' + l  - ~;li" 2 
~ 3 > k + 1  
-. P3 

Reality Check: G f r k  2 where recall that a i r k  is 
t.he real time packet p l j k  arrives a t  server Si. 

Bounded Delay: f i ' k  = ; i l k ,  or more generally, f i I k  - 
is bounded from above. 

Core Stateless: the virtual time stamp & i l k  of each 
packet plyk can be calculated at each server Si us- 
ing solely the packet state information carried by 
the packet (possibly with some additional constant 
parameters associated with the server). 

In the following we provide a definition of packet vir- 
tual time stamps for the ideal per-flow system, and show 
that it satisfies all the four properties listed above. 

Consider the ideal per-flow system shown in Fig. 5 .  
For each packet pl", define = A i k / h .  For i = 
1 , 2 ,  . . . , h, the virtual delay i!lk associated with packet 

p l i k  at server Si is computed from the packet state in- 
formation using the following formula: 

At the first-hop server SI, the virtual time stamp of 
packet p l f k  is defined to be & i l k  = ai", which is the time 
packet p l , k  is injected to  the ideal per-flow system and ar- 
rives at SI. This value is inserted into the packet state of 
plyk at  the network edge. The corresponding virtual fin- 
ish time of p l j k  at server Si is given by C;lk = Gi" + iiSk. 

For i = 2, . . . , h, the virtual time stamp G{Ik and the 
corresponding virtual finish time i j i , k  associated with 
packet p l , k  at server Si are defined as follows: 

From the above definition, it is clear that the core state- 
less property holds trivially. It can be shown that the 
other three properties are also satisfied [15]. 

3.3 VTRS and Packet Scheduling in Real 
Network System 

To extend the VTRS defined in the context of ideal 
per-flow system to a network system where each core 
router is shared by multiple flows, we introduce a key 
notion called the error t e r m  of a core router (or rather, 
of its scheduling mechanism). 

Consider a flow j ,  whose path through a network core 
is shown in Fig. 2. Flow j has a reserved rate rj.  The 
traffic of flow j is regulated at the network edge such 
that for L = 1 , 2 , .  . ., 

(5) 

where is the actual time packet p l i k  of flow j arrives 
a t  the first router along its path, after being injected into 
the network core. 

As shown in Fig. 2, the path of flow j consists of h 
core routers, each of which employs certain scheduling 
mechanism to provide guaranteed service for flow j. For 
i = 1 , 2  ,..., h,  we will refer to the scheduler at core 
router i as a scheduling blackbox, and denote it by Si. 
In the following, we will first characterize the per-hop 
behavior of the scheduling blackboxes, and then show 
how end-to-end delay bounds can be derived based on 
this characterization of their per-hop behavior. 

3.3.1 Scheduling Blackbox 

For a rate-based scheduling blackbox Si, packet p l i k  of 
flow j is assigned a virtual delay 2:: = L j , k  rj + Si-'. 
Gjlk be the virtual time stamp associated with packet 
p l > k  as it enters Si. We will provide a definition for G{lk 
shortly and establish its properties. At this point, we 
only assume that the reality check condit ion holds at Si, 
namely, aiyk 5 bilk, where aitk is the actual time that  
packet p l i k  enters the scheduling blackbox S;. At Si, 
packet p l i k  is assigned a virtual finish time q7k, where 
c ; , k  = wi - i , k  Let f:,k denote the actual  time packet 
p l i k  departs S j ' k ,  i.e., f j Y k  is the real finish t i m e  of p l j k .  
We say that the scheduling blackbox Si can guarantee 
packets of flow j their virtual delays with an error  t e r m  
Vi, if for any k ,  

For any flow j traversing the scheduling black b ox Si, let 

fy 5 ;!J + Qi. 

In other words, each packet is guaranteed to depart the 
scheduling blackbox Si by the time + Q i  = i ; j ! k  I +  

By using the packet virtual finish time as a reference 
point to quantify the real finish time of a packet a t  a 
core router, we are able to  abstract and characterize the 
per-hop behavior of a core router via an error term. This 
error term captures the ability of the core router to  pro- 
vide guaranteed services to  a flow. 

J!rk + Q i .  

3.3.2 End-to-End Delay Bounds 

Consider the path of flow j shown in Figure 2. For 
i = 1 , 2 , .  . . , h ,  let Q i  be the error term associated with 
the scheduling blackbox Si. We now define i;!" and 
show that this definition satisfies the four requirements 
of packet virtual time stamps, namely, the vir tual  spacing 
property ,  the reality check condition, the bounded delay 
property  and the core s tateless  p roper t y .  Here in defining 
the reality check condition and bounded delay property, 
the quantities airk and f : ' k  defined in Section 3.2.2 are 
replaced by and E l k ,  which denote the real arrival  
t i m e  and real f inish t i m e  of packet p l i k  at Si, respec- 
tively. 

As in the ideal per-flow system, the virtual time stamp 
associated with packet p l i k  at the first-hop router SI is 
set to  its (real) arrival time, i.e., 
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Thus q ' , k  = ,$,k + Jj2k = 6 j - k  + Ji,k 

From (5), the virtual spacing property is clearly met 
at the first-hop router. Furthermore, the reality check 
condition also holds trivially. Therefore, by the defini- 
tion of Q1, we have 

,ji4 * .  

fl - 1 + @ l .  

For i = 1 , 2 , .  . ., h - 1, let ?~i,i+l denote the propaga- 
tion delay from the zth hop router Si to  the (i+ 1)th hop 
router &+I.  Then 

$fl = Zi,k fi + Ti,i+l. 

By the definition of @ i ,  we have 

ii!f1 5 zxk + Q i  + ?Ti,$+l. (6) 
In order to  ensure tha t  the reality check condition holds 
as packet enters the (i + 1)th hop router &+I ,  the 
relation (6) suggests that  the virtual time stamp Gi;"l 
associated with packet p l i k  at &+I  should be defined as 
follows: 

G j x k  t + l  - - vi - i , k  + Q i  + Xi, i+ l  = & ; I k  + (+k + Q i  + "i,i+l. (7) 

Then ajtl 5 Wjcl. 
Since @i's and ?~i,i+l 's  are fixed parameters associ- 

ated with the core routers and the path of flow j ,  i t  is 
clear that the packet virtual time stamps defined using 
(7) are core stateless. Namely, they can be computed 
at each core router using only the packet state informa- 
tion carried by the packets (in addition to the two fixed 
parameters associated with the routers and the flow's 
path). Thus no per-flow state needs to  be maintained at 
these core routers. 

Since @i + ? ~ i , i + l  is a constant independent of p l rk ,  
comparing the definition of G i P k  in (7) and that  in (4), 
i t  is easy to see that  the virtual spacing property also 
holds at each core router Si. Furthermore, we have 

G j , k  - ,jf,k 
t + l  - * + @i + Ti , i+ l  

i i 

q=l q = l  q=1 

In particular, we see that the bounded delay property 
holds, as 

h h h 

q = 1  q = l  q=2 

This completes the construction of packet virtual time 
stamps for flow j .  

Using the VTRS, the following end-to-end delay 
bound for flow j can be easily derived from the bounded 
delay property of packet virtual time stamps: 

i=l i = l  

i=l i = l  
,- 

This bound is analogous to those derived for fair- 
queuein /latency-rate-server based scheduling algo- 

where L*rma" is the maximum packet size permissible a t  
the ith router and Ci is its service capacity, then the 
above inequality yields precisely the same delay bound 
as is obtained for a flow in a network of WFQ schedulers 
[5, 101 (or Virtual Clock (VC) schedulers [SI). 
3.4 Core Stateless Virtual Clock Schedul- 

The notion of packet virtual time stamps can be used 
to  design new core stateless scheduling algorithms. For 
the purpose of this paper, we only show a particular rate- 
based core stateless scheduling algorithm and establish 
its error terms using the properties of packet virtual time 
stamps. 

A core stateless virtual clock (CyVC) scheduler S is a 
rate-based scheduler. I t  services packets in the order of 
their virtual finish time. For any packet 9pk traversing 
S, let G i , k  be the virtual time carried by 91' as i t  enters 
S, and J j i k  = $ + bjsk be its virtual delay. Then the 
virtual finish time iij3k of p l s k  is given by CIj'k + $ r k .  It 
can be shown that  the C3VC scheduler can guarantee 
each flow j its reserved rate ~j with the minimum error 
term QC,VC = L*,"""/C, provided that  an appropriate 
schedulability condition is met.  This fact is stated for- 
mally in the following theorem, the proof of which can 
be found in [15]. 

rithms f6, 10, 131. In particular, if Q i  = L*imaZ ICi,  

ing Algorithm 

Theorem 2 Consider N Pows traversing a Cy VC 
scheduler S such that the schedulability condition 
Cy=, rj 5 C is satisfied. Suppose that bjgk 5 CIivk for  
any packet p l $ k  of flow j ,  j = 1 , 2 , .  . ., N .  Then 

In other words, Q\kc,vc = F. 0 

3.5 Latency-Rate Servers and the VTRS 
The VTRS framework does not exclude the use of 

statefu1 scheduling algorithms, namely, those schedul- 
ing algorithms that  maintain per-flow state information 
in order to provide guaranteed services. To accommo- 
date these stateful scheduling algorithms into the VTRS 
framework, it suffices to  identify the error term incurred 
by these stateful scheduling algorithms. As an  example 
to show how this can be done generally, we consider the 
class of scheduling algorithms introduced in [13]-the 
latency-rate servers. This class encompasses virtually 
all known fair-queueing algorithms and its variations. I t  
can be shown that  any latency-rate server with a latency 
Oj (with respect to  flow j )  has an error term such that 

For several well-known scheduling algorithms studied 
in [13], i t  can actually be shown that  \E = Oj - F. 
In particular, Oj for PGPS/WFQ, VC, FFQ and SPFQ 
are all % + % and each has the error term of 

\k 5 03. 

, m a r  m o t  

L'*m- 
c .  
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4 Using VTRS for Scheduling in a CIOQ 
Switch 

In this section, we show how to apply the VTRS for 
packet scheduling in a CIOQ switch so as to resolve both 
the the scalability problem and complex inter-port com- 
munication problems encountered in [3, 111. More im- 
portant, we show that  in terms of providing end-to-end 
guaranteed service [12] , packet scheduling using VTRS 
in a CIOQ switch has the same performance as an OQ 
switch using WFQ scheduler. 

4.1 Extension of MUCFA 
Now let’s revisit the MUCFA in Algorithm 1. Recall 

that the MUCFA is a scheduling algorithm used by a 
CIOQ switch to mimic an OQ switch with FIFO schedul- 
ing. 

Under the MUCFA, the urgency of each packet, say 
U, is decremented by one at  the end of each time slot. 
Denote T the current time slot for U, then using U + 
T instead of U for scheduling in MUCFA would yield 
the same outcome as the original MUCFA because this 
merely adds the same current T for all packets in the 
switch. 

Denote D as the departure time of the packet and let 
TA and lJA be the arrival tzme and urgency upon arrival 
of the packet, respectively. In order words, UA is the 
urgency of the packet upon arrival a t  time TA. I t  is easy 
to see that the following relation holds: 

D = T A + U A  = T 3 - U .  

The above is true since (I) time T is incremented by 1 at 
the end of each time slot while urgency U is decremented 
by 1 at the end of each time slot, and (2) T and U starts 
with TA and U A ,  respectively, upon the packet’s arrival 
to  the switch. 

With the above discussion, it is clear that  we can 
use a slightly variant of the original MUCFA to per- 
form scheduling in a CIOQ switch and yields identical 
output behavior as an OQ switch with FIFO schedul- 
ing policy. The following is the slightly extended version 
of MUCFA, which we call smallest departure t ime first 
algorithm (SDTFA) so as to distinguish it from MUCFA. 

Algorithm 2 (SDTFA) 

1. At the beginning of each phase, each output tries to  
obtain its packet with the smallest departure time 
from the input. 

2. If more than one output request the same input, 
then the input will grant to tha t  output whose 
packet has the smallest departure time. If there is 
a tie between two or more outputs, then the output 
with the smallest port number wins. 

3. Outputs that lose such contention at an input will 
try to obtain their packet with the next smallest de- 
parture time from another (unmatched) input port. 

4. When no more matching of inputs and outputs is 
possible, packets are transferred and SDTFA goes 

U to  the next phases (Step 1). 

Note that once the departure time D is assigned to 
the packet upon arrival, i t  will not change over t ime and 
there is no need to  update this value (as in the case for 
urgency under the MUCFA) at the end of each time slot. 
We will show that such extension not only simplifies the 
original MUCFA in implementation for mimicking OQ 
switch under FIFO scheduling, bu t  it also sets the stage 
for our design of scheduling algorit.hm using VTRS to 
achieve the same performance as WFQ for end-to-end 
delay guarantee (which will soon be made clear). 

Theorem 3 A n  N x N CIOQ switch operating under 
SDTFA and speedup S 2 4, can behave identically t o  a 
FIFO OQ switch, regardless of input trafic patterns and 

0 for  arbitrary switch sire N .  

The proof of Theorem 3 is almost identical to tha t  for 
Theorem 1, which is given in [ll]. 

Similarly, the SDTFA can be extended to  the so- 
called monotone scheduling policy as in the case of 
MUCFA. The following definition of ezpecled departure 
time (EDT) extends the definition for departure time 
( D )  and sets the stage to extend SDTFA for monotone 
output scheduling policies. 

Definition 4 The expected departure time, E D T p ( t ) ,  
o f  a packet p a t  an t ime slot t is the time i t  umld depart 
from the switch if no new packets arrive to the switch 
after t ime 1.  0 

When the output scheduling policy is FIFO, the 
E D T p ( t )  of packet p is the same as the its departure 
time D and does not change at the end of each time slot. 
This need not be the case in a general monotone output 
scheduling policy since new packets may be pushed into 
the output queue and take precedence over an existing 
packet, causing its E D T  to  increase. 

Let SDTFA-E be the algorithm that  during any phase 
of time slot t schedules the transfer of packets from in- 
puts to  outputs in exactly the same manner as SDTFA, 
except for basing its scheduling decisions on a packet’s 
expected departure time E D T  instead of its departure 
time U.  Then we have the following theorem, which 
extends Theorem 3. 

Theorem 4 A n  N x N CIOQ switch operating under 
SDTFA-E and a speedup S 2 4 can behave identically to 
an OQ switch employing a monotone output scheduling 
policy, regardless of input traffic patterns and for  arbi- 
trary switch size N. 0 

The proof of Theorem 4 is similar to  the proof for 
MUCFA-E (see [ll]) and is omitted here due to  paper 
length limitation. 

4.2 Mimicking an OQ Switch with C$VC 
Scheduling Policy 

Lemma 1 Under VTRS, the core stateless virtual 
0 clock (C, VC) scheduling policy is monotone. 

Proof. Recall that  under VTRS, CxVC scheduler ser- 
vices packets in t h e  order of their vidual finish time. 
For any packet p l i k  traversing the OQ switch S,  let Gj’k  
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be the virtual time carried by pl’k as it enters S, and 
dJXk = $ + Sjyk be its virtual delay. Then the virtual 
finish time Firk of p i s k  is given by G i > k  + ~ $ 3 ~ .  There- 
fore, at the output port of an OQ switch, an arriving 
packet is pushed into the appropriate location based on 
its virtual finish time f i l l k  while packets depart only from 
front. Note that newly arriving packets cannot change 
the position of the existing packet relative to another. 
By Definition 2 for monotone scheduling policy, the lem- 

The following is the scheduling algorithm used by 
a CIOQ switch to mimic an OQ switch with CgVC 
scheduling. As expected, this algorithm is almost iden- 
tical to the SDTFA-E, except that it schedules pack- 
ets based on their virtual finish time Yj i k  instead of its 
expected departure time E D T .  We call this algorithm 
smallest virtual finish time first algorithm (SVFTFA) so 
as to distinguish it from SDTFA-E. 

-_  

mas is proved. 0 

Algorithm 3 (SVFTFA) 

1. At the beginning of each phase, each output tries 
to obtain its packet with the smallest virtual finish 
time from the input. 

2 .  If more than one output request the same input, 
then the input will grant to that output whose 
packet has the smallest virtual finish time. If there 
is a tie between two or more outputs, then the out- 
put with the smallest port number wins. 

3. Outputs that  lose such contention at an input will 
try to  obtain their packet with the next smallest 
virtual finish time from another (unmatched) input 
port. 

4. When no more matching of inputs and outputs is 
possible, packets are transferred and SVFTFA goes 

0 

There is a difference between SVFTFA and the 
SDTFA-E. Under the SDTFA-E, the expected departure 
time E D T ( t )  is used by the monotone scheduler for the 
shadow OQ switch and packet will depart precisely at 
E D T ( t )  if no new packets arrive at  time 2 .  But CqVC 
uses virtual finish time i i i i k  for scheduling and the ac- 
tual packet departure time fi,k, in general, is not the 
same as the packet’s virtual finish time Cjik, but rather, 
flyk _< f i j z k  + F. However, this does not cause any 
problem for SVFTFA in a CIOQ switch to  mimic an 
OQ switch with CgVC scheduler since both Cg V C  and 
SVFTFA use the same virtual finish time in scheduling 
and thus the relative ordering of packets is the same un- 
der both schedulers. 

to the next phases (Step 1). 

A .  

Theorem 5 An N x N CIOQ switch operating under 
SVFTFA and speedup S 2 4, can behave identically t o  
a C$ V C  OQ switch, regardless of input traffic patterns 
and for arbitrary switch size N. 0 

The proof of Theorem 5 is almost identical to that 
for Theorem 3 and is omitted here due to  paper length 
constraint. 

4.3 Equivalence of CsVC and WFQ for OQ 
Switch in Providing End-to-end Delay 
Guarantee 

Recall that  the VTRS provides a unifying framework 
to formalize the per-hop behavior of a core switch or 
router and to quantify its ability to provide delay guar- 
antees. Under VTRS, the scheduling mechanism of the 
core router can be abstracted into a scheduling blackbox 
characterized by an error term. Such simple abstraction 
enabled us to derive end-to-end delay bounds for flows 
traversing an arbitrary concatenation of such schedul- 
ing blackboxes. Furthermore, the VTRS is a unifying 
scheduling framework that  can accommodate both core 
stateless and stateful scheduling algorithms. 

1. The VTRS can be used t o  design new core state- 
less scheduling algorithm where the VTRS (more 
precisely, the virtual finish time) is directly used in 
packet scheduling, e.g., C$VC. 

2 .  In the case when the VTRS is not used in packet 
scheduling in stateful scheduling algorithms, e.g., 
WFQ, the switch performs a per-hop virtual time 
update mechanism to maintain the continual pro- 
gression of the virtual time embodied in the packet 
virtual time stamps. In order words, the node up- 
dates the virtual time in the packet header so that 
the property of the virtual time is preserved for fu- 
ture hops and thus provide end-to-end delay guar- 
antee. 

The following lemma shows that in terms of support- 
ing end-to-end delay guarantee, a CsVC OQ switch has 
the same performance as a WFQ OQ switch because 
both of them have the same error term. 

Lemma 2 In  terms of providing end-io-end d e l a y  
guarantee, under the V T R S ,  an OQ switch employing the 
Cg VC scheduling algorithm has the same performance as 
an OQ switch employing the WFQ scheduling algorithm. 
0 

Proof. Since under the VTRS, both the CgVC and the 
WFQ have the same error term \E = L*zmaX/C, an OQ 
switch employing either CgVC or WFQ will contributes 
the same worst case per-hop delay. Therefore, in terms of 
overall end-to-end delay performance, an OQ switch with 
CgVC scheduling algorithm has the same performance 

0 

Note that although the worst case delay performance 
of an OQ switch is the same under either the CgVC 
scheduler or WFQ scheduler, the output processes of the 
switch, in general, are not identical. 

4.4 Main Result 

ready to  present the following main result. 

as an OQ switch under WFQ. 

With the above results in this section, we are now 

Theorem 6 In  terms of providing end-to-end de lay  
guarantee, an N x N CIOQ switch operating under 
SVFTFA using V T R S  and speedup S 2 4 has the 
same performance as an OQ switch employing the WFQ 
scheduling algorithm. 
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Proof. The theorem is proved by combining Theorem 5 
and Lemma 2. 0 

Note that Theorem 6 does not, in general, guarantee 
a CIOQ switch to behave iden t i ca l l y  to an OQ switch un- 
der WFQ scheduling. Although the CIOQ switch under 
SVFTFA can mimic an OQ switch with C9VC scheduler 
(i.e., behave identically), an OQ switch with CsVC does 
not, in general, have identical behavior as an OQ switch 
with WFQ scheduler. In this regard, one might be a 
little bit disappointed as our original design objective is 
to find a practical implementation for a CIOQ switch to  
behave identically to an OQ switch with WFQ sched- 
uler. But we point out that  the ultimate objective for 
an OQ switch employing WFQ scheduler is to provide 
end-to-end delay guarantee and in this regard, we have 
succeeded since the CgVC scheduler under VTRS pro- 
vides the same end-to-end delay guarantee as the WFQ 
scheduler. 

5 Concluding Remarks 
The CIOQ switching architecture has been proposed 

as a solution to  meet the high speed switching and QoS 
requirements for Internet core nodes. However, many 
of the existing QoS scheduling algorithms for a CIOQ 
ewit.ch cannot be practically implemented due to  prob- 
lems such as scalability and complexity. 

This paper showed how t.he v i rha l  time reference sys- 
tem (VTRS) can be applied to  packet scheduling in a 
CIOQ switch. The  VTRS is a unifying scheduling frame- 
work to provide scalable support for guaranteed services. 
In the context of packet scheduling for a CIOQ switch, 
we showed that the use of VTRS can eliminate both 
the scalability and complexity problems associated with 
existing scheduling algorithms in the literature. More 
important, we showed tha t  in term of providing end-to- 
end guaranteed services, packet scheduling for a CIOQ 
switch using VTRS has the same performance as an out- 
put queued (OQ) switch employing weighted fair queue- 
ing (WFQ) scheduler. 
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