
MPEG-4 COMPRESSED VIDEO OVER THE INTERNET
Dapeng Wu* Yiwei Thomas Hout Wenwu Zhu$ Ya-Qin Zhangs H. Jonathan Chao*

* Polytechnic University, Brooklyn, NY, USA
t Fujitsu Laboratories of America, Sunnyvale, CA, USA

$ Bell Laboratories, Holmdel, NJ , USA
§ Microsoft Research, Beijing, China

ABSTRACT

This paper focuses on transport issues of MPEG-4 video
over the Internet. Specifically, we present a packetization
algorithm for MPEG-4 bit streams at the sync layer and
an end-to-end feedback control mechanism. Our packeti-
zation algorithm achieves both efficiency and robustness
by exploiting the unique video object plane (VOP) fea-
ture in MPEG-4 while our feedback control algorithm is
capable of estimating available network bandwidth based
on the packet loss information at the receiver. Simulation
results demonstrate that once our algorithms are employed
by an adaptive MPEG-4 encoder, MPEG-4 video is able
to achieve good perceptual picture quality a t the receiver
under low bit rate and varying network conditions and effi-
ciently utilize network resources.

1. INTRODUCTION

MPEG-4 video is the new international standard designed
to establish a flexible content-based visual environment [3] .
The design of MPEG-4 video is centered around a basic
unit of content called the visual object (VO). It is foreseen
that the MPEG-4 VO environment will be capable of ad-
dressing multimedia application areas ranging from conven-
tional storage and transmission of video to truly interactive
content-based video services.

Fundamental problems still remain on how to success-
fully support MPEG-4 video over the Internet. For exam-
ple, to date, the packetization process for MPEG-4 VOP
bit stream has not been adequately addressed [5]. Further-
more, it is not clear how MPEG-4 should adapt to varying
Internet conditions while still deliver good perceptual qual-
ity.

This paper addresses these two issues by presenting a
video packetization algorithm for MPEG-4 at the sync layer
and an end-to-end feedback control algorithm. Our pack-
etization algorithm achieves both efficiency and robustness
by exploiting the unique VOP concept in MPEG-4 video;
while our feedback control algorithm is capable of estimat-
ing available network bandwidth based on packet loss ratio
at the receiver. We show that once employed by an adaptive
MPEG-4 encoder, our algorithms are capable of transport-
ing MPEG-4 video over the network with good perceptual
quality under varying network conditions and utilizing net-
work resources efficiently.

Prior efforts on video packetization for the Internet in-
clude [7] for H.261, [8] for H.263, and [a] for MPEG1/2. But
these traditional video coding standards are frame-based
and may not be applicable to or optimal for MPEG-4. Re-
cent effort on RTP payload format for MPEG-4 elementary
streams was discussed in [5]. But it is not clear in [5] on
how to perform packetization for the MPEG-4 VOPs at the
sync layer before passing onto the RTP layer.

Previous work on feedback control for Internet video in-
clude [6]. Since this algorithm was specifically designed for
an H.261-like video, it cannot be applied directly to MPEG-
4. This paper extends the feedback control technique in [6]
for MPEG-4 video.

The remainder of this paper is organized as follows.
In Section 2, we present our packetization algorithm for
MPEG-4 VOP bit streams at the sync layer. Section 3
presents our feedback control algorithm. In Section 4, we
use simulations results to demonstrate the performance of
MPEG-4 video under our algorithms. Section 5 concludes
this paper.

2. A PACKETIZATION ALGORITHM

Figure 1 shows the packet format a t each layer at the end
system. At the sender side, the Compression Layer com-
presses the visual information and generates Elementary
Streams (ESs), which contain the coded representation of
the visual objects (VOs). The ESs are packetized at sync
layer (SL) with timing and synchronization information,
as well as fragmentation and random access information.
The SL-packetized streams are multiplexed into a FlexMux
stream at the TransMux Layer, which is then passed on to
the RTP/UDP/IP protocol stacks before being sent to the
Internet. At the receiver side, the video stream is processed
in the reversed manner before its presentation.

To date, the packetization process for MPEG-4 video
ES at the sync layer has not been adequately addressed [5].
An appropriate packetization algorithm at this layer is es-
sential for the optimal transport of MPEG-4 video over the
Internet. In this section, we present a sync layer packeti-
zation algorithm that offers both efficiency and robustness
for Internet transport.

It is clear that the use of large packet size will reduce
the the total number of generated packets and overhead.'

~

'The overhead is 50 bytes long, which consists of 3 bytes of

0-7803-5471-0/99/$10.0001999 IEEE

IV-327

TimuMui

(5 Internet

Figure 1: Data format at each processing layer at an end
system.

On the other hand, the packet size cannot be larger than
the path MTU, which is defined to be the minimum of the
MTUs along all the traversing links from the source to the
destination. This is because that any packet larger than
path MTU will result in IP fragmentation, which bring over-
head for each fragmented packet. To make things worse, loss
of one fragment packet will corrupt other fragment packets
within the original packet. Furthermore, for MPEG-4 video,
it is also not advisable to packetize the data that contain
information across two VOPs. With these considerations,
we choose packet size to be the minimum of the current
VOP size and the path MTU.2

When a VOP is too large to fit into a single packet, it is
necessary to break up the VOP into multiple segments and
use multiple packets for these segments. We try to minimize
both the number of packets generated for a given MPEG-4
bit stream and the dependency between adjacent packets.
The motivation for minimizing the number of packets was
the same as above (i.e. minimizing overhead); while the
motivation of minimizing the dependency between adjacent
packets is to mitigate the dependency of MPEG-4 decoder
on any lost packet. In particular, if the MPEG-4 VOP
header information is copied into each packet, such depen-
dency can be removed among the packets. Since the size of
a macro-block (MB) is always less than the path MTU,3 a
packet should be composed of a t least one MB.

Our packetization strategy is the following. If a com-

sync layer header, 3 bytes of FlexMux header, 16 bytes of RTP
header, 8 bytes of UDP header, and 20 bytes of IP header.

'If path MTU information is not available, the default MTU,
i.e. 576 bytes, will be used.

3The maximum size of a MB is 90 bytes and the default path
MTU is 576 bytes.

plete VOP fits into a packet, then packetize such VOP with
a single packet. Otherwise, we will try to packetize as many
MBs as possible into a packet (with re-synchronization marker
copied into each packet for the same VOP) without cross-
ing over into the next VOP even if space is available in the
last packet for the current VOP, i.e. MBs from consecutive
VOPs are never put into the same packet. Our packetiza-
tion method achieves both efficiency, which is essential for
low bit-rate coding, and robustness to packet loss (due to
strict boundary between VOPs among packets and copy-
ing of re-synchronization marker into packets for the same

We first describe the functions and parameters used in
our packetization algorithm.
1) BitCount is a counter that registers the number of bits
read for current packetization process.
2) MaxPL, or Maximum payload length (in bits), equals to
(path MTU - 50 bytes) . 8.
3) VOPstart-code is a predefined code at the beginning
of a VOP and is regarded as the boundary between two
consecutive VOPs. Our sync layer packetization algorithm
is shown as follows.

Algorithm 1 A Packetization Algorithm

while (there is encoded data to be packetized) {

VOP).

search for next VOPstart-code and BitCount counts
the number of bits;
if ((next VOPstart-code is found) and
(BitCount - length of VOPstart-code 5 MaxPL)) {

/* Packetize by VOP boundary * /
packetize the bits before next VOPstart-code;
1

else if (BitCount - length of VOPstart-code
> MaxPL) {
/* Packetize by MBs. */
Packetize as many MBs as possible without
exceeding MaxPL and without crossing into
next VOP;
1

else { /* Next VOPstart-code is not found,
i.e. end of video. */
Packetize the remaining data.
1

1

3 . A FEEDBACK CONTROL ALGORITHM

The current Internet does not widely support any reserva-
tion mechanism or &OS. Moreover, the available bandwidth
not only is not known a priori but also changes with time.

source to sense network conditions so that it can encode the
video with appropriate output rate.

Under our architecture, we let the MPEG-4 video source
gradually increase its transmission rate to probe available
network bandwidth. Such rate increase will first have the
source's rate reach the available network bandwidth. Then
the source rate will overshoot the available network band-
width and fall into the congestion region. Congestion is
detected by the receiver through packet loss in the received
packets. The receiver sends feedback RTCP packets to the

Therefore, a mechanism must be in place for MPEG-4 video

IV-328

Sender Side Receiver Side

Feedback Conrrol

RTPKJDPnP Module

Loss Detector i

e3 Internet

Figure 2: Architecture of RTP/UDP/IP Module.

source to indicate congestion status. Once source receives
such feedback, it decreases its transmission rate.

Figure 2 shows the architecture of our HI'P/UDP/IP
module. This module is the key component to realize our
rate-based feedback control. At the sender side, an MPEG-
4 encoder generates a packetized stream (FlexMux stream),
which is turned into RTP packets by RTP packer. Mean-
while, the control information is transferred to the RTCP
generator. The resulting RTCP and RTP packets go down
to UDP/IP layer for transport over the Internet. At the
receiver side, arriving IP packets are first un-packed at
UDP/IP layer, then dispatched by Filter & Dispatcher to
RTP and RTCP analyzers. RTP analyzer first un-packed
RTP packets and then put them into a buffer to exam-
ine packet loss information (through RTP packet sequence
number). On the other hand, the RTCP analyzer un-packs
the RTCP packets and sends the feedback information to
the Feedback Control Protocol component.

In consistent with the RTP/RTCP standard [4], we let
the source periodically send one RTCP control packet for
every N, MPEG-4 video packets. The receiver sends a feed-
back RTCP control packet back to the source upon receiving
NT packets (or at least once every 5 seconds). The return-
ing RTCP packet contains the packet loss ratio Pi,,, the
receiver observed during the N, packet time interval since
the previous feedback RTCP packet. Rate control actions
are taken by the encoder upon receiving a backward RTCP
packet.

Algorithm 2 A Feedback Control Algorithm

Figure 3: A peer-to-peer network.

Sender Behavior
0 The sender starts to transmit at an initial rate of IR,

i.e., r := IR, which is greater than or equal to its
minimum rate MR;

0 For every N , transmitted RTP data packets, the sender
sends a forward RTCP control packet;

0 Upon the receipt of a backward RTCP packet with
the packet loss ratio Pi,,, from the receiver, the out-
put rate r- at the source is adjusted according to the
following rule:

if (Pto,, 5 PthTeshoid)

else
r := min{(r +AIR), PR};

r := max{(cw. r) , MR}

Receiver Behavior

0 The receiver keeps track of the sequence number in
the RTP header of the arriving packets;

0 Upon receiving N , packets (or a t most 5 seconds),
the receiver sends a feedback RTCP packet to the
source containing packet loss rate PL,,, it observes
since sending last RTCP feedback packet.

During a control action, the feedback control algorithm
(Algorithm 2) adjusts the output rate r of the MPEG-4
encoder so that the packet loss ratio Pi,,, stays below a
predetermined value Pthreshoid. Unlike [6], where a mul-
tiplicative increase rate adjustment is employed when an
feedback RTCP packet indicates that there is no conges-
tion, we employ additive increase in Algorithm 2, which is
a conservative rate increase approach to adapt to available
network bandwidth. Our experience shows that a multi-
plicative increase usually brings much larger source rate os-
cillation and more packet loss in a large network than a
conservative rate adjustment such as additive increase. On
the other hand, we employ multiplicative decrease in Algo-
rithm 2 should the source find that the Pi,,, is larger than
threshold in the returning RTCP packet. We find that such
swift rate reduction at the source is necessary to shorten
congestion period and reduce packet loss.

4. SIMULATION RESULTS

In this section, we implement our proposed packetization
algorithm and feedback control for the MPEG-4 video coder
in [l] on our network simulator. We perform a simulation
study to examine the performance of MPEG-4 video over
the network.

We employ the standard peer-to-peer benchmark net-
work configuration shown in Fig. 3 for the Internet envi-
ronment. We emphasize that such simple network config-
uration captures the fundamental property of a transport

IV-329

’ Available Bandwidth, , 1

Pthreshoid
Buffer Size
Buffer Size

Table 1: Simulation parameters.

5%
1 Mbytes
10 Kbytes

I I MaxPL I 4208 bits 1

Switch

Link

10 Kbps

End 5 Kbps
System

Packet Processing Delay 4 pi
Buffer Management Tail Dropping

End System Speed 10 Mbps
to Switch Distance 1 km

Inter-Switch Speed 15/50/25 Kbps
Distance 1000 km

path within the Internet cloud since there is only one bot-
tleneck link (i.e., the one with minimum bandwidth among
all the traversing links) between the sender and the re-
ceiver. Furthermore, we stress that despite the multi-path
and thus arriving packets out of sequence problem in the
Internet, the validity and generality of our findings will not
be compromised by the simple peer-to-peer network config-
uration since our architecture and algorithms are designed
and implemented entirely on end systems (sender and re-
ceiver). Therefore, a packet arriving after the threshold due
to multi-path routing can simply be treated as a lost packet
a t the destination and our architecture and algorithms re-
main intact under such scenario.

At the source side, we use the standard raw video se-
quence “Miss America” in QCIF format for the MPEG-4
video encoder. The encoder performs MPEG-4 coding as
specified in [l] and adaptively adjusts its rate under our
feedback control algorithm (Algorithm 2). The encoded bit
stream is packetized with RTP/UDP/IP protocol overhead
and sent to the network. Packets may be dropped due to
congestion in the network. For arriving packets, the re-
ceiver extract the packet content to form the bit stream for
the MPEG-4 decoder. For a lost packet, the Video Ob-
ject Plane (VOP) associated with the lost packet will be
discarded and a previous VOP will be copied over.

Table 1 lists the parameters used in our simulation. We
use 576 bytes for the path MTU. Therefore, the maximum
payload length, MaxPL, is 526 bytes (576 bytes minus 50
bytes of overhead) [5].

We run our simulation for 450 seconds. Since the there
is only 300 continuous frames in “Miss America” sequence,
we repeat the video sequence cyclically during the simula-
tion run. The link capacity is varying from 15 Kbps during
[0,150) seconds to 50 Kbps during [150,300) seconds to 25
Kbps after 300 seconds (see Fig. 4).

Figure 4 shows the network link bandwidth and source
rate behavior during the 450 second simulation run. We find
that the source is able to adjust i t s rate to keep track of the

40 t
I a a
1 3 0

E
20

10

r
L

v
sou,

‘0 ’ 50 ’ lo0 ’ 7 5 0 ’ 200 ’ 250 ’ 360 350 ’ 400 ’ 450
Time (sec)

Figure 4: Source output rate and available link bandwidth.

1 2 0 , , I , I . I

Link Utilization 1

Time (sec)

Figure 5: Link utilization and packet loss ratio.

varying network available bandwidth. Figure 5 shows the
link utilization and packet loss ratio during the same simula-
tion run. We find that the results in Fig. 5 is consistent with
that shown in Fig. 4. The oscillation in source rate (Fig. 4)
and network utilization (Fig. 5) are due to the propagation
delay of the links and the binary nature of our feedback con-
trol algorithm. The source performs additive rate increase
until it reaches the available link bandwidth. After that it
overshoots it and results in congestion and packet loss. The
packet loss is detected at the receiver and such information
is conveyed to the source. Upon receiving such feedback,
the source decreases its output rate. Despite the oscilla-
tions, the average utilization of the bottleneck link is over
SO%, which is a reasonably good result for feedback control
in a wide area Internet. Furthermore, we find that the av-
erage packet loss ratio is only 0.35%, which demonstrates
the effectiveness of our feedback control algorithm.

A measure of the difference between the original video
sequence and the received video sequence is the peak signal-
to-noise (PSNR). Figure 6 shows the PSNR of Y component
of the MPEG-4 video at the receiver for the same simulation
run in Figs. 4 and 5.

To examine the perceptual quality of the MPEG-4 video,
we play out the decoded video sequence at the receiver. Fig-
ures 7, 8, and 9 show sample video frames at the receiver
during [0,150), [150,300), and [300,450] second time inter-
val, respectively. Recall that we repeat the “Miss America”
video sequence cyclically during the simulation run since we
only have 300 frames available. The sample frames shown

IV-330

- 30 +

B
z rn
a 20 -

10 -

0 -- 1 ~ l_iI. 1 I---

0 50 100 150 200 250 300 350 400 450
Time (sec)

Figure 9: Sample frame of MPEG-4 video at the receiver
during [300,450] second time interval.

Figure 6: PSNR of MPEG-4 video at the receiver.
in MPEG-4 video. Second, we designed an end-to-end feecl-
back control algorithm for adaptive MPEG-4 video encoder.
Simulation results demonstrated that our algorithms can
support MPEG-4 video over the Internet with satisfactory
performance.

6. ACKNOWLEDGMENTS

The authors would like to thank Hung-Ju Lee and Tihao Chi-
ang of Sarnoff Corporation for their assistance related t,o
this work.

Figure 7: Sample frame of MPEG-4 video at the receiver
during [0,150) second time interval.

in Figs. 7 , 8, and 9 all show the same scene but at different
time interval and all have good perceptual quality.

Figure 8: Sample frame of LlPEG-4 video at the receiver
during [150,300) second time interval.

In summary, based on the simulation results in this
section, we conclude that our algorithms can 1) transport
MPEG-4 video 5treams over the netwm!. with good per-
ceptual picture quality under both low bit rate and vary-
ing network conditions; and 2) adapt to available network
bandwidth and utilize it efficiently.

5. CONCLUDING REMARKS

The contributions of this paper are two-folded. First, we
presented, for- the first time, a packetixation algorithm for
MPEG-4 video bit streams at the sync layer for Internet
transport. Our packetization algorithm achieved both ef-
ficiency and robustness by considering the VOP concept

7. REFERENCES

[l] T. Chiang and Y.-Q. Zhang, “A new rate control
scheme using quadratic rate distortion model,” IEEE
Trans. on Circuits and Systems for Video Technology,
vol. 7, no. 1, pp. 246-250, Feb. 1997.

[a] D. Hoffman, G. Fernando, and V. Goyal, “RTP pay-
load format for MPEGl/MPEG2 video,” Internet En-
gineering Task Force, RFC 2038, Oct. 1996.

[3] ISO/IEC JTC 1/SC 29/WG 11, “Information technol-
ogy - coding of audio-visual objects, part 1: systems,
part 2: visual, part 3: audio,” FCD 14496, Dec. 1998.

[4] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son, “RTP: a transport protocol for real-time appli-
cations,” Internet Engineering Task Force, RFC 1889,
Jan. 1996.

[5] €1. Schulzrinne, D. Hoffman, M. Speer, R. Civanlar,
A. Basso, V. Balabanian, and C. Herpel, “RTP pay-
load format for MPEG-4 elementary streams,” Inter-
net Draft, Internet Engineering Task Force, Mar. 1998.

[6] T. Turletti and C. Huitema, “Videoconferencing on the
Internet,” IEEE/ACM Trans. on Networking, vol. 4,
no. 3, pp. 340-351, June 1996.

[7] T. Turletti and C. Huitema, “RTP payload format
for H.261 video streams,” Internet Engineering Task
Force, RFC 2032, Oct. 1996.

[8] C. Zhu, “RTP payload format for H.263 video
streams,” Internet Engineering Task Force, RFC 2190,
Sept. 1997.

IV-33 1

