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Abstract 

This paper presents the results of our study on the statistical 
characterization of MPEG-2 VBR video stream and the 
modeling of such source. The frame trace, marginal 
distribution of the frame size and the high autocorrelation 
existing in the continuous frames are analyzed. An ARMA 

future B-ISDN [ 1][2][3]. However, little work has been 
focused on modeling MPEG-2 video source, especially 
source with all the three types of pictures. Therefore, in this 
paper, we present our study on the statistical characteristics 
of MPEG-2 video stream and the modeling of such video 
source. 

process is used to model MPEG-2 video source. The 
different frame types of MPEG-2 video are considered 
together by performing a normalization transformation 

2 Statistical Characteristics of MPEG-~ 
VBR Video Stream 

during modeling. The performance of the model is 
examined and the results show that the model is good in 
fitting the histogram and preserving the property of 2.1 Description of the Video Sequences 
autocorrelation. We also indicate that the proper order of 
the ARMA model depends on the frame pattern of the 
MPEG source. 

1 Introduction 

Traffic characterization and source modeling of Variable 
Bit Rate (VBR) coded video are active research areas 
because VBR video traffic would be a major media in 
future B-ISDN. Proposed statistical models for compressed 
video source have fallen into two main categories: Auto 
Regressive (AR) and Markov. AR model has been shown 
to produce good results in capturing the bitrate statistics at 
the picture layer for video conferencing type video with 
little motion. And, in general, it appears to capture the 
autocorrelation behavior of compressed video source well 
which is an important prerequisite for any model of 
compressed video source [4][5]. Markov chains provide a 
compact way of generating the probability distribution 
function which fits the video data well. The process of 
calculating the state transition probabilities is straight- 
forward. It does appear that one can model video at lower 
layer than the picture layer using a Markov chain. Markov 
chain also tends to capture the correlated behavior of the 
data well [6][7]. 

It has also been recognized that the MPEG based video 
compression algorithms will play a very important role in 

The test sequences used in this research are two MPEG-2 
VBR video sequences which were encoded by a modified 
software MPEG-2 encoder using open loop coding mode. 
The two sequences are Mobl and Susi. Mobl scene shows a 
toy train slowly moving across the picture from the right to 
the left and knocking into a rolling ball. The background of 
the scene is complex and changing smoothly with the 
motion of the train. Susi sequence shows a young lady 
making a call. It consists of head and shoulder scenes with 
a uniform background and much less activities between 
frames. 

Each sequence contains a total of 450 frames and has a 
frame rate of 30 fps (frame per second). The Mobl 
sequence was encoded with the quantization scale, q=12 for 
I and P frames and 16 for B frames. The Susi sequence was 
encoded with the quantization scale, q=4 for I and P frames 
and 5 for B frames. The selection of the above quantization 
scale is to maintain the average bit rate of about 8 Mbps. 
And the reason why the Q factor for B frames is not as fine 
as that of I or P frames is because B frames are never used 
as reference frames. A reasonable proportion for 
Q,:Q,:Q, is 1:1:1.4. Finally, the GOP pattern is 
IBBPBBPBBPBB (1 2 frames per GOP) for both sequences. 

A program was written to parse the MPEG-2 video streams 
according to the MPEG syntax. The program scans the file 
for the Start Code Prefix consisting of a three byte 001 hex 
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value followed by a one byte Start ,Code. Once the Start 
Code is found, the Start Code header is decoded and 
pertinent information within the header is written to an 
output file. Information extracted from the sequence header 
includes the image resolution, frame rate and bit rate, and 
so on. The number of bytes in each frame is also calculated 
and converted to number of cells, and this number is stored 
in the output file. 

2.2 Frame Traces 

Figure 1 presents the frame size traces of the Mobl and Susi 
sequences. The lines with different heights correspond to 
the different types of frames. The highest lines correspond 
to the biggest I (Intra-) frames. The midsize group of lines 
corresponds to the P (Predictive) frames. And the shortest 
ones correspond to B (Bidirectionally-predicted) frames. It 
is noticed that in Mobl sequence, the trace is rather smooth 
and similar at different time interval. While in the Susi 
sequence, there are irregular short traces among the whole 
plot. It is assumed that the similarity of the traces is due to 
the stationarity of the sequence and the stationarity may be 
assumed for smooth pan and zoom scenes such as Mobl. 
On the other hand, scenes containing sudden scene 
changes or fast camera panning or fast movement of the 
objects will cause a short irregular trace with bigger B or P 
frames. In Susi sequence, the bigger B frames between 
frame 40 and 80 are due to the fast head and eye 
movement because additional data has to be encoded to 
correct for the prediction errors during interframe coding. 

F r a m .  " , , , " b e ,  

(a) Mob1 Sequence 

F r a m e  N u m b * ,  

(b) Susi Sequence 

Figure 1 Cells Per Frame Time Series 

2.3 Distribution 

Figure 2 presents the probability distribution function (pdf) 
of the frame size for the Mobl sequence and the Susi 
sequence. The distribution of frames among I, P, and B 

types and the relative average size of each frame type is 
shown. 

(a) Mobl Sequence (b) Susi Sequence 

Figure 2 Distribution of Cells Per Frame 

2.4 Correlation 

The number of bits generated in a MPEG frame is 
correlated to its previous frames due to the structure of the 
frame sequence and the continuity of the scene. The 
autocorrelation is defined as 

where E[] is the expectation, ,U is the mean of series Z, and 

J2 is the variance of seiries Z. 

Autocorrelation function is an important time-dependent 
statistics in the case of video traffic, because correlation of 
the data streams can be utilized to improve performance of 
an ATM network. 

The autocorrelation function of the frame size is presented 
in figure 3. The frame-by-frame correlation depends on the 
pattern of the GOP, and, in principle, always looks like 
figure 3. The larger positive peaks stem from the I frames, 
the smaller positive ones from the P frames, and the 
negative ones from the B frames. This shape reflects the 
relationship of the mean frame sizes of the frame types. A 
large I frame is followed by two sma!l B frames. Then a 
midsize P frame is produced by the encoder, which is 
followed by two small 13 frames again. The pattem between 
two I frame peaks is repeated with slowly decaying 
amplitude of the peaks. 

(a) Mobl Sequence (b) Susi Sequence 

Figure 3 Autocorrelation Function of the Frame Size 
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3 Modeling MPEG-2 Video Source 

3.1 Normalization of the Frame Size 

The frames in an MPEG video source can be grouped into 
three types, I frames, P frames, and B frames. These three 
kinds of frames have obviously different size. A MPEG-2 
video stream usually contains the mixture of the three types 
with a periodical frame sequence structure. With the 
distribution of frame size in the sequence shown in figure 
2, it is impossible to find a distribution which fits the shape 
well. Therefore, in order to compare the sizes of different 
frame types on a fair level, a normalization procedure is 
applied to all I frames and P frames so that all the frames 
have equal mean size. 

The normalization procedure is a linear transformation and 
can be described as follows: 

Let 

2, denote the mean size of all I frames in the sequence 

2, denote the mean size of all P frames 

2, denote the mean size of all B frames 

i(i) be the original size of the ith frame in the sequence 

Z(i) be the size of the zth frame after the normalization 

Define 

The following linear transformation is applied to each 
frame in the sequence. 

.2( i )  
Z(i) = - 

S I B  
if the ith frame is a I frame 

2(i) 
Z(i) = - 

S*B 

if the zth frame is a P frame 

Z(i) = i(i) if the ith frame is a B frame 

After the normalization, the number of cells per frame in 
the whole sequence is in a comparable level ( In order to 
simplify the description, the size after normalization is still 
called as the frame size or the number of cells per frame in 
this section). 

3.2 Distribution 

It is assumed that the data series of the frame size after 
normalization can be described by a normal distribution. To 
test whether the assumption is true, the histogram of the 
above series of frame size is examined. The histograms of 
the number of cells per frame for Mobl sequence and Susi 
sequence are shown in figure 4. An approximate normal 
distribution is also presented in the figure for comparison. 
It is observed that the distribution of the frame size fits the 
normal distribution fairly well. 

(a) Mobl Sequence (b) Susi Sequence 

Figure 4 Histogram of Cells Per Frame vs. Normal 
Distribution 

To test whether the marginal distribution of the frame size 
is indeed a normal distribution, a Q-Q plot which plots the 
quantiles of the data vs. the quantiles of the fitted 
distribution is also used. The Q-Q plot is a powerful 
goodness-of-fit test. Figure 5 shows the Q-Q plot of 
number of cells per frame for the test sequence and their 
approximate normal distribution. The fit is fairly good 
except for a few points. Thus, conclusion drawn is that 
frame size in the test sequences, Mobl and Susi, can be 
described by a normal distribution after the normalization 
process. 

6% . I 

(a) Mobl Sequence (b) Susi Sequence 

Figure 5 Q-Q Plot of Cells Per Frame vs. Normal 
Distribution 

Here we should point out that a linear transformation does 
not change the distribution type of a series if it follows a 
normal distribution. The linear transformation on the size 
of I and P frames does not change its distribution type and 
the conclusion on the distribution of frames after 
normalization is reasonable according to this mathematical 
theorem. 
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3.3 ARMA Model 

Auto Regressive Moving Average (ARMA) process is 
widely used to model video source because it can 
effectively characterize the autocorrelation property of the 
video scenes. Basically, an ARMA model of orders p and q, 
denoted as ARMA(p,q), is defined as 

Z(k) = (bo + 4 ,Z(k - 1) + 4*Z(k - 2) + . . . + @/,Z(k - p )  
+e(k)-Ble(k-1)-8,e(k-2)- . , . -8 ,e(k-q)  

where Z(k) is the size generated in the kth frame and 
40, q 5 , ,  q 5 2 ,  ..., e,, 6, , ..., 8, are the coefficients 
of the ARMA process. It is a recursive procedure which 
generate a series of values. The current value of the series 
is a linear combination of the p most recent past values of 
itself plus a linear combination of the q most recent values 
of series e, which is a Gaussian random process. $o ,  &,, 
4 * ,  .’., +/,, e , ,  B, , ..., 8, are constant coefficients and 
are derived empirically. 

The autocorrelation property is dominated by the first few 
order ARMA. ARMA( 1, l), ARMA(2,2), ARMA(3,3), and 
ARMA(4,4) are studied, and the results show that 
ARMA(3,3) reflects the autocorrelation property of the 
frames much more approximately than ARMA( 1,l) and 
ARMA(2,2) while there is no significant improvement 
between ARMA(3,3) and ARMA(4,4). This may be 
because the distance between any two I or P frames is 3. 
Higher order ARMA model will introduce complexity in 
deriving the parameters but it does not improve by much 
the autocorrelation property. Thus, in this study, 
ARMA(3,3) is selected to model the MPEG2 video source. 

Based on the frame size of the sequences, the coefficients 
are estimated and the ARMA equations are derived as 

Z(t) = 13.1368+0.0486Z(t-l)+0.0327Z(t -2) 
+ 0.8841Z(t - 3) + e(t)  + 0.1772e(t - 1) 
+ 0.0438e(t - 2) - 0.3203e(t - 3) 

for Mob1 sequence, and 

Z(t) = 27.9223 + O.O871Z(t - 1) + 0.0277Z(t - 2) 
+0.8106Z(t-3)+e(t)-O.0827e(t-l) 
- 0.1484e(t - 2) + 0.3482e(t - 3) 

for Susi sequence. 

3.4 Verification of the Model 

To verify the validity and accuracy of the model, two 
important statistical characteristics, distribution and 
autocorrelation, of the model are compared with that of 

actual data.. The theoretical distribution of the AFWA 
model is a normal distribution whose parameters, mean and 
variance, approximate the parameters of the actual data 
distribution very well. Thle autocorrelation characteristics of 
the test sequences and the theoretical autocorrelation curve 
of the model are depicted in Figure 6 .  Ripples in the graph 
are due to the coexistence of different frame type. It can be 
observed that the model preserves the autocorrelation of the 
original data quite well, especially when the autocorrelation 
with a lag of less than the GOP size (12 or 15). The 
autocorrelation with a lag of greater than the GOP size is 
not very important because a new I frame is generated. 

1- I 

0.9 8, 

0.4 I 
0.3 I 

0 5 10 15 20 25 30 35 40 
Lag inframes 

(a) Mob1 Sequence 

-- ARMA(3,3) model approxlmabon 

03. 

02 
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Lag inframes 

(b) Susi Sequence 

Figure 6 Autocorrelation of Frame Size and ARh4A(3,3) 
Model 

4 Conclusion 

The characteristics of VBR video traffic is very complex 
and it is not easy to derive a suitable analytic model. In this 
paper, we present the results of our study on the statistical 
characterization of MPEiG-2 VBR video source. The frame 
trace, marginal distribution of the frame size and the high 
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autocorrelation existing in the continuous frames are 
studied. Based on these characteristics, an ARMA model 
for MPEG2 video source is proposed. The different frame 
types of MPEG2 sources are considered together by 
performing a normalization transformation during 
modeling. The performance of the model is examined and 
the results show that the model is good in fitting the 
histogram and preserving the property of autocorrelation. 
We also indicate that the proper order of the ARMA model 
depends on the frame pattern of the MPEG source. 
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